
INTAREA WG S. Chakrabarti
Internet-Draft Ericsson
Updates: 4861 (if approved) E. Nordmark
Intended status: Standards Track Cisco Systems
Expires: May 3, 2012 M. Wasserman
 Painless Security
 October 31, 2011

 Energy Aware IPv6 Neighbor Discovery Optimizations
 draft-chakrabarti-nordmark-energy-aware-nd-01

Abstract

 IPv6 Neighbor Discovery (RFC 4861) protocol has been designed for
 neighbor’s address resolution, unreachability detection, address
 autoconfiguration, router advertisement and solicitation. With the
 progress of Internet adoption on various industries including home,
 wireless and machine-to-machine communications, there is a desire for
 optimizing legacy IPv6 Neighbor Discovery protocol for energy-
 efficient networks and nodes. Research indicates that often
 networked- nodes require more energy than stand-alone nodes because a
 node’s energy usage depends on network messages it receives and
 responds. While reducing energy consumption is essential for battery
 operated nodes in some machines, saving energy actually a cost factor
 in business in general as the explosion of more device usage is
 leading to usage of more servers and network infrastructure in all
 sectors of the society and business. This document describes a
 method of optimizations by reducing periodic multicast messages,
 frequent Neighbor Solicitation messages and discusses
 interoperability with legacy IPv6 nodes. This document also
 addresses the ND denial of service issues by introducing node
 Registration procedure.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Chakrabarti, et al. Expires May 3, 2012 [Page 1]

Internet-Draft Energy-aware-nd October 2011

 This Internet-Draft will expire on May 3, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Chakrabarti, et al. Expires May 3, 2012 [Page 2]

Internet-Draft Energy-aware-nd October 2011

Table of Contents

 1. Introduction . 4
 2. Definition Of Terms . 5
 3. Assumptions for energy-aware Neighbor Discovery 6
 4. The set of Requirements for Energy-awareness and
 optimization . 6
 5. Basic Operations . 7
 6. Applicability Statement 8
 7. New Neighbor Discovery Options and Messages 8
 7.1. Address Registration Option 8
 7.2. Refresh and De-registration 10
 7.3. A New Router Advertisement Flag 10
 8. Energy-aware Neighbor Discovery Messages 11
 9. Energy-Aware Host Behavior 12
 10. The Energy Aware Default Router (NEAR) Behavior 13
 10.1. Router Configuration Modes 14
 11. NCE Management in Energy-Aware Routers 14
 11.1. Handling ND DOS Attack 16
 12. Mixed-Mode Operations . 16
 13. Bootstrapping . 17
 14. Handling Sleepy Nodes . 18
 15. Use Case Analysis . 19
 15.1. Data Center Routers on the link 19
 15.2. Edge Routers and Home Networks 19
 15.3. M2M Networks . 19
 16. Mobility Considerations 20
 17. Updated Neighbor Discovery Constants 20
 18. Security Considerations 20
 19. IANA Considerations . 20
 20. Changelog . 20
 21. Acknowledgements . 21
 22. References . 21
 22.1. Normative References 21
 22.2. Informative References 22
 Authors’ Addresses . 22

Chakrabarti, et al. Expires May 3, 2012 [Page 3]

Internet-Draft Energy-aware-nd October 2011

1. Introduction

 IPv6 ND [ND] is based on multicast signaling messages on the local
 link in order to avoid broadcast messages. Following power-on and
 initialization of the network in IPv6 Ethernet networks, a node joins
 the solicited-node multicast address on the interface and then
 performs duplicate address detection (DAD) for the acquired link-
 local address by sending a solicited-node multicast message to the
 link. After that it sends multicast router solicitation (RS)
 messages to the all-router address to solicit router advertisements.
 Once the host receives a valid router advertisement (RA) with the "A"
 flag, it autoconfigures the IPv6 address with the advertised prefix
 in the router advertisement (RA). Besides this, the IPv6 routers
 usually send router advertisements periodically on the network. RAs
 are sent to the all-node multicast address. Nodes send Neighbor
 Solicitation (NS) and Neighbor Advertisement (NA) messages to resolve
 the IPv6 address of the destination on the link. These NS/NA
 messages are also often multicast messages and it is assumed that the
 node is on the same link and relies on the fact that the destination
 node is always powered and generally available.

