The GOE FEC schemes

<draft-roca-rmt-goe-fec-00>
&
UOD-RaptorQ vs. GOE

IETF81, 29t July 2011, Québec City

V. Roca, A. Roumy (INRIA)
B. Sayadi (ALU-BL)

informatiques , mathématiques
Alcatel-Lucent @ hrz‘a/_

This presentation is a summary...
For the detalils, see:

[RRSI'11]
A. Roumy, V. Roca, B. Sayadi, R. Imad, “Unequal Erasure
Protection (UEP) and Object Bundle Protection with a

Generalized Object Encoding Approach”, INRIA Research Report
7699, July 2011 ().

Outline

the two goals for UOD and GOE schemes

close up on UOD

O why we think this is not a good practical solution

Generalized Object Encoding (GOE)

O the idea
O a few key results

Goal 1: provide Unequal Erasure Protection

with other FEC schemes, all symbols of an object
are equally protected...

UEP is sometimes needed
Oeven with file transfers (e.g. file containing scalable video)

can be achieved in 3 different ways

1. thanks to UEP aware FEC codes
« dedicated FEC codes

2. thanks to UEP aware packetization «— [UOD
keep standard FEC codes

3. thanks to UEP aware signaling «—— |GOE
keep standard FEC codes

Goal 2: protect a bundle of small files

imagine you have 100 files of 100 bytes each...
Osending (e.g.) twice each packet is not efficient...
* neither in terms of protection
- nor flexibility (code rate is one of {1/2, 1/3, 1/4...})

Ol 02 03 04 05 06 07 08 Tt OlOO

l] 1 packet per object (small enough to fit in a single packet)

b1 P> P P4 Ps Ps || P7 Pg e P1oo

send each packet twice = code rate =)%

... and pray for one of the two packets of each object to be received!

can be solved in two different ways

1. thanks to bundle aware packetization «—— |UOD

2. thanks to bundle aware signaling «— | GOE

O NB: forget upper-level solutions (e.g. submit a tar archive)

objects may be produced on the fly, they are not necessarily
files in a hierarchy of directories

Outline

the two goals for UOD and GOE schemes

close up on UOD N

O why we think this is not a good practical solution

Generalized Object Encoding (GOE)

O the idea
O a few key results

UOD (universal Object Delivery using RaptorQ)

UOD is a UEP-aware packetization technique
inherits from PET [PET96] its packetization mechanism

each packet is an aggregate of symbols coming from
the various “objects”
Owe’ll see what “object” means later on

Olet’s look a bit more at the details...

[PET96]

A. Albanese, J. Blomer, J. Edmonds, M. Luby, M. Sudan, “Priority encoding
transmission”, IEEE Trans. on Information Theory, Vol. 42 Issue 6, Nov. 1996.

sender

HIGH PRIORITY
“object” O,

ex: segmented into 2 “large” symbols

LOW PRIORITY

“object” O,

ex: segmented into 7 “small” symbols

Given:

- 2 objects of different priority

- target packet size

- target code rate for each object

Calculate (see [PET96]):

- n, number of packets

- number of symbols for each object
- symbol size for each object

NB: due to rounding effects:

- the actual packet size is < target

- the actual code rate of each object is
2 target

UOD sender: part 2, FEC + packet creation

code rate = 0.2 code rate = 0.7

FEC Encoding s,

.

n =10 encoding
symbols for each
class

S1 \HIGH PRIORITY S

~ LOW/PRIORITY

" “Ppbject” O, -

"3 repair "~ -
. .symbols. .

/

copy symbol
into packet

packet 1 symbol of 01\ symb. of O,

v

packet n symbol of O, symb. of O,

UOD receiver example:

Packet processing at a receiver

received packet symbol of O, symb. of O, symb. O; [symb. 04—
ignore copy into the copy into the
target object target object
“‘object”
O,

missing...

(repair symbols)

!

