Proportional Rate Reduction
for TCP

draft-mathis-tcpm-proportional-rate-reduction-01

Matt Mathis, Nandita Dukkipati, Yuchung Cheng
{mattmathis, nanditad, ycheng}@google.com

TCPM, IETF-81
July 26, 2011

Motivation

e Two widely deployed algorithms in loss recovery: RFC 3517
fast recovery and Rate Halving.
e Both are prone to timeouts in some situations.
o RFC 3517 fast recovery waits for half of the ACKs to
pass before sending data.
o Rate halving does not compensate for implicit cwnd
reduction under large losses.
e Goals of Proportional Rate Reduction.
o Reduce timeouts by avoiding excessive window
reductions.
o Converge to cwnd chosen by congestion control.

Proportional Rate Reduction with
Slowstart Reduction Bound

e Two separate phases:
e pipe > ssthresh
o Proportional rate reduction (PRR) algorithm:
o Patterned after rate halving but at rate chosen by CC
o Main idea: sending_rate = (CC_reduction_factor) *
(data_rate at_the receiver)
e pipe < ssthresh
o SlowStart Reduction Bound (SSRB)
m Open window by one segment per ACK
o Main purpose: bring pipe back up to ssthresh

Slowstart while in Recovery?

e RFC3517 sends bursts! Consider:
o It sends (ssthresh-pipe) segments
m On every ACK, when positive
o Start with pipe=cwnd=100 segments
o Loose segments 1-90
o ACK from segment 93 can trigger 40 segments
o Not conservative

e Proposed behavior (SSRB)
o Pure packet conservation, plus one extra segment

m Send the same quantity of data as ACK'd +1
m For the next ~40 ACKs

Algorithm comparisons - Single loss
At beginning: cwnd = FlightSize = pipe = 20

RFC 3517

ack# X 12345678910111213141516171819
cwnd: 202011111011 11 11101111 111111 11111111 11
pipe: 191918 181716151413 1211101010 10101010 10
sent: N N R N NNNNNNN

Rate halving (Linux)

ack# X 12345678910111213141516171819
cwnd: 20201918 18171716161515141413 1312121111
pipe: 191918 18171716161515141413 131212111110
sent: NNR N N N N N N N N

PRR

ack# X 1234567 8910111213141516171819
pipe: 191918 1818171716161515141413 1312121110
sesntt: NNR N N N N N N N N

RB: S S

Algorithm comparisons - 15 Losses
At beginning: cwnd = FlightSize = pipe = 20

RFC 3517

ack# X X X X X XXX XXX XXX XI1516171819
cwnd: 2020111111

pipe: 1919 41010

sent: N N7R R R

Rate Halving (Linux)

ack#é X X X X X XXX XXX XXX XI1516171819
cwnd: 2020 55 5

pipe: 1919 4 4 4

sent: N NRRR

PRR-SSRB

ack#é X X X X X XXX XXX XXX XI1516171819
pipe: 1919 4 5 6

sent: N N 2R 2R 2R

Is the high loss case commom? YES

e Statistics of pipe vs ssthresh at FR
o pipe > ssthresh: 45%
o pipe = ssthresh: 13%
o pipe < ssthresh: 32%
o (also have distribution data on pipe-ssthresh)
e Losses exceed net CC window reduction for 32% of FR
o RFC 3517 would send a burst
o Contributing causes:
m CUBIC (only 30% window reduction)
m Better SACK retransmit algorithms
o Still unexpectedly large

Measurement setup

e Implemented in Linux 2.6
e Experiment on Google Web servers:
o CUBIC, limited transmit, lost retrans detect
o Compare:
m Rate halving (Linux default), RFC 3517, PRR-SSRB
o Mixed services, excluding streaming video
e (Post experiment) Currently under test to go Google wide

Measurement Summary

e PRR-SSRB does best
e RFC 3517 experiences:
o 2.6% more timeouts
o 3% more retransmissions
o 29% increase detected lost retransmissions
o Similar transaction (short flow completion) times
m Being more aggressive has zero net gain
e Rate halving (Linux default) experiences:
o 5% more timeouts
o Lower cwnd values at the end of recovery
o 3-5% longer transaction (short flow completion) times

Details in an upcoming IMC-2011 paper

Conclusion

¢ PRR-SSRB provides more accurate and smoother window
adjustments during loss recovery
e Benefits:
o Fewer symptoms of bursts (timeouts)
o Lower talil latencies of request-response traffic.
o Better performance than rate halving
e Cost:
o Possible indirect costs to sending packets early during
recovery as opposed to letting more ACKs pass first.
e Recommendation
o Wide testing with PRR-SSRB

Going forward

e Adopt PRR as a WG item(?)
o Tentative Goal: experimental status.
m SO people can gain experience.

