Best practices for
HTTP-CoAP mapping implementation

draft-castellani-core-http-mapping-01

Angelo P. Castellani, Salvatore Loreto, Akbar
Rahman, Thomas Fossati and Esko Dijk



Introduction

* The I-D provides a base reference

documentation for HTTP-CoAP (HC) proxy
implementers

* [t details deployment options, discusses
possible approaches for URI mapping, and
provides useful considerations related to
protocol translation



Cross-protocol proxies taxonomy

e Forward

— It is explicitly known by the client

e Reverse

— Acts as if it was the origin server
— It knows explicitly the servers that is proxying

* |Interception [RFC3040]

— Receives requests through network interception
— Zero configuration or discovery of the endpoints



Cross-protocol URI
* Protocol-aware

— Client uses the scheme specific to the protocol

* Example: An HTTP client accesses
coap://node.something.net/foo directly

* Protocol-agnostic

— Client uses its natively supported scheme

* Example: An HTTP client accesses
coap://node.something.net/foo at an http: URI
—The client does not even need to know the coap: URI

— Requires cross-protocol URI mapping



URI mapping

* |tis a mechanism to map a URI across two
different scheme domains

— Example: coap://node.something.net/foo is
mapped to http://something.net/node/foo

* Could be complex in general
— Static: the mapping does NOT change over time
— Dynamic: the mapping can change over time



URI mapping examples

* Homogeneous

— Only the scheme part of the URI changes,
authority and path stay the same

* Example: coap://node.something.net/foo is mapped to
http://node.something.net/foo

* Interception proxy deployments MUST use this mapping

* Embedded

— All but the scheme part of the URI
is embedded as-is in the mapped URI

* Example: coap://node.something.net/foo is mapped to
http://example.com/node.something.net/foo

* Reduces mapping complexity in reverse proxy deployments



Dynamic URI mapping (TODO)

* Dynamic URI mappings can change over time
e Useful for more complex deployments to
perform various functions
— Load-balancing
— Handle dynamic node topology



HTTP-CoAP caching and congestion

An HTTP-CoAP (HC) proxy using caching
reduces load on CoAP servers

— e.g. avoiding duplicate requests

* Observe relationship can be established
towards “popular” resources

— See draft-ietf-core-observe-02

* HC proxy may apply aggregate congestion
control towards the same constrained network
— See draft-eggert-core-congestion-control-01



HTTP-CoAP v4/v6 use case

HTTP Client (C) HTTP-CoAP Proxy (P) CoAP Server (S)

IPv4 SRC: C DST: P
GET /temperature HTTP/1.1
Host: node.coap.foo.com

IPvé SRC: C/P DST: S
CON temperature

IPv6 SRC: S DST: C/P
ACK 2.00
225C

IPv4 SRC: P DST: C
HTTP/1.1 200 OK
225C

DNS A record for node.coap.foo.com points to P

or P is Forward



HTTP unicast --> CoAP multicast

* |dentification and mapping

— The HC proxy understands whether an URI
identifies a multicast resource

— Maps the request to the relevant multicast group

— The mapping depends on the multicast
communication technology in use

* see draft-rahman-core-groupcomm-06



HTTP unicast --> CoAP multicast (cont.)

* Request handling

— Involves the following tasks
e Distributing the request
* Collecting the responses
* Timeout handling
* Responses aggregation and delivery

— Some tasks depend on the multicast
communication technology in use



HTTP unicast --> CoAP multicast (cont.)

GET /temp HTTP/1.1
Host: temp-nodes.coap.foo.com

»(NON GET temp

—»
HTTP/1.1 200 OK \;Q
Content-Type: multipart/mixed; boundary=not \
--not NON 2.00
Content-Type: message/http 21.2C
< T\

HTTP/1.1 200 OK
Link: <http://node2.coap.foo.com/temp>; rel=via

21.2C
NON 2.00
~-not 239\(/: ap ap
Content-Type: message/http 7
NON 2.00
HTTP/1.1 200 OK 205 C
Link: <http://node1.coap.foo.com/temp>; rel=via [
22.5C
--not--

.. Timeout ..

<




Security considerations

* Availability
— Risk: Multicast amplification attacks

— Countermeasure: Only known/authorized clients
may access multicast resources

— Risk: An high number of subscriptions can cause
resource exhaustion

— Countermeasure: Limit the number of concurrent
subscription requests



Security considerations (cont.)

* Integrity
— Risk: Cache poisoning on the CoAP side by an evil

mote spoofing the response (feasible when using
NoSec or even SharedKey).

— Countermeasure: Use MultiKey with 1:1 identity
binding, or SharedKey with procedurally secure mote
crypto enrollment.



Security considerations (cont.)

* Confidentiality

— A resource requested via a secure channel by the
source SHOULD be mapped to a secure request (if
possible) or rejected.



Next Steps

* Any comments?

* WG adoption?



