
The GOE FEC schemes
<draft-roca-rmt-goe-fec-00>

&
UOD-RaptorQ vs. GOE

IETF81, 29th July 2011, Québec City

V. Roca, A. Roumy (INRIA)
B. Sayadi (ALU-BL)

 This presentation is a summary…
 For the details, see:

[RRSI’11]
A. Roumy, V. Roca, B. Sayadi, R. Imad, “Unequal Erasure
Protection (UEP) and Object Bundle Protection with a
Generalized Object Encoding Approach”, INRIA Research Report
7699, July 2011 (http://hal.inria.fr/inria-00612583/en).

2

Outline

1.  the two goals for UOD and GOE schemes

2.  close up on UOD
  why we think this is not a good practical solution

3.  Generalized Object Encoding (GOE)
  the idea
  a few key results

3

Goal 1: provide Unequal Erasure Protection
 with other FEC schemes, all symbols of an object

are equally protected…
 UEP is sometimes needed

 even with file transfers (e.g. file containing scalable video)

 can be achieved in 3 different ways
1.  thanks to UEP aware FEC codes

•  dedicated FEC codes

2.  thanks to UEP aware packetization
•  keep standard FEC codes

3.  thanks to UEP aware signaling
•  keep standard FEC codes

4

UOD

GOE

Goal 2: protect a bundle of small files
 imagine you have 100 files of 100 bytes each…

 sending (e.g.) twice each packet is not efficient…
•  neither in terms of protection

•  nor flexibility (code rate is one of {1/2, 1/3, 1/4...})

5

… O1 O2 O3 O4 O5 O6 O7 O8 O100

1 packet per object (small enough to fit in a single packet)

… p1 p2 p3 p4 p5 p6 p7 p8 p100

send each packet twice ⇒ code rate = ½

… and pray for one of the two packets of each object to be received!

Goal 2: bundle of small files… (cont’)
 can be solved in two different ways

1.  thanks to bundle aware packetization

2.  thanks to bundle aware signaling

  NB: forget upper-level solutions (e.g. submit a tar archive)
•  objects may be produced on the fly, they are not necessarily

files in a hierarchy of directories

6

UOD

GOE

Outline

1.  the two goals for UOD and GOE schemes

2.  close up on UOD
  why we think this is not a good practical solution

3.  Generalized Object Encoding (GOE)
  the idea
  a few key results

7

UOD (Universal Object Delivery using RaptorQ)
 UOD is a UEP-aware packetization technique
 inherits from PET [PET96] its packetization mechanism

 each packet is an aggregate of symbols coming from
 the various “objects”
 we’ll see what “object” means later on

 let’s look a bit more at the details…

[PET96]
A. Albanese, J. Blomer, J. Edmonds, M. Luby, M. Sudan, “Priority encoding
transmission”, IEEE Trans. on Information Theory, Vol. 42 Issue 6, Nov. 1996.

8

UOD sender example: part 1

9

Given:
-  2 objects of different priority
-  target packet size
-  target code rate for each object

Calculate (see [PET96]):
-  n, number of packets
-  number of symbols for each object
-  symbol size for each object

NB: due to rounding effects:
-  the actual packet size is ≤ target
-  the actual code rate of each object is
≥ target

HIGH PRIORITY
“object” O1

LOW PRIORITY

“object” O2

ex: segmented into 2 “large” symbols

ex: segmented into 7 “small” symbols

UOD sender: part 2, FEC + packet creation

10

LOW PRIORITY

“object” O2

3 repair
symbols

HIGH PRIORITY
“object” O1

8 repair symbols

symbol of O1 symb. of O2 packet 1

copy symbol
into packet

s1

s2

r1

r2

…

r8

s1

s2

…

s7

r1

r2

r3

symbol of O1 symb. of O2 packet n

… …

code rate = 0.2 code rate = 0.7

FEC Encoding

n = 10 encoding
symbols for each

class

UOD receiver example:

11

symbol of O1 symb. of O2 symb. O3 symb. O4 symbol of O5 received packet

Packet processing at a receiver

“object”
O1

“object”
O2

… “object”
O5

(repair symbols)

(repair symbols)

