
Proportional Rate Reduction
for TCP

TCPM, IETF-81
July 26, 2011

Matt Mathis, Nandita Dukkipati, Yuchung Cheng
{mattmathis, nanditad, ycheng}@google.com

draft-mathis-tcpm-proportional-rate-reduction-01

Motivation

● Two widely deployed algorithms in loss recovery: RFC 3517
fast recovery and Rate Halving.

● Both are prone to timeouts in some situations.
○ RFC 3517 fast recovery waits for half of the ACKs to

pass before sending data.
○ Rate halving does not compensate for implicit cwnd

reduction under large losses.
● Goals of Proportional Rate Reduction.

○ Reduce timeouts by avoiding excessive window
reductions.

○ Converge to cwnd chosen by congestion control.

Proportional Rate Reduction with
Slowstart Reduction Bound

● Two separate phases:
● pipe > ssthresh

○ Proportional rate reduction (PRR) algorithm:
○ Patterned after rate halving but at rate chosen by CC
○ Main idea: sending_rate = (CC_reduction_factor) *

(data_rate_at_the_receiver)
● pipe < ssthresh

○ SlowStart Reduction Bound (SSRB)
■ Open window by one segment per ACK

○ Main purpose: bring pipe back up to ssthresh

Slowstart while in Recovery?
● RFC3517 sends bursts! Consider:

○ It sends (ssthresh-pipe) segments
■ On every ACK, when positive

○ Start with pipe=cwnd=100 segments
○ Loose segments 1-90
○ ACK from segment 93 can trigger 40 segments
○ Not conservative

● Proposed behavior (SSRB)
○ Pure packet conservation, plus one extra segment

■ Send the same quantity of data as ACK'd +1
■ For the next ~40 ACKs

Algorithm comparisons - Single loss
At beginning: cwnd = FlightSize = pipe = 20

 RFC 3517
 ack# X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 cwnd: 20 20 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
 pipe: 19 19 18 18 17 16 15 14 13 12 11 10 10 10 10 10 10 10 10
 sent: N N R N N N N N N N N

 Rate halving (Linux)
 ack# X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 cwnd: 20 20 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11
 pipe: 19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10
 sent: N N R N N N N N N N N

 PRR
 ack# X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 pipe: 19 19 18 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 10
 sent: N N R N N N N N N N N
 RB: s s

Algorithm comparisons - 15 Losses
At beginning: cwnd = FlightSize = pipe = 20

 RFC 3517
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 cwnd: 20 20 11 11 11
 pipe: 19 19 4 10 10
 sent: N N 7R R R

 Rate Halving (Linux)
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 cwnd: 20 20 5 5 5
 pipe: 19 19 4 4 4
 sent: N N R R R

 PRR-SSRB
 ack# X X X X X X X X X X X X X X X 15 16 17 18 19
 pipe: 19 19 4 5 6
 sent: N N 2R 2R 2R

Is the high loss case commom? YES

● Statistics of pipe vs ssthresh at FR
○ pipe > ssthresh: 45%
○ pipe = ssthresh: 13%
○ pipe < ssthresh: 32%
○ (also have distribution data on pipe-ssthresh)

● Losses exceed net CC window reduction for 32% of FR
○ RFC 3517 would send a burst
○ Contributing causes:

■ CUBIC (only 30% window reduction)
■ Better SACK retransmit algorithms

○ Still unexpectedly large

Measurement setup

● Implemented in Linux 2.6
● Experiment on Google Web servers:

○ CUBIC, limited transmit, lost retrans detect
○ Compare:

■ Rate halving (Linux default), RFC 3517, PRR-SSRB
○ Mixed services, excluding streaming video

● (Post experiment) Currently under test to go Google wide

Measurement Summary

● PRR-SSRB does best
● RFC 3517 experiences:

○ 2.6% more timeouts
○ 3% more retransmissions
○ 29% increase detected lost retransmissions
○ Similar transaction (short flow completion) times

■ Being more aggressive has zero net gain
● Rate halving (Linux default) experiences:

○ 5% more timeouts
○ Lower cwnd values at the end of recovery
○ 3-5% longer transaction (short flow completion) times

Details in an upcoming IMC-2011 paper

Conclusion

● PRR-SSRB provides more accurate and smoother window
adjustments during loss recovery

● Benefits:
○ Fewer symptoms of bursts (timeouts)
○ Lower tail latencies of request-response traffic.
○ Better performance than rate halving

● Cost:
○ Possible indirect costs to sending packets early during

recovery as opposed to letting more ACKs pass first.
● Recommendation

○ Wide testing with PRR-SSRB

Going forward

● Adopt PRR as a WG item(?)
○ Tentative Goal: experimental status.

■ So people can gain experience.

