IPv6 Router Advertisement Guard (Ra-Guard) evasion draft-gont-v6ops-ra-guard-evasion

Arturo Servín LACNIC

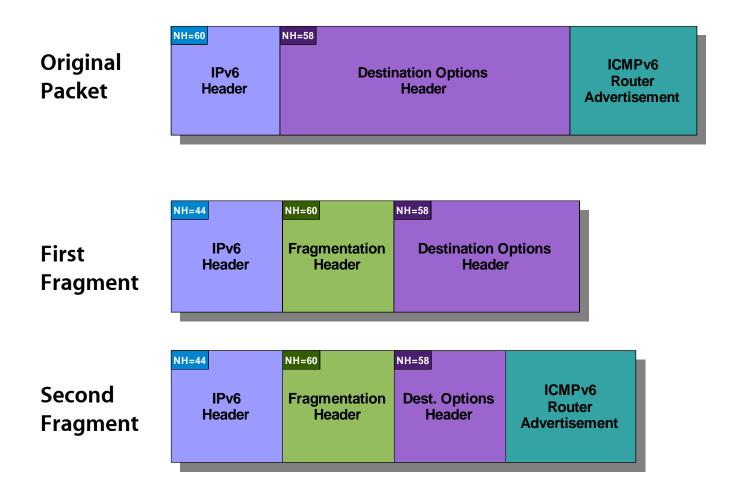
81st IETF Meeting, Quebec, Canada July 24-29, 2011

Introduction

- RFC 6104 introduces the problem statement of Rogue RAs
 - Focuses on misconfigured routers
 - Mentions different filtering criteria for filtering
 - Most basic filtering criterion based on the incomming port for the RA
- RFC 6105 specifies RA-Guard
 - Focuses on <u>malicious</u> routers (security)
 - □ Very brief Security Considerations section
- In many cases RA-Guard has been deployed and seen as a security mechanism
- It is a desired feature, since it parallells the DHCPv4snooping of the IPv4 world

draft-gont-v6ops-ra-guard-evasion

- Describes RA-Guard evasion techniques
- Describes more advanced filtering to mitigate them (operational mitigation)
- Formally updates RFC 6105 -> the RA-Guard spec is updated such that these issues are addressed
 - □ Enhances the Security Considerations
 - ☐ Mitigates RA-Guard evasion tehniques


Evasion technique #1

 RA-Guard implementations fail to process the entire IPv6 header chain

Evasion technique #2

Combination of a Destination Options header and fragmentation:

Mitigation:

How to filter RAs:

- Follow the entire IPv6 header chain (possibly enforcing a limit on number of Ext. Headers) -- drop the packet if it is an RA or the Ext. Header limit is hit.
- If the upper layer protocol is not found (e.g. the packet is fragmented), and the IPv6 Src. Addr. is a link-local address, drop the packet ¥
- 3. Else, forward the packet

¥: RAs are required to use a link-local address

Discussion on the v6ops mailing-list

- Was mostly focused on draft-gont-6man-nd-extensionheaders
 - □ Related I-D about prohibiting the use of some Ext. Headers with ND
- There seemed to be general agreement that these evasion techniques can be mitigated as proposed
- Moving forward:

Adopt this I-D as a v6ops wg item?