
  

Square Pegs in a Round Pipe:
Wire-Compatible Unordered Delivery

In TCP and TLS

Jana Iyengar*, Bryan Ford+

Syed Obaid Amin*+, Michael F. Nowlan+, Nabin Tiwari*

*Franklin & Marshall        +Yale University
                       College



  

Transports come and transports go ...

● SCTP
— multistreaming, message boundaries, multihoming, 

partial reliability, unordered delivery
— RFCs 4960, 3257, 3309, 3436, 3554, 3758, 3883 … 
— NAT behavior:  draft-stewart-behave-sctpnat

● DCCP
— Unreliable, congestion-controlled, datagram service
— RFCs 4336, 4340, 4341, 4342, 5238, 5634, …
— NAT behavior:  RFC 5597 



  

… but the Internet remains loyal!

● TCP and/or UDP get through most middleboxes
— Only TCP gets through all middleboxes
— ...often only to port 80 (HTTP) or port 443 (HTTPS)!

● New & unknown transports rarely get through
— SCTP and DCCP not supported by middleboxes
— Make it almost impossible to deploy new transports



  

How deep does this loyalty run?

● Network Address Translators (NATs)

— Cheap and ubiquitous, entrenched in the network
● Firewalls

— Rules based on TCP/UDP port numbers; often DPI
● Performance Enhancing Proxies (PEPs)

— Transparently improve TCP (not UDP!) performance



  

A taxonomy of transport functions

Network Layer

Endpoint Functions
(endpoint identification)

Flow Functions
(congestion control)

Application Layer

Semantic Functions
(services to app)

Functional 
Components in 
Transport Layer

Isolation Functions
(security)

NATs,
Firewalls

Performance
Enhancing

Proxies 
(PEPs)

Traffic 
Normalizers

Stateful
Firewalls

Middleboxes in the network and 
transport functions on which they 

interpose



  

Why does this taxonomy matter?

Network Layer

Endpoint Functions
(endpoint identification)

Flow Functions
(congestion control)

Application Layer

Semantic Functions
(services to app)

Functional 
Components in 
Transport Layer

Isolation Functions
(security)

IPv4, IPv6

TCP

How current and new transports 
are designed and built

SCTP,
DCCP

SSL/TLS DTLS

UDP

SST,
uTP (Bittorrent),
RTMFP (Flash),
and any other 
new transport

deployed w/ app

UDP



  

Deployment Impossibility-Cycles

Middlebox support 
for new transport

Market pressure 
through user demand

Apps using new 
transport

Performant 
implementations for 

popular OSes



  

What have we done so far?

● “NATs are evil.  We won't care about them.”
● “It will all change with IPv6.”
● “Don't design around middleboxes,

 that will only encourage them!”
● “Alright, we'll specify how middleboxes 

ought to behave with different 
protocols.  But they still have to behave.”

● “Why build a new transport?? It won't get 
deployed anyways.”

Denial

Anger

Bargaining

Depression*

*Kübler-Ross model: Five stages of grief 



  

The final stage:  Acceptance

● Design assumptions for new transport services: 
— New transport services should require modifications 

only to end hosts
— Middleboxes are here to stay

● Consequences: 
— New end-to-end services should not require 

changes to middleboxes.
— New end-to-end services must use protocols that 

appear as legacy protocols on the wire.

● Eg: MPTCP



  

The Minion Suite

A “packet packhorse” for deploying new transports
● Uses legacy protocols … 

— TCP, UDP

● … as a substrate …
— turn legacy protocols into minions offering

unordered, unreliable datagram service

● … for building new services that apps want
— multistreaming, message boundaries, unordered 

delivery, app-defined congestion control
— (working on: stream-level receiver-side flow control, 

priority streaming, multipath, partial reliability)



  

Outline

● Minion: a packet packhorse for new transports
— Carry new transports over Internet's rough terrain

● TCP Minion: unordered delivery in TCP
— Making datagram service look like a TCP stream

● TLS Minion: unordered delivery in SSL/TLS
— Making datagrams indistinguishable from HTTPS

● Next steps



  

What's in the Minion Suite?

● Break up the functions of the legacy transport layer

— “Breaking Up the Transport Logjam”, HotNets '08
● Use legacy protocols as compatible building blocks

● We'll focus here on TCP minion (and a summary of TLS)

Network Layer

Endpoint Layer
(endpoint identification)

Flow Layer
(congestion control)

Application Layer

Semantic Layer
(services to app) 

Isolation Layer
(security)

IPv4, IPv6

TCP
minion

Framing (e.g. COBS) 
and DTLS (optional)

UDP

Semantic SCTP, Semantic DCCP, Semantic SST,
or any other new transport deployed with an application

TLS
minion

TCP minion
(sans CC) … sans CC

TLS 
minion …



  

TCP Minion

● Retain TCP protocol semantics on the wire
— Middleboxes cannot distinguish from normal TCP
— ...except by looking into application payload

 we'll address this “except” later in TLS Minion

● Offer datagram service to apps, new transports
— Out-of-order delivery

 Minimize delay for latency-sensitive applications:
e.g., voice/videoconferencing, VPN tunneling, ...

— Eliminate nasty “TCP-on-TCP” tunneling effects
 No broken connections due to “retransmission overload”

● By adding 1 new TCP socket option...



