LDP Hello Cryptographic Authentication

draft-zheng-mpls-ldp-hello-crypto-auth-02

Vero Zheng (verozheng@huawei.com)
Mach Chen (mach@huawei.com)
Manav Bhatia (manav.bhatia@alcatel-lucent.com)

Karp WG, IETF 81, Quebec City, 27 July 2011

IETF 81st Page 1

Problem Statement

draft-ietf-karp-routing-tcp-analysis-00.txt

Current State

- Established LDP session could be tore down by spoofed Hello
 - By specifying a smaller Hold Time or changing the Transport Address
 - Reported as real problem in operation networks
- RFC5036 does not provide any security mechanisms for use with Hello messages
- The current TCP authentication mechanism can not help here

Optimal State

 Should be able to determine the authenticity of the neighbors sending the Hello message

Gap Analysis

 Spoofing attacks can be solved by being able to authenticate the Hello messages,

Draft Objective

- Secure the Hello message against spoofing attack
 - Introduces a new Cryptographic Authentication TLV
 - Used in LDP Hello message as an optional parameter
- Enhances the authentication mechanism for LDP
 - NIST Secure Hash Standard family of algorithms used
 - LSR can be configured to only accept Hello messages from specific peers when authentication is in use
- It's Simple, its Backward Compatible and its Secure

Changes Since Last Version

A 64-bit strictly increasing sequence number used

- To guard against replay attacks
- MUST be incremented for every LDP packet sent
- Hash computing mistake fixed
 - IP header excluded when computing hash
- Auth Type field removed-considered redundant
 - Auth Key ID identifies the algorithm and the secret key used

Next Steps

- Continue to gather feedback from the list
 - Need more feedback from security experts
- Request adoption in MPLS WG

Thank you