FEC decoding if feasible

recover O,

missing...

(repair symbols)

!

FEC decoding if feasible

recover Oy .

goal 1: UEP

Ohere “object” == “subset of a file of a given priority”
Oassign different target code rates to each object

goal 2: file bundle
Ohere “object” == “file”
Oeach packet contributes to each object decoding
* since each packet contains a symbol of each encoding object

12

inherent complexity due to its packetization

Oeach incoming packet MUST be processed as long as there’s
at least one non decoded object

- with GOE, a receiver does not look inside packets for
decoded/undesired objects ©

Oextra memory copies to/from packets
- otherwise memory consumption would be too high
 no such burden with GOE ©

Owith a bundle of 100 objects, you perform 100 FEC
encodings and 100 FEC decodings

« GOE schemes needonly 1 ©

Ounderstanding UOD is challenging

- to the complexity of PET it adds the complexity of UOSI and
RaptorQ features (sub-symbols/blocks, Al alignment)

 understanding GOE is a matter of 5mn © 13

UOD is far too inflexible

Osymbol size is determined by {D, object sizes, target code
rates, target packet size, Al}

- e.g. with D=255 objects, 1024 byte packets, you have no
choice but using 4 byte long symbols!!!

« with GOE, this size usually corresponds to the PMTU, but
other choices are possible too, up to the CDP ©

Oa small symbol size has significant impacts on decoding
complexity
- it increases the number of symbols in a block, and the size of
the linear system a receiver has to decode!
* big impact on the Gaussian elimination scheme described in
Raptor/RaptorQ RFC!

- with GOE, the number of symbols is kept minimum, as well
as the linear system size ©

14

ONB: error in the I-D

- saying the symbol size is determined by the CDP is wrong.
It’s determined by the UOD scheme, using a specific
algorithm that should be described, even if it is complex

15

UOD analysis... (cont’)

® certain situations are not well addressed
OUOD bundle example at IETF80 and add a small file
- 32 files of size 32 KB, and 1 file of size 10 bytes
- target code rate ' for all files, target packet size is 1 KB
- it follows there are n = 2049 encoding packets

object | # source | symbol size
size symbols code rate | code rate

32 KB 1171 28 B (32 is 0.571
too large) : 1024 B 900 B
10 byte 3 4B 0.00146
less protected protection far sub-optimal
too important packet size

® ®

16

from a situation where all targets were perfectly achieved
« see bundle example at IETF80

...adding a single small file can have catastrophic
consequences ®

reason

OAI=4 bytes is the minimum symbol size.

OIf the object sizes differ significantly, UOD cannot fill each
packet while complying with all the targets

- it would require a finer, bit-level, Al granularity

to summarize

OUOD/PET is an excellent idea on the paper...
O...but | wouldn’t recommend its use for practical realizations

17

Outline

the two goals for UOD and GOE schemes

close up on UOD

O why we think this is not a good practical solution

Generalized Object Encoding (GOE)

O the idea
O a few key results

18

Generalized Object Encoding (GOE)

GOE is a pure signaling proposal
no new FEC code ...but dedicated GOE FEC schemes
no specific packetization ...1 symbol = 1 packet

what GOE I-D does is:

Oexplain what happens to original objects

Oexplain how Generalized Objects (GO) are created

Oexplain additional signaling

and that’s all...

