
1

Mike Eisler

mre dash ietf at eisler dot com

July 27, 2011

I/O Hints Discussion

IETF 81

1

2

Overview

 draft-eisler-nfsv4-enterprise-apps-01

 Proposes an IO_ADVISE operation

– Similar to fadvise()

 Also proposes new READ_WITH_ADVICE

and WRITE_WITH_ADVICE operations

 Several controversies

3

Controversies

 Overlaps with draft-hildebrand-nfsv4-fadvise-

02.txt

 Need to provide stronger justification/use case

for

– IO_ADVISE4_PREFETCH_OPPORTUNISTIC

– IO_ADVISE4_RECENTLY_USED

 The need for READ_WITH_ADVICE and

WRITE_WITH_ADVICE

4

Overlaps with draft-hildebrand-nfsv4-

fadvise-02.txt
 Proposed merged list:

– IO_ADVISE4_NORMAL - as in FADVICE i-d

– IO_ADVISE4_SEQUENTIAL - as in FADVICE i-d

– IO_ADVISE4_RANDOM - as in FADVICE i-d

– IO_ADVISE4_WILLNEED_TO_READ - same as FADVISE_WILLNEED
and IO_ADVISE4_PREFETCH.

– IO_ADVISE4_DONTNEED - as in FADVICE i-d

– IO_ADVISE4_NOREUSE - as in FADVICE i-d

– IO_ADVISE4_MIGHTNEED_TO_READ – same as
IO_ADVISE4_PREFETCH_OPPORTUNISTIC

– IO_ADVISE4_WILLNEED_TO_WRITE - same as
IO_ADVISE4_INTENT_TO_WRITE

– IO_ADVISE4_RECENTLY_USED - as in enterprise apps i-d

 To get the IO_ADVISE4_SEQUENTIAL_CACHE behavior, include both
IO_ADVISE4_SEQUENTIAL and IO_ADVISE4_WILLNEED_TO_READ
in the IO_ADVISE operation.

 To get the IO_ADVISE4_SEQUENTIAL_DONTCACHE behavior,
include both IO_ADVISE4_SEQUENTIAL and IO_ADVISE4_NOREUSE
in the IO_ADVISE operation.

5

Justification for

IO_ADVISE4_PREFETCH_OPPORTUNISTIC

 Sometimes one is certain a prefetch is needed (e.g.

sequential reads), and other times one speculates it is

needed

 IO_ADVISE4_PREFETCH is for the certain case

 IO_ADVISE4_PREFETCH_OPPORTUNISTIC is for

the speculative case where it costs the server little to

perform

– E.g. an application reads data that contains a reference

to data in another block (possibly in another file,

possibly in another server)

 A server that is lean on free/cold cache space might

prefetch block pointers instead of the block itself

6

Justification for
IO_ADVISE4_RECENTLY_USED

 Data can go cold in the server’s cache while it

stays warm in the client’s cache

 In order to meet service level objectives

including in the face of client restart, the

server needs to know which data is warm

 Data that gets LRUed out of server’s primary

cache (e.g. DRAM) can placed in seconday

cache (e.g. flash memory)

7

The need for READ_WITH_ADVICE and

WRITE_WITH_ADVICE

 The objective was to handle the case where the client
is indicating advice that applies to just one I/O
operation and leaves the IO_ADVISE hint intact

 E.g. Overall the file has a random workload, but the
client knows when it reads a particular block that the
block will be immediately written (e.g. database
record update)
– So server need not cache the block

– And if the server’s file system is log based, this provides
advance notice to find free space

 This class of use cases can be handled by doing (for
example)
IO_ADVISE IO_ADVISE4_WILLNEED_TO_WRITE ;

READ ; IO_ADVISE previous_hint

– But this leads to some other issues …

8

New Issues

 How many hints does a server support per

open-owner/file pair

– Very relevant to whether proposal drops

READ/WRITE_WITH_ADVICE

– Client should know how many

9

New Issues (continued)

– Proposal 1: IO_ADVISE response to include count of
number of hints the server has on the file

 E.g., a client requests two hints on two non-overlapping
byte ranges

– The second IO_ADVISE response indicates just one hint (the
last hint) is in effect

– If there a maximum of one hint, then since NORMAL is also a
hint, then this means that despite the byte range, the hint
always applies to the entire file

 If the server supports between 2 and 2^64 hints then the
specification needs to define which of the remaining hints
apply to orphaned byte ranges

– Hint with nearest offset?

– Least recently sent hint?

– Most recently sent hint?

– …

10

New Issues (continued)

– Proposal 2: Drop byte range from IO_ADVISE

arguments

 Unambiguously dictates that the protocol

supports exactly one hint per open-owner/open

file pair

 Much simpler, if limiting

– LAYOUTCOMMIT provides a lesson here

 Clashes with POSIX standard for fadvise, but

does anyone implement multiple byte ranges?

11

New Issues (continued)

 pNFS issue: should IO_ADVISE be allowed on requests to data
server (DSes)

– Very relevant to whether proposal drops
READ/WRITE_WITH_ADVICE

– In order to satisfy per I/O hint use case, protocol must allow
this possibility

– Then what does it mean to send IO_ADVISE to both MDS
and DS?

– This is analogous to COMMIT: MDS decides whether pNFS
client can COMMIT to DS.

– Proposal is to solve it the same way

– New flag NFL4_UFLG_IO_ADVISE_THRU_MDS in the field
nfl_util of the file layout

 if set, IO_ADVISE MUST NOT be sent to DS

 if not set,
– IO_ADVISE MAY be sent to DS but will not impact other DSes

– Hint will not outlive the layout

12

Proposal for Moving forward

 Since READ/WRITE_WITH_ADVISE are

contentious, drop those operations and

address multiple hint and pNFS issues

 Combine the two I-Ds (just the hint stuff from

the enterprise apps I-D), using merged hint list

presented earlier

 New operation is called IO_ADVICE since it

supports both POSIX fadvise and non-fadvise

requirements

 Incorporate into NFSv4.2

13 13

14 14