More Details

● Only as time and interest permits
● Outline

○ Packet conservation review
○ PRR pseudo code
○ Other reduction bound varients
○ Properties of all PRR variants
○ Measurement details
○ Example Time Sequence Graphs

Packet conservation review

● Original Van Jacobson concept behind TCP self clock
● Quantity of data sent exactly the same as data reported

arriving at the receiver
● A standing queue at a bottleneck will have constant length
● Any more aggressive algorithm will cause queue growth

○ And the potential for "forced losses" in drop tail
● Key concept: DeliveredData computed for each ACK

○ For SACK DeliveredData is not an estimator
■ DeliveredData = delta(snd.una)+delta(SACKd)
■ Can be observed anywhere on the ACK path.

○ Can be estimated for non-SACK
■ Sum over time must match forward progress

PRR pseudo code move

Algorithm:
if (pipe > ssthresh) // Proportional Rate Reduction.
 sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
else // Reduction Bound.
 limit = (Reduction bound algorithm)
 sndcnt = MIN(ssthresh - pipe, limit)

On any data transmission or retransmission:
prr_out += (data sent) // Smaller than or equal to sndcnt.

Start of recovery:
ssthresh = CongCtrlAlg() // Target cwnd after recovery.
RecoverFS = snd.nxt - snd.una // FlightSize.
prr_delivered = prr_out = 0 // accounting

On each ACK in recovery, compute:
// DeliveredData: #pkts newly delivered to receiver.
DeliveredData = delta(snd.una) + delta(SACKd)
// Total pkts delivered in recovery.
prr_delivered += DeliveredData
pipe = RFC 3517 pipe algorithm

http://tools.ietf.org/html/rfc3517

Reduction Bound Variants
● PRR-UB: Unlimited Bound

○ No limit (infinite)
○ Behavior parallels RFC 3517

■ Transmission bursts if pipe falls below ssthresh
○ Included only for reference & comparisons

● PRR-CRB: Conservative Reduction Bound
○ Strong packet conservation properties

■ limit = prr_delivered - prr_out
■ Thus prr_out can never exceed prr_delivered

● PRR-SSRB: Slowstart reduction bound
○ "Grows" the window when pipe < ssthresh

■ Relax CRB by exactly one segment per ACK

Proportional Rate Reduction with
unlimited bound (PRR-UB)

● Observation: in some cases RFC 3517 sends bursts
○ Example: pipe == cwnd == 100 packets, lost packets 1-

90, packet 93 can generate a burst up to 40 packets.
○ RFC 3517 is not at all conservative in this scenario.
○ PRR-RB bounds #pkts sent by (prr_delivered - prr_out).

● PRR-UB mirrors RFC 3517:
○ Allow arbitrary bursts to bring pipe up to ssthresh

if (pipe > ssthresh) // Proportional Rate Reduction
 sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS)- prr_out
else
 sndcnt = ssthresh - pipe

Proportional Rate Reduction with
Conservative Bound

● Send up to as much data as was (previously) delivered
○ limit = prr_delivered - prr_out
○ prr_out can not become larger than prr_delivered

● Cool properties:
○ Bound is strict packet conserving
○ Constant sized (standing) queue at bottleneck
○ Maximally aggressive w/ causing additional losses
○ Philosophically clean and ideal

● Downside
○ Lower measured perfomance than RFC 3517

■ Burst losses that depress cwnd seem to be common

Proportional Rate Reduction with
slowstart Bound

● Relax PRR-CRB by allowing one extra segment per ACK
○ Effectively introduce slowstart after excess loss
○ But no burst as permitted by RFC 3517

● Allowing 1 extra segment is good compromise between:
○ Unlimited extra segments (PRR-UB/RFC 3517)
○ Zero extra segments (PRR-CRB)

Properties of PRR (all variants)

● Spreads out window reduction evenly across the
recovery period.

● For moderate loss, converges to target cwnd chosen by CC.
● Maintains ACK clocking even for large burst losses.
● Precision of PRR-RB is derived from DeliveredData

○ Which is not an estimator
● Banks the missed opportunities to send if application stalls

during recovery.
● Less sensitive to errors of the pipe estimator.

Example flow in PRR-RB, PRR w/o RB

Ratio of pkts sent to
delivered is 0.7.

pkts sent ==
pkts delivered.

Ratio of pkts sent to delivered is
0.7.

Different from PRR-RB
only for large burst losses
(not shown here).

pipe == ssthresh

Example flow in Linux and RFC 3517

Rate-
halving: send one
new pkt on
alternate ACKs.

cwnd == pipe + 1

Silent period
at start of recovery. Other

recovery
events.

Linux flows often end up in slow start after
recovery when short responses have no
new data to send and pipe reduces to 0 .