More Detalls

e Only as time and interest permits
e Outline
o Packet conservation review
o PRR pseudo code
o Other reduction bound varients
o Properties of all PRR variants
o Measurement details
o Example Time Sequence Graphs

Packet conservation review

e Original Van Jacobson concept behind TCP self clock
e Quantity of data sent exactly the same as data reported
arriving at the receiver
e A standing queue at a bottleneck will have constant length
e Any more aggressive algorithm will cause queue growth
o And the potential for "forced losses" in drop tail
e Key concept: DeliveredData computed for each ACK
o For SACK DeliveredData is not an estimator
m DeliveredData = delta(snd.una)+delta(SACKd)
m Can be observed anywhere on the ACK path.
o Can be estimated for non-SACK
m Sum over time must match forward progress

PRR pseudo code move

Start of recovery:

ssthresh = CongCtrlAlg() // Target cwnd after recovery.
RecoverFS = snd.nxt - snd.una // FlightSize.
prr_delivered = prr_out = 0 // accounting

On each ACK in recovery, compute:

// DeliveredData: #pkts newly delivered to receiver.
DeliveredData = delta(snd.una) + delta(SACKd)

// Total pkts delivered in recovery.

prr_delivered += DeliveredData

pipe = RFC 3517 pipe algorithm

Algorithm:
if (pipe > ssthresh) // Proportional Rate Reduction.

sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
else // Reduction Bound.

limit = (Reduction bound algorithm)

sndcnt = MIN(ssthresh - pipe, limit)

On any data transmission or retransmission:
prr_out += (data sent) // Smaller than or equal to sndcnt.

http://tools.ietf.org/html/rfc3517

Reduction Bound Variants

e PRR-UB: Unlimited Bound
o No limit (infinite)
o Behavior parallels RFC 3517
m [ransmission bursts if pipe falls below ssthresh
o Included only for reference & comparisons
e PRR-CRB: Conservative Reduction Bound
o Strong packet conservation properties
m limit = prr_delivered - prr_out
m [hus prr_out can never exceed prr_delivered
e PRR-SSRB: Slowstart reduction bound
o "Grows" the window when pipe < ssthresh
m Relax CRB by exactly one segment per ACK

Proportional Rate Reduction with
unlimited bound (PRR-UB)

e Observation: in some cases RFC 3517 sends bursts
o Example: pipe == cwnd == 100 packets, lost packets 1-
90, packet 93 can generate a burst up to 40 packets.
o RFC 3517 is not at all conservative in this scenario.
o PRR-RB bounds #pkts sent by (prr_delivered - prr_out).

e PRR-UB mirrors RFC 3517:
o Allow arbitrary bursts to bring pipe up to ssthresh

if (pipe > ssthresh) // Proportional Rate Reduction

sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS)- prr_out
else

sndcnt = ssthresh - pipe

Proportional Rate Reduction with
Conservative Bound

e Send up to as much data as was (previously) delivered
o limit = prr_delivered - prr_out
o prr_out can not become larger than prr_delivered
e Cool properties:
o Bound is strict packet conserving
o Constant sized (standing) queue at bottleneck
o Maximally aggressive w/ causing additional losses
o Philosophically clean and ideal
e Downside
o Lower measured perfomance than RFC 3517
m Burst losses that depress cwnd seem to be common

Proportional Rate Reduction with
slowstart Bound

e Relax PRR-CRB by allowing one extra segment per ACK
o Effectively introduce slowstart after excess loss
o But no burst as permitted by RFC 3517

e Allowing 1 extra segment is good compromise between:
o Unlimited extra segments (PRR-UB/RFC 3517)
o Zero extra segments (PRR-CRB)

Properties of PRR (all variants)

e Spreads out window reduction evenly across the
recovery period.

e For moderate loss, converges to target cwnd chosen by CC.

e Maintains ACK clocking even for large burst losses.

e Precision of PRR-RB is derived from DeliveredData

o Which is not an estimator

e Banks the missed opportunities to send if application stalls
during recovery.

e Less sensitive to errors of the pipe estimator.

Example flow in PRR-RB, PRR w/o RB

packets sent out in recovery

60

50

40

30

20

10

PRR-RB
'muﬁ
| pkts sent == &
pkts delivered. rd
rd
§

Ratio of pkts sent to

.. delivered 1s 0.7.

packets sent out in recovery

T |
40 60

ACK number

80

15

10

PRR w/o RB

Different from PRR-RB
only for large burst losses
(not shown here).

Q

Q0

0

. Ratio of pkts sent to|delivered is

00 07

Q

o

o0

T T T
5 10 15

ACK number

20 25

packets sent out in recovery

Example flow in Linux and RFC 3517

20

15

10

Linux 2.6.34 recovery
Q00000000000
cwnd == pipe + 1 -
o0 Rate-
Q0 .
. halving: send one
00 new pkt on
00 —alternate ACKs.
00
oo
o0
T] T =7 1
0 10 20 30 40
ACK number

Linux flows often end up in slow start after
recovery when short responses have no
new data to send and pipe reduces to O .

packets sent out in recovery

30

25

20

15

10

|

RFC 3517 fast recovery
0
o
0
0
()‘.J
(’Il-
Silent period Y
at start of recovery. Other
;
hy recovery
0 events.
“ QO0000000
0 0
v 8]
0 00000000
0000000000000 (98 9 o0
| | | | I T T |
0 10 20 30 40 50 60 70

ACK number