 The periodic RA messages in IPv6 ND [ND], and NS/NA messages require
 all IPv6 nodes in the link to be in listening mode even when they are
 in idle cycle. It requires energy for the sleepy nodes which may
 otherwise be sleeping during the idle period. Non-sleepy nodes also
 save energy if instead of continuous listening, they actually pro-
 actively synchronize their states with one or two entities in the
 network. With the explosion of Internet-of-things and machine to
 machine communication, more and more devices would be using IPv6
 addresses in the near future. Today, most electricity usage in
 United States and in developing countries are in the home buildings
 and commercial buildings; the electronic Internet appliances/tablets
 etc. are gaining popularities in the modern home networks. These
 network of nodes must be conscious about saving energy in order to
 reduce user-cost. This will eventually reduce stress on electrical
 grids and carbon foot-print.

 IPv6 Neighbor Discovery Optimization for 6LoWPAN [6LOWPAN-ND]
 addresses many of the concerns described above by optimizing the
 Router advertisement, minimizing periodic multicast packets in the
 network and introducing two new options - one for node registration
 and another for prefix dissemination in a network where all nodes in
 the network are uniquely identified by their 64-bit Interface
 Identifier. EUI-64 identifiers are recommended as unique Interface
 Identifiers, however if the network is isolated from the Internet,
 uniqueness of the identifiers may be obtained by other mechanisms
 such as a random number generator with lowest collision rate.
 Although, the ND optimization [6LOWPAN-ND] applies to 6LoWPAN

Chakrabarti, et al. Expires May 3, 2012 [Page 4]

Internet-Draft Energy-aware-nd October 2011

 [LOWPAN] network, the concept is mostly applicable to a power-aware
 IPv6 network. Therefore, this document generalizes the address
 registration and multicast reduction in [6LOWPAN-ND] to all IPv6
 links.

 Thus optimizing the regular IPv6 Neighbor Discovery [ND] to minimize
 total number of related signaling messages without losing generality
 of Neighbor Discovery and autoconfiguration and making host and
 router communication reliable, is desirable in any IPv6 energy-aware
 networks such as Home or Enterprise building networks and as well as
 Data Centers.

 The goal of this document is to provide energy-aware and optimized
 Neighbor Discovery Protocols in the IPv6 subnets and links. Thus
 this document does not provide a solution of router advertisements
 and registration for ’multi-level subnets’ as indicated in 6LoWPAN
 [LOWPAN]. In the process, the node registration method is also
 useful for preventing Neighbor Discovery denial of service (DOS)
 attacks.

 The proposed changes can be used in two different ways. In one case
 all the hosts and routers on a link implement the new mechanisms,
 which gives the maximum benefits. In another case the link has a
 mixture of new hosts and/or routers and legacy [RFC4861] hosts and
 routers, operating in a mixed-mode providing some of the benefits.

 In the following sections the document describes the basic operations
 of registration methods, optimization of Neighbor Discovery messages,
 interoperability with legacy IPv6 implementations and provides a
 section on use-case scenarios where it can be typically applicable.

2. Definition Of Terms

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 multi-level Subnets:
 It is a wireless link determined by one IPv6 off-link prefix in a
 network where in order to reach a destination with same prefix a
 packet may have to travel throguh one more ’intermediate’ routers
 which relays the packet to the next ’intermediate’ router or the
 host in its own.