… copy into the
target object

copy into the
target object

ignore

FEC decoding if feasible

FEC decoding if feasible

missing…

missing…

recover O2

recover O5

How UOD addresses goals 1 and 2
 goal 1: UEP

 here “object” == “subset of a file of a given priority”
 assign different target code rates to each object

 goal 2: file bundle
 here “object” == “file”
 each packet contributes to each object decoding

•  since each packet contains a symbol of each encoding object

12

UOD analysis
 inherent complexity due to its packetization

 each incoming packet MUST be processed as long as there’s
at least one non decoded object

•  with GOE, a receiver does not look inside packets for
decoded/undesired objects 

 extra memory copies to/from packets
•  otherwise memory consumption would be too high

•  no such burden with GOE 

 with a bundle of 100 objects, you perform 100 FEC
encodings and 100 FEC decodings

•  GOE schemes need only 1 

 understanding UOD is challenging
•  to the complexity of PET it adds the complexity of UOSI and

RaptorQ features (sub-symbols/blocks, Al alignment)

•  understanding GOE is a matter of 5mn 
 13

UOD analysis… (cont’)
 UOD is far too inflexible

 symbol size is determined by {D, object sizes, target code
rates, target packet size, Al}

•  e.g. with D=255 objects, 1024 byte packets, you have no
choice but using 4 byte long symbols!!!

•  with GOE, this size usually corresponds to the PMTU, but
other choices are possible too, up to the CDP 

 a small symbol size has significant impacts on decoding
complexity

•  it increases the number of symbols in a block, and the size of
the linear system a receiver has to decode!

•  big impact on the Gaussian elimination scheme described in
Raptor/RaptorQ RFC!

•  with GOE, the number of symbols is kept minimum, as well
as the linear system size 

14

UOD analysis… (cont’)
 NB: error in the I-D

•  saying the symbol size is determined by the CDP is wrong.
Itʼs determined by the UOD scheme, using a specific
algorithm that should be described, even if it is complex

15

UOD analysis… (cont’)
 certain situations are not well addressed

 UOD bundle example at IETF80 and add a small file
•  32 files of size 32 KB, and 1 file of size 10 bytes

•  target code rate ½ for all files, target packet size is 1 KB

•  it follows there are n = 2049 encoding packets

16

object
size

source
symbols

symbol size target
code rate

actual
code rate

target
pkt size

actual
pkt size

32 KB 1171 28 B (32 is
too large)

0.5

0.571
1024 B

900 B

10 byte 3 4 B 0.00146

protection far
too important



less protected sub-optimal
packet size



UOD analysis… (cont’)
 from a situation where all targets were perfectly achieved

•  see bundle example at IETF80

 …adding a single small file can have catastrophic

consequences 
 reason

 Al=4 bytes is the minimum symbol size.
 If the object sizes differ significantly, UOD cannot fill each

packet while complying with all the targets
•  it would require a finer, bit-level, Al granularity

 to summarize

 UOD/PET is an excellent idea on the paper...
 …but I wouldn’t recommend its use for practical realizations

17

Outline

1.  the two goals for UOD and GOE schemes

2.  close up on UOD
  why we think this is not a good practical solution

3.  Generalized Object Encoding (GOE)
  the idea
  a few key results

18

Generalized Object Encoding (GOE)
 GOE is a pure signaling proposal
 no new FEC code …but dedicated GOE FEC schemes
 no specific packetization …1 symbol = 1 packet

 what GOE I-D does is:

 explain what happens to original objects

 explain how Generalized Objects (GO) are created

 explain additional signaling

and that’s all…

19

GOE in 3 slides 1/3

 use a No-Code FEC Scheme
 choose a symbol size valid for all objects
 manage TOI in sequence for all objects
 No-Code FEC encode each object
 send No-Code encoded symbols

 nothing new, FLUTE/FCAST signaling is as usual

20

•  explain what happens to original objects

•  explain how Generalized Objects (GO) are created

•  explain additional signaling

GOE in 3 slides… 2/3

 create “Generalized Objects” (GO) on top of it
 identify the 1st source symbol of a GO

