

Replay Caching is a Pain
● Kerberos AP exchange requires replay caching

– Replays → bad
● rcaches usually hard to get right, and slow

– Regular disks → 120 fsync()s per-disk/second
– Clustering → ouch!

● Want to do something about this?
● Options:

1) fast rcache designs
2) rcache avoidance
3) ??

Fast Replay Caching (1)
● Don't do synchronous writes at all
● Or, if you care about DoS attacks

– Define 'cutoff' (say, 3 seconds)
– Async write when Authenticator time-stamp < (now +

cutoff), else sync
– And reject when time-stamp < (boot_time + cutoff)
– Memory speed most of the time w/ minimal outage on

crash (none if all clients do kdc_timesync/NTP and time
to boot < cutoff)

● Assumption: time never goes backward!

Fast Replay Caching (2)
● Use an Adaptive Bloom filter or similar data

structure for fast rcache check
– Positive → check actual replay cache entries, or
– Accept non-zero false positive rate and size filter for

acceptable rate → rcache is just the filter
– Adaptive Bloom filter → trivially self-expunging!
– Filter-only → harder to do on disk, better to have IPC svc

● Or use memcached
● Expunge matters when rcache can handle

hundreds of thousands of ops/s!

Replay Cache Avoidance (1)
Implicit 3rd leg

● If all clients of a service principal must use per-
message tokens and the client's first such token
effectively acts as a “third leg” for 1 round-trip
mechs, then rcache can be avoided.

– E.g., NFS, SSHv2
– If configured in the mech → no API changes needed

● Problem: leap of faith that there won't be apps that only
authenticate (think of kerberized r-cmd)

– A req_flag could be used to solve leap-of-faith issue
– rcache still needed for PROT_READY per-msg tokens
– “3rd leg” must confirm something (e.g., acceptor sub-key)

Replay Cache Avoidance (2)
Explicit 3rd leg

● Client could say “I can do an additional AP
exchange leg” in its AP-REQ

– MUST ensure that such AP-REQs are rejected in any
other contexts

● Use GSS flag or authz-data element for this; upgrade SW
– Needed: critical way to signal in AP-REP whether the

server accepts this and expects that additional leg
– GSS-only? Or raw krb5 too? Easier if GSS-only!

● GSS details: new req_flag for initiator
– New ret_flag not needed
– If flag present → use an extended AP-REP PDU

Replay Cache Avoidance (2)
Other uses for extra legs extension

● We could use a negotiation of “extra round-trips
OK” for other purposes

– Key rollover! (get fresh Ticket, retry w/o re-connecting)
– Negotiation of authz-data elements?
– U2U TGT request using bogus AP-REQ with new APOptions

flag?
● Reply would be TGT

● Other uses for extended AP-REP
– Allow svc to issue a replacement Ticket w/ a single authz-data

element referencing cached elements on svc side
● A way to deal with those huge PACs (and soon also huge PADs :)

● ...

Replay Caching for Clusters?
● Filesystem-based rcaches are no good for

clusters – clustered filesystems are too slow
● New protocol?
● Memcached?
● Split brain → bad, must avoid
● Much easier (better?) to avoid need for rcache!

Consensus Questions
● Avoidance by implied 3rd leg only?
● Avoidance by negotiation of 3rd leg?

– With a fast rcache it's still better to avoid that explicit 3rd leg!
● But fast rcache for clusters is extra hard

● Fast rcache is really just implementation details – worth
documenting some techniques in an FYI RFC?

– And if we need a protocol for clusters, do we want a Standards-
Track protocol? Or shall we assume homogeneous clusters?
Distributed rcache service might be generally useful!

● I'm of two minds about all this myself... I prefer implicit
3rd leg (with req_flag) and fast rcaches, but explicit 3rd
leg is simplest for clusters -Nico

Exporting Partially-Established GSS
Security Contexts (1)

● Why?
● Implementation choices

– Useful for acceptor application implementations where
process must or might restart between security context
tokens

● Protocol design issues
– Stateless acceptor apps not susceptible to replay attacks

(e.g., KDCs)
● Why not?

– Nothing makes this fundamentally infeasible
<rehash-arguments src='KITTEN WG mailing list'/>

Exporting Partially-Established GSS
Security Contexts (2)

● Specification is trivial: just allow it
– Possibly define a new major status code

● Might want a new utility function to output
encrypted “state cookie” containing exported
security context tokens

– Should contain a time-stamp, validity period
– Can't protect against replays...
– ...but one could use an rcache to minimize acceptor-side

state size and still get replay protection

