
Multipath TCP Congestion Control

Costin Raiciu, Mark Handley and Damon Wischik

draft-ietf-mptcp-congestion-06

Status

• draft 05 approved by IESG for publication
(with comments)

• draft 06 clarifies the extent to which the
goals are satisfied, in response to comments
by David Black

• Done!

Multipath TCP Specification

Mark Handley
on behalf of Alan Ford, Costin Raiciu and Olivier

Bonaventure

draft-ietf-mptcp-multiaddressed-04

Status

• Close to final.
– Reviewed by Andrew McGregor and Stein

Gjessing

Clarifications

• Section 2 rewritten to make overall
behaviour clearer before diving into detail.

Refresh of ADD_ADDR

 “From the connection initiator's point of view, if an
MP_JOIN fails, it SHOULD NOT attempt to connect
to the same IP address and port during the lifetime of
the connection, unless the other host refreshes the
information with another ADD_ADDR option.”

Previously needed to REMOVE_ADDR first, now
ADD_ADDR is a refresh.

 Host A Host B
 ------------------------ ----------
 Address A1 Address A2 Address B1
 ---------- ---------- ----------
 | | |
 | | SYN + MP_CAPABLE |
 |--->|
 |<---|
 | SYN/ACK + MP_CAPABLE(Key-B) |
 | | |
 | ACK + MP_CAPABLE(Key-A, Key-B) |
 |--->|
 | | |
 | | SYN + MP_JOIN(Token-B, R-A) |
 | |------------------------------->|
 | |<-------------------------------|
 | | SYN/ACK + MP_JOIN(MAC-B, R-B) |
 | | |
 | | ACK + MP_JOIN(MAC-A) |
 | |------------------------------->|
 | | |

 MAC-A = MAC(Key=(Key-A+Key-B), Msg=(R-A+R-B))
 MAC-B = MAC(Key=(Key-B+Key-A), Msg=(R-B+R-A))

Break before make

• Long discussion on the list
– MP_PRIO gained optional address ID.

– Clarified relationship between when a
connection finishes and when subflows die or
finish (state machine).

MP_PRIO

• Subflows have a B bit indicating only use as backup.

• B=1 => don’t use if any other B=0 subflow is working.

• What happens if the B=0 subflow dies in a break-before-
make scenario?

– Want to set B=1 on stalled subflow, not RST it, because
it may recover later.

– Need to be able to change MP_PRIO on a different
subflow.

Closedown FSM

• Key issue is making sure all data is reliably
received, even if you have to resend it on
another subflow, and DATA_FIN is received.
– When precisely do you FIN the subflows?

– Don’t want to send last data on subflow A, FIN
subflow B, then A fails before data is acked.

M_TIME
WAIT

M_CLOSE
WAIT

M_ESTAB

M_CLOSING
M_FIN
WAIT-2

M_FIN
WAIT-1

M_CLOSED

M_LAST
ACK

M_CLOSE
snd DATA_FIN

rcv DATA_FIN
snd DATA_ACK

rcv DATA_FIN
snd DATA_ACKrcv DATA_ACK[DFIN]

CLOSE all subflows

rcv DATA_FIN
snd DATA_ACK[DFIN]

rcv DATA_ACK[DFIN]
CLOSE all subflows

M_CLOSE
snd DATA_FIN

rcv DATA_ACK[DFIN]
CLOSE all subflows

all subflows in CLOSED
delete MPTCP PCB

Open Issues

• Mobility in fallback.

• Teardown of state when all subflows fail.

Mobility in Fallback

 “When a connection is in fallback mode, only one subflow can
send data at a time. Otherwise, the receiver would not know
how to reorder the data. However, subflows can be opened
and closed as necessary, as long as a single one is active at any
point.”

• This works with make-before-break.
– If all data on a subflow is acked, can switch to another

subflow.
• With break-before-make, don’t know what was received.

Teardown

• When do you finally give up if all subflows
have timed out?

Is MPTCP deployable?

“Is it still possible to extend TCP?”
Michio Honda, Yoshifumi Nishida, Costin Raiciu,

Adam Greenhalgh, Mark Handley, Hideyuki Tokuda

to appear in IMC 2011

http://nrg.cs.ucl.ac.uk/mjh/tmp/mboxes.pdf

What actually happens to TCP in the wild?

• We studied 142 access networks in 24 countries.

• Ran tests to measure what actually happened to
TCP.
– Are new options actually permitted?

– Does re-segmentation occur in the network?

– Are sequence numbers modified?

– Can you leave holes in the sequence space?

– Do middleboxes proactively ack?

Middleboxes and new TCP Options in SYN

• Middleboxes that remove unknown options are not so rare,
especially on port 80

• No path removed options from data but left them on SYNs.

What actually happens to TCP in the wild?

• Rewrote sequence numbers: 10% of paths (18%
on port 80)
– Presumably to improve initial sequence number

randomization

• Resegmented data: 3% of paths (13% on port 80)
• Proxy Ack: 3% of paths (7% on port 80)

– Note: all of these paths also removed new
options from the SYN

What actually happens to TCP in the wild?

Can we leave sequence space holes?

– Data segment after a hole: 5% of paths (10%
on port 80) send dup ack from mbox or drop
segment.

– Ack data not sent: 26% of paths (33% on port
80) do strange things if you send an ack for data
not yet sent.