•  use the {TOI, SBN, ESI} provided by No-Code FEC encoding

 identify the number of symbols of a GO

•  they possibly belong to different objects, itʼs not an issue

21

•  explain what happens to original objects

•  explain how Generalized Objects (GO) are created

•  explain additional signaling

Object 1 (TOI=1, SBN=0)

esi1 esi2 esi3 esi4 esi5 esi6

Object 2 (TOI=2, SBN=0)

esi1 esi2 esi3 esi4 esi5 esi6 esi7

(SBN=1)

esi1 esi2 esi3 esi4

Generalized Object 1
starts at {TOI=1, SBN=0, ESI=3}, length = 8 symbols

GOE in 3 slides… 3/3

 signaling aspects
 assign a new TOI for each GO

•  to be easily distinguished from original objects

 dedicated FEC OTI (carried in EXT_FTI or FLUTE FDT Inst.)

•  carry the GOE specific metadata

•  identifier for initial source symbol + number of symbols

 same FEC Payload ID as original FEC scheme, with
restrictions on valid ESI

•  …since only repair symbols are sent

22

•  explain what happens to original objects

•  explain how Generalized Objects (GO) are created

•  explain additional signaling

Comparison
 GOE is simple

 the “object”  “generalized object” mapping is quite natural
•  … even if it requires some logic to implement it

 initialization is trivial unlike UOD/PET

 GOE is compatible with all FEC schemes
 GOE Reed-Solomon for GF(28) available
 GOE LDPC Staircase proposal to come...

 GOE is backward compatible
 a receiver that has no GOE-aware FEC scheme…

•  can take advantage of “No-Code source symbols”

•  silently drops all “GOE repair symbols” (different TOI and

LCT codepoint)

23

Comparison… (cont’)
 GOE is efficient [RRSI11]

 less predictable than UOD/PET
•  is it really an issue?

 same UEP protection as UOD/PET in general
•  no major difference, sometimes GOE performs the best,

sometimes itʼs the opposite

 less processing at a receiver than UOD/PET

•  no “deep packet processing” unlike UOD/PET

 these features are easily controlled by the sender
 GOE can be optimized for specific use-cases

•  e.g. to reduce peak memory requirements, decoding delay of
high priority GO, while smoothing processing load

•  trade-off to find between robustness in front of erasure bursts
and gains

24

Comparison… (cont’)
 example: from “uniform interleaving” to a “3-permutation”

 all details in [RRSI’11]
 compares PET/UOD versus GOE
 n-truncated negative binomial distribution model (PET+GOE)
 theoretical + simulation results for

•  decoding delay

max. memory consumption

•  number successful decodings
number packets processed

25

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

d
e

c
o
d

in
g
 d

e
la

y
 p

e
r

o
b
je

c
t
(#

 p
a
c
k
e

ts
)

channel loss probability (%)

GOE 3-permutation object 0
GOE 3-permutation object 1
GOE 3-permutation object 2
GOE 3-permutation object 3
GOE 3-permutation object 4

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

d
e

c
o
d

in
g
 d

e
la

y
 p

e
r

o
b
je

c
t
(#

 p
a
c
k
e

ts
)

channel loss probability (%)

GOE object 0
GOE object 1
GOE object 2
GOE object 3
GOE object 4

significant decoding delay gains 

Next steps?
 we have use-cases that need GOE

 continue standardization within RMT? In TSVWG? As an
individual submission?

 our intent:
•  split current I-D into “GOE FEC Scheme Concept”

•  …and “Reed-Solomon for GF(28) GOE FEC Scheme” I-D

•  add an “LDPC-Staircase GOE FEC Scheme” I-D

 references
[RRSI’11]

A. Roumy, V. Roca, B. Sayadi, R. Imad, “Unequal Erasure Protection (UEP)
and Object Bundle Protection with a Generalized Object Encoding Approach”,
INRIA Research Report 7699, July 2011 (http://hal.inria.fr/inria-00612583/en).

[PET96]
A. Albanese, J. Blomer, J. Edmonds, M. Luby, M. Sudan, “Priority encoding
transmission”, IEEE Trans. on Information Theory, Vol. 42 Issue 6, Nov. 1996.

26