19

explain what happens to original objects p—

explain how Generalized Objects (GO) are created

explain additional signaling

use a No-Code FEC Scheme
choose a symbol size valid for all objects
manage TOI in sequence for all objects
No-Code FEC encode each object
send No-Code encoded symbols

nothing new, FLUTE/FCAST signaling is as usual

20

explain what happens to original objects
explain how Generalized Objects (GO) are created | |

explain additional signaling

create “Generalized Objects” (GO) on top of it
Oidentify the 15t source symbol of a GO
- use the {TOI, SBN, ESI} provided by No-Code FEC encoding
Oidentify the number of symbols of a GO
« they possibly belong to different objects, it’s not an issue

Object , (TOI=1, SBN=0) Object , (TOI=2, SBN=0) (SBN=1)

Generalized Object 1

21

explain what happens to original objects

explain how Generalized Objects (GO) are created

explain additional signaling N——

signaling aspects
Oassign a new TOI for each GO
- to be easily distinguished from original objects
Odedicated FEC OTI (carried in EXT_FTI or FLUTE FDT Inst.)
- carry the GOE specific metadata
- identifier for initial source symbol + number of symbols

Osame FEC Payload ID as original FEC scheme, with
restrictions on valid ESI

- ...since only repair symbols are sent

22

GOE is simple
Othe “object” & “generalized object” mapping is quite natural
- ... even if it requires some logic to implement it
Oinitialization is trivial unlike UOD/PET

GOE is compatible with all FEC schemes

OGOE Reed-Solomon for GF(28) available
OGOE LDPC Staircase proposal to come...

GOE is backward compatible
Oa receiver that has no GOE-aware FEC scheme...
- can take advantage of “No-Code source symbols”

- silently drops all “GOE repair symbols” (different TOI and
LCT codepoint)

23

GOE is efficient [RRSI11]
Oless predictable than UOD/PET
* is it really an issue?
Osame UEP protection as UOD/PET in general

- no major difference, sometimes GOE performs the best,
sometimes it’s the opposite

Oless processing at a receiver than UOD/PET
* no “deep packet processing” unlike UOD/PET

these features are easily controlled by the sender

OGOE can be optimized for specific use-cases

* e.g. to reduce peak memory requirements, decoding delay of
high priority GO, while smoothing processing load

 trade-off to find between robustness in front of erasure bursts
and gains

24

600

400

300

200

decoding delay per object (# packets)

0

100

! ' ' 600 ! ! '
: A K TT
—_ 6 ! 0 e]|)
5OO [£ 500 [g R R e w“ﬁ“ﬁf
; % o HT
‘ I : +
: e Q S
rrrrrr L o 400 S
f 5 A
8
«~ 2 Vi
N S 200
GOE object 0 A 3 GOE mutation object 0 —+—
GOE object 1 — b © 100 | -permutation object 1
GOE object 2 ------ \ b © OE 3-permutation object 2 ------
GOE object 3 \ b GOE 3-permutation object 3
GOE Iobject 4 . ! ‘ GpE 3-pernl1utation oblject 4
0 10 20 30 40 50 70 0 10 20 30 40 50 60 70

Oexample: from “uniform interleaving” to a “3-permutation”

channel loss probability (%) channel loss probability (%)

N\

significant decoding delay gains ©

all details in [RRSI'11]

Ocompares PET/UOD versus GOE
On-truncated negative binomial distribution model (PET+GOE)
Otheoretical + simulation results for

 decoding delay max. memory consumption

« number successful decodings number packets processed
25

we have use-cases that need GOE

Ocontinue standardization within RMT? In TSVWG? As an
individual submission?

Oour intent:
« split current I-D into “GOE FEC Scheme Concept”
- ...and “Reed-Solomon for GF(28) GOE FEC Scheme” I-D
- add an “LDPC-Staircase GOE FEC Scheme” |-D

references
[RRSI'11]
A. Roumy, V. Roca, B. Sayadi, R. Imad, “Unequal Erasure Protection (UEP)

and Object Bundle Protection with a Generalized Object Encoding Approach”,
INRIA Research Report 7699, July 2011 ().

[PET96]

A. Albanese, J. Blomer, J. Edmonds, M. Luby, M. Sudan, “Priority encoding
transmission”, IEEE Trans. on Information Theory, Vol. 42 Issue 6, Nov. 1996.

y 4

in, ormatiques,mathématiques
Alcatel-Lucent @ &zfq Y/ I

