Supporting SHA-3 In [ETF
Protocols and Implementations

Tim Polk
tim.polk@nist.gov
July 28, 2011



Goal

* Goalis toinform the IETF regarding the level
of effort that will be required to support the
eventual SHA-3 algorithm in IETF protocols,
and their implementations, should the
community so choose

* This is not a report on the progress of the
SHA-3 Competition



Acknowledgements

* Material addressing relevant aspects of the
competition were stolen from Bill Burr’s
presentation at Quo Vadis 2011 in Warsaw:
— “The SHA-3 Competition to Date: Where are we

and what have we learned?”

* Protocol impact assessment is based largely
on Larry Bassham’s experiences with various
SHA-3 candidate algorithm implementations



Cryptographic Hash Function

Hash functions take a variable-length message x and reduce
it to a shorter fixed-length message digest hash(x).

Core requirement: Use hash(x) as a stand-in for x in digital
signatures, MACs, file comparisons, etc.

Many applications: “Swiss army knives” of crypto:

— Digital signatures (with public key algorithms)

— Message authentication codes & user authentication (with a secret

key)

— Key update and derivation

— Random number generation

— One way function

— Code recognition (list the hashes of good programs or malware)

— Commitment schemes and random oracles



Overview of Hash Function Standards

MD5: 128-bits [RFC 1321, ‘92]

— Small break in 1996, badly broken in 2004

SHA-0: 160-bits [FIPS 180, ‘93]

— Quickly withdrawn, publicly broken in 1998

SHA-1: 160-bits, [FIPS 180-1, ‘95] [RFC 3174, ‘01]

— tweak to SHA-O
— Wang attack in 2005
 Why don’t we have a demonstrated collision by 20117
SHA-2: 224, 256, 384 & 512-bit variants, [FIPS 180-3,
‘03] [RFC 4634, ‘06]

— No significant attacks, but...



Reasonable Doubt?

 MDS5, SHA-O, SHA-1 all broken
— MD5, SHA-0, SHA-1 and SHA-2 are all from the same family

e |s SHA-2 next?

— Given the lead time required to introduce a new

hash function into actual use, can we afford to
take that chance?



Strategy for an Alternative to SHA-2

 Hold an International Competition, based on the
experiences with AES, for a new “Advanced Hash
Algorithm” (widely referred to as SHA-3)

* NIST no has plans to withdraw SHA-2
— Needed to start transition away from SHA-1 based on tag
length alone
— Threat to SHA-2 was conjectural

* NIST wanted SHA-3 to be
— SHA-2 plug compatible
— At least as strong as SHA-2 and likely to survive an attack
on SHA-2
— Improve upon SHA-2 if possible



Minimum Acceptability Requirements

“The algorithm shall be publicly disclosed and
available worldwide without royalties or
intellectual property restrictions”

Implementable in a wide range or hardware
and software platforms

SHA-2 plug compatibility
— Digest sizes of 224, 256, 384 & 512 bits

NIST reserved the right to change schedule
and extend or add rounds




Evaluation Criteria

* Security is the most important factor

— Must be secure in common hash function
applications
* HMAC, PRF, etc.

— Collision resistance approx. n/2 bits
— Preimage resistance approx. n bits
— 2" preimage resistance approx. n-k bits

— Any subset of the digest should have similar
properties



Evaluation Criteria (cont.)

Computational efficiency (speed)
— Software and hardware

Memory requirements
Flexibility
— Tunable parameter

— Secure & efficient on many platforms
— Parallelizability

Simplicity



The Source of Confusion: Tunable
Parameters

Tunable parameters were identified as one mechanism
for achieving flexibility

— “The algorithm is parameterizable, e.g. can accommodate
additional rounds”

This seems to contradict requirement for a “plug
replacement”, since SHA-2 algorithms are not tunable

— Protocols would need to be altered to convey additional
information

Tuning will be performed before standardization
— Round counts, etc. will be fixed in SHA-3
— No additional parameters to pass



AN NN NN VN U U N N Y N A

SHA-3 Competition Timeline

01/23/07 Proposed criteria for new hash algorithm

11/02/07 SHA-3 Competition announced

10/31/08 Submissions due — 64 received from 191 submitters
12/09/08 Announced 51 first-round candidates, first round began
02/25/09 First SHA-3 Candidate Conference, Leuven Belgium
07/24/09 Announced 14 second-round candidates

09/15/09 Accepted algorithm tweaks, second round began
09/18/09 Published the first-round report (NISTIR 7620)
08/23/10 Second SHA-3 Candidate Conference, UCSB
12/09/10 Announced 5 finalists

01/31/11 Accepted final tweaks, third round began

02/16/11 Published the second-round report (NISTIR 7764)
03/22/12 Final SHA-3 Candidate Conference, Washington, DC
Summer 12 Announce final selection

1Qtr 13 FIPS package to Sec. of Commerce



Impact on IETF Protocols

 Depends upon the degree of cryptographic agility in
the protocol, and the mechanism used to achieve that

agility
* Protocols that have cryptographic agility with respect
to hash algorithms should be easy
— Generally, just specify new code points
* Semantics will be straightforward

* Protocols that lack cryptographic agility with respect to

hash algorithms will be a chore
e Can’t infer anything from the size of the hash value!

— First, redesign the protocol for hash agility in general
— Then, assign code points and specify semantics



Impact on Implementations of Agile
Protocols

* Implementations that currently support SHA-2
can be easily upgraded to support SHA-3

— In general, replicate code for SHA-2 of same size

* Use the new code point
* call SHA-3 for the hash value

— If an implementation doesn’t support SHA-2 now,
implementing now will speed support for SHA-3!

* Implementations that currently support smaller
hash values (e.g., SHA-1) may require additional
effort

— Larger buffers, changes in message encodings, etc.



My Two Cents

For agile protocols, addition of SHA-3 will be
straightforward

For legacy protocols, the vast bulk of the effort
will focus on adding agility to the protocol

— Can’t differentiate 256 bit SHA-2 hash from a 256 bit
SHA-3 hash on the wire!

For implementations of agile protocols that
support SHA-2, adding SHA-3 will be a breeze

For implementations that don’t support SHA-2
but intend to support SHA-3, implement SHA-2
now and get the bugs out



Questions?



