GreenTE: Power-Aware Traffic Engineering

Beichuan Zhang (University of Arizona)

Limits being reached

- Routers are becoming more powerful as well as more energy hungry.
 - □ E.g., a CRS router with max config: 92 Tbps and 1 MegaWatt!
 - □ Driven by exponential growth of data traffic.

Limits being reached

- Routers are becoming more powerful as well as more energy hungry.
 - □ E.g., a CRS router with max config: 92 Tbps and 1 MegaWatt!
 - □ Driven by exponential growth of data traffic.
- Limits are being reached:
 - □ Power delivery to the total system as well as to components.
 - □ Cooling router components
 - □ Heat removal from the box and the facility

Limits being reached

- Routers are becoming more powerful as well as more energy hungry.
 - □ E.g., a CRS router with max config: 92 Tbps and 1 MegaWatt!
 - □ Driven by exponential growth of data traffic.
- Limits are being reached:
 - □ Power delivery to the total system as well as to components.
 - Cooling router components
 - □ Heat removal from the box and the facility
- Router energy consumption is becoming an important issue for ISPs, IXPs, and Data Centers.
 - □ System performance, financial, environmental implications.

What can we do?

- Individual routers
 - More energy efficient hardware
 - Better energy management of components given the workload.

What can we do?

- Individual routers
 - Better energy efficiency in hardware
 - Better energy management of components given the workload.
- Networks
 - Routing affects router's workload, thus its energy consumption.

What can we do?

- Individual routers
 - Better energy efficiency in hardware
 - Better energy management of components given the workload.
- Networks
 - Routing affects router's workload, thus its energy consumption.
 - Traffic engineering for better network-wide energy efficiency?

Today's ISP networks

- Built for service availability
 - Overprovision of link capacity
 - Redundant links/paths
 - Load-balancing traffic engineering
 - Lead to low average link utilization.

Today's ISP networks

- Built for service availability
 - Overprovision of link capacity
 - Redundant links/paths
 - Load-balancing traffic engineering
 - Lead to low average link utilization.
- Not very efficient in using energy
 - □ Routers/links are up 24x7 at full capacity, regardless of workload.
 - Both opportunities and challenges.

Opportunities in power-aware TE

Take advantage of path redundancy and low link utilization.

Opportunities in power-aware TE

Take advantage of path redundancy and low link utilization.

Opportunities in power-aware TE

Take advantage of path redundancy and low link utilization.

Research Questions

- Which links to turn on/off and how much traffic each link should carry?
 - An optimization problem.
- How to maintain performance at the desired level?
 - Link utilization and delay
 - Network reliability
- How to realize the traffic distribution?
 - Traffic engineering mechanisms

Given

- Topology (links and bandwidth)
- Power consumption profile of line-cards
- Traffic matrix

Given

- Topology (links and bandwidth)
- Power consumption profile of line-cards
- Traffic matrix

Find a routing solution

- Paths to be used
- Traffic split ratio over multiple paths

- Given
 - Topology (links and bandwidth)
 - Power consumption profile of line-cards
 - Traffic matrix
- Find a routing solution
 - Paths to be used
 - □ Traffic split ratio over multiple paths
- Maximize total energy saving from turning off line-cards

Given

- Topology (links and bandwidth)
- Power consumption profile of line-cards
- Traffic matrix

Find a routing solution

- Paths to be used
- Traffic split ratio over multiple paths
- Maximize total energy saving from turning off line-cards

Such that

- Flow conservation holds
- Max link utilization (MLU) below a threshold (50%)
- Delay is bounded (same network diameter or 2x OD delay)

A heuristic solution

- Search in a set of pre-computed candidate paths instead of all possible paths.
 - k-shortest paths
 - Apply delay constraints in choosing the candidate paths.
- Take another step to balance link load after knowing which links will be on.

Protocol and operation issues

- A server collects input, solves the problem, and distributes the solution.
 - Need to be done periodically to adapt to traffic changes.
- Piggyback on OSPF-TE
 - TE-LSA for input, TE-Metric for result.
 - Take advantage of LSA flooding
- Forwarding is done via both OSPF and MPLS
 - Make changes by changing MPLS tunnels rather than network-wide OSPF convergence.
- Need to handle periodic control messages such as OSPF Hello.

Evaluation

- Using data from real networks
 - Real topology and traffic traces for Abilene and GEANT.
 - Measured topology and generated traffic for Sprint and AT&T

Network	Usage	Location	Nodes	Links
Abilene	Research	US	12	30
GÉANT	Research	Europe	23	74
Sprint	Commercial	US	52	168
AT&T	Commercial	US	115	296

Power saving

27% to 42% of line-card power consumption

Impact of network load

Links are tuned off under light load, back on under heavy load.

Load balancing

Significant improvement after load balancing.

Delay

Medium: 15ms, 17ms, 20ms

Stability of the solution

~70% tunnels remain the same from the previous period.

Conclusion and Future Work

- Power-aware routing and traffic engineering is both feasible and beneficial.
- Need better protocol support and hardware/ system support.
 - □ E.g., keep-alive messages.
- Need better handling of potential congestion induced by link failures and traffic bursts.
- Distributed solutions?

Questions and Comments?