

Problems with the GSS-APIv2u1 C
Bindings

● Where to start...
● Memory management headaches
● Insufficiency of minor_status for communicating

complex errors
● Extensibility + software layering issues

– See further slides
● What to do?

● Make do?
● Fix?
● GSS-API version 3?

Memory Management Hell
● gss_buffer_desc is part of the ABI, often

allocate on the stack (automatic)
– Has no way to record how to release the actual buffer

● gss_release_buffer(), in a mechglue
environment – what to do?

● This problem is urgent
● Likely solution: require all providers to use the same

allocator as the mechglue
– This requires good run-time linker fu, but we think we can

make it work on all major OSes

Minor Status Issues
● Want to have detailed error messages about

complex situations
● minor_status is an integer, not smaller than 32-

bit, and, really, not larger than 64
● What to do?

● So far MIT and Heimdal allocate minor_status
values dynamically, mapping them to detailed info
– Oops: when to release? When gss_display_status() is

called?! LRU?

Extensibility/Layering Issues
● Layering: imagine sshd using GSS and PAM with

a pam_ldap using libsasl using gss
● GSS used in two “apps” in same process
● Very common
● “don't do that” is not a very satisfactory answer

● Yes, some of this can be avoided by using IPC to add isolation
● Want GSS functions like...

● Set mechglue config
● Set mechanism config
● Set policy (cipher suites allowed, …)

Extensibility/Layering Issues
● Imagine a gss_acquire_cred() extension that

can handle initial cred acquisition (interaction)
● New function to replace gss_acq._cred()

vs.
● GSS_S_INTERACT → call gss_get_prompt() and

gss_set_answer(), say – where to stash the
prompt/answer?
– If we had a call context, then we could stash them there

Solutions?
● There's at least four solutions that some of us have

considered
● “PGSS-API”

– Change minor_status arg in ABI backwards-compat way to a
call context

● Change the header file
● Don't change the header file

– Spec a GSS-API version 3
– Run-time linker fun (fun!)
– More types, more functions (gss cred opts, sec ctx opts, …)

● we've been going down this path (think of
gss_set_allowable_enctypes())

PGSS-API
● Variant 1:

s/OM_uint32 *minor_status/gss_call_ctx_t call_ctx/
● Variant 2:

gss_alloc_call_ctx() →
outputs a call context object and an OM_uint32 * to be passed to
gss functions

gss_release_call_ctx() →
releases the call context and associated OM_uint32

● Impact on mechglue/providers: must map input
OM_uint32 * to call context (yes, it can be fast)

Credit for initial PGSS use-case and solution: David Leonard @ Quest

GSS-APIv3
● An opportunity to fix all sorts of issues
● New function/type/constant prefix? gss3? Gs3?
● But will any apps be changed to use it?
● v2u1→v3 shim should be feasible and desirable

– Only apps need this: providers should get converted
along with mechglue since we don't have an open SPI at
the moment

Run-Time Linker Fun! (1)
● Apps would dlopen()/LoadLibrary() distinct copies the

mechglue, and the mechglue would load distinct copies of
the providers

– Literal file copies – dlopen() knows about links!
– Or new dlopen() flag to request a distinct load

● GSS functions with global state would affect only the
global state of the loaded object, of which there may be
many “local” copies, therefore global state → local state!

– Magical!
– We think we can make this work on major OSes
– GSS function pointer set is equivalent to caller context handle

Run-Time Linker Fun! (2)
● How to make this manageable?!

● We could use a struct to hold gss fn *s
● We could use a function from a “gss loader” library

or else a macro to load these
● Something like this, perhaps:

gss_fn_set_v3u0_t gss = GSS_LOAD(); /* or */
gss_fn_set_v3u0_t gss = GSS_LOAD_OBJ(“/.../foo.so”);

gss->set_config(...);

gss->init_sec_context(...);

Run-Time Linker Fun! (3)
● GSS_LOAD*() macros might look like:

do { \
 void *hdl = dlopen(...); \
 gss_load_fn_t fn; \
 if (hdl != NULL && (fn = dlsym(hdl, …) != NULL) \
 return fn(hdl, …); \
while (0);

● Or use GCC statement-expressions :)

Run-Time Linker Fun! (4)
● But! Whereas objects from a PGSS or GSSv3

provider/mechglue might be useable with
distinct call contexts, objects from a distinct
provider/glue cannot be safely passed to
others!
● Huge gotcha?

– Mostly not for layered software case, but it does mean
that GSS objects can't be passed over non-GSS APIs
(think of APIs for, say, RPCSEC_GSS).

Questions
● Sooner or later an implementor or three will badly

want to do something about this
● We should specify a Standards-Track solution
● Which?!

● Nico dislikes the more-types-more-functions
approach to addressing every sub-problem here

● Margaret dislikes PGSS variants
● Sam dislikes PGSS variant with header changes, thinks

C++ will be impacted (not clear yet)
● Nico loves rtld games, but... this one?! Not sure.

Questions?