  

Delivery in Standard TCP

101

CumAck = 101

TCP Stack
(delivered)

read()
Application

application receive buffer

1.
In-Order
Arrival



  

Delivery in Standard TCP

301

CumAck = 201

(delivered)

read()

301

Out-of-Order
Queue

delivery
delayed

2.
Out-of-Order
Arrival



  

Delivery in Standard TCP

201

CumAck = 201

(delivered)

read()

301

Out-of-Order
Queue

3.
Gap-Filling
Arrival

(delayed data delivered)



  

Delivery in TCP Minion

101

CumAck = 101

TCP Stack
(delivered)

read()
Application

application fragment buffer

1.
In-Order
Arrival

101

(application-level
 stream reassembly)

sequence
number



  

Delivery in TCP Minion

301

CumAck = 201

(delivered)

read()

301

Out-of-Order
Queue

2.
Out-of-Order
Arrival

301

application fragment buffer (with hole)

out-of-order
delivery

sequence
number



  

Delivery in TCP Minion

201

CumAck = 201

(delivered)

read()

301

Out-of-Order
Queue

3.
Gap-Filling
Arrival

201

application fragment buffer (hole filled)

sequence
number



  

Problem: Network Resegmentation

m1m2m3 m1m2m3m1'm2'm3' m1'm2'1m3' m2'2 m1'm2'm3'

At app 
sender

At TCP-minion 
sender

 On the wire
TCP segments

At TCP-minion 
receiver

At app 
receiver

 TCP 
segment 1

 TCP 
segment 2

App 
messages

Encoded app 
msgs

Encoded msgs 
extracted from 
received TCP 

segments

Decoded app 
msgs

m1m2m3 m3m1'm2'm3' m1'm2'1m3' m2'2 m3'

 TCP 
segment 1

 TCP 
segment 2

m2'2



  

COBS encoding
● Size-preserving encoding that eliminates all 

occurrences of delimiter byte from payload
— Max overhead of 0.4% (6 bytes for 1448-byte msg)
— Delimiter byte then inserted between messages
— Receiver extracts messages, decodes, delivers up

● We make one modification 
— We insert delimiter byte both before and after msg

 Increases max overhead to 0.8%

— To deal with common cases for apps
 App sends only one message (eg: HTTP GET req)
 Each app msg gets encap'd in its own TCP segment



  

App messages with
TCP (TLV encoding) vs. TCP-minion

Time received at app (seconds)

0 0.2 0.4 0.6 0.8
0

20

40

60

A
pp

 M
e

ss
ag

e
 S

eq
u

en
ce

 
N

u
m

b
er

 (
11

95
-b

yt
e

 m
sg

s)

TCP

TCP-minion



  

App-Observed Delay Distribution



  

Impact on “Real Applications”

Example: Voice-over-IP (VoIP)
● Voice/videoconferencing is delay-sensitive

— Long round-trip delays perceptible, frustrate users

● Modern VoIP codecs tolerate individual losses
— Interpolate over 1 or 2 lost packets

● But are highly sensitive to burst losses
— Can't interpolate when many packets lost/delayed!



  

VoIP application: observed delay



  

VoIP: distribution of burst loss/delay



  

VoIP: perceptual quality impact



  

TCP Minion:  What's next

● Better control over sender-side buffering
— Work in progress
— Initial Linux-based prototype allows priority-

queueing of app messages within socket buffer.

● Testing underway to measure effects with both 
sender- and receiver-side modifications



  

App with message priorities

● 1000-byte 
messages

● every 100th 
message is high 
priority

● 100ms RTT

● 1% loss at 
bottleneck



  

App with message priorities

● 1000-byte 
messages

● every 100th 
message is high 
priority

● 100ms RTT

● 1% loss at 
bottleneck



  

TLS Minion (Summary)

● TLS-minion protects end-to-end signaling and data

— appears as SSL/TLS on the wire, but 
— provides out-of-order datagram service

● Makes stream indistinguishable from, e.g., HTTPS

— even to middleboxes that inspect all app payloads!
— only encrypted content affected

● Technical Challenges:

— TLS records not encoded for out-of-order decoding
— Ciphersuites chain encryption state across records
— MACs use implicit record counter, hard to recover



  

Our implementation of the minions

● Some inside Linux kernel

— Added SO_UNORDERED sockopt to SOCK_STREAM

— On receiver-side:
 subsequent read()s results in a contiguous byteblock being 

returned, without regard to order
 TCP sequence number returned with byteblock
 Only one kernel change required

— On sender-side:
 write() now includes msgid for queueing message by kernel

● Userspace library for rest of TCP- and TLS-minion

— reassembles fragmented streams

— extracts message, decodes, and delivers to app

— library → can ship as part of apps



  

In Conclusion

● TCP, TLS work on the Internet

— mature, performant implementations
— workhorses of the Internet
— but in-order delivery bad for delay

● We can fit square pegs (packets)
through a round pipe (TCP, TLS)

— Eliminates in-order delivery delays
— Most mods deployable with apps
— Turn workhorses into packhorses!



  

Minion encourages adoption of new 
transports

● Minion allows new services to be created and 
deployed in a legacy environment.
— Does not prevent native deployment of new protocols.
— Encourages adoption of new protocols by 

middleboxes and OSes through use of new services 
by apps before middlebox/OS support is available.

● WIP: Ends need to detect protocol-graph 
supported by endpoints and by middleboxes
— Negotiation Service (HotNets '09)
— “Happy Eyeballs” on steroids


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