Chakrabarti, et al. Expires May 3, 2012 [Page 5]

Internet-Draft Energy-aware-nd October 2011

 Border Rotuer(BR):
 A border router is typically located at the junction Internet and
 Home Network. An IPv6 router with one interface connected to IPv6
 subnet and other interface connecting to a non-classic IPv6
 interface such as 6LoWPAN interface. Border router is usually the
 gateway to the IPv6 network or Internet.
 IPv6 ND-energy-aware Rotuer(NEAR):
 It is the default Router of the single hop IPv6 subnet. This
 router implements the optimizations specified in this document.
 This router should be able to handle both legacy IPv6 nodes and
 nodes that sends registration request.
 Enery-Aware Host(EAH):
 A host in a IPv6 network is considered a IPv6 node without routing
 and forwarding capability. The EAH is the host which implements
 the host functionality for optimized Neighbor Discovery mentioned
 in this document.
 Legacy IPv6 Host:
 A host in a IPv6 network is considered a IPv6 node without routing
 and forwarding capability and implements RFC 4861 host functions.
 Legacy IPv6 Router:
 An IPv6 Router which implements RFC 4861 Neighbor Discovery
 protocols.
 EUI-64:
 It is the IEEE defined 64-bit extended unique identifier formed by
 concatenation of 24-bit or 36-bit company id value by IEEE
 Registration Authority and the extension identifier within that
 company-id assignment. The extension identifiers are 40-bit (for
 24-bit company-id) or 28-bit (for the 36-bit company-id)
 respectively.

3. Assumptions for energy-aware Neighbor Discovery

 o The energy-aware nodes in the network carry unique interface ID in
 the network in order to form the auto-configured IPv6 address
 uniquely. An EUI-64 interface ID required for global
 communication.
 o All nodes are single IPv6-hop away from their default router in
 the subnet.
 o /64-bit IPv6 prefix is used for Stateless Auto-address
 configuration (SLAAC). The IPv6 Prefix may be distributed with
 Router Advertisement (RA) from the default router to all the nodes
 in that link.

4. The set of Requirements for Energy-awareness and optimization

 In future homes, machine-to-machine networks and Data-center Virtual

Chakrabarti, et al. Expires May 3, 2012 [Page 6]

Internet-Draft Energy-aware-nd October 2011

 networks, it is essential to reduce unnecessary number of IPv6
 Neighbor Discovery signalings for saving energy and saving bits in
 the network.

 In the cloud computing environment, the concept of IPv6-subnet of
 link-local nodes is often extended across different networks over a
 Virtual LAN. Thus reducing Neighbor Discovery signaling messages is
 a key for enhanced services.

 o Node Registration: Node initiated Registration and address
 allocation is done in order to avoid periodic multicast Router
 Advertisement messages and often Neighbor Address resolution can
 be skipped as all packets go via the default router which now
 knows about all the registered nodes. Node Registration enables
 reduction of all-node and solicited-node multicast messages in the
 subnet.
 o Address allocation of registered nodes [ND] are performed using
 IPv6 Autoconfiguration [AUTOCONF].
 o Host initiated Registration and Refresh is done by sending a
 Router Solicitation and then a Neighbor Solicitation Messge using
 Address Registration Option (described below).
 o The node registration may replace the requirement of doing
 Duplicate Address Detection.
 o Sleepy hosts are supported by this Neighbor Discovery procedures
 as they are not woken up periodically by Router Advertisement
 multicast messages or Neighbor Solicitation multicast messages.
 Sleepy nodes may wake up in its own schedule and send unicast
 registration refresh messages when needed.
 o Since this document requires formation of an IPv6 address with an
 unique 64-bit Interface ID(EUI-64) is required for global IPv6
 addresses. If the network is an isolated one and uses ULA [ULA]
 as its IPv6 address then the deployment should make sure that each
 MAC address in that network has unique address and can provide a
 unique 64-bit ID for each node in the network.
 o /64-bit Prefix is required to form the IPv6 address.
 o MTU requirement is same as IPv6 network.

5. Basic Operations

 In the energy-aware IPv6 Network, the NEAR routers are the default
 routers for the energy-aware hosts (EAH). During the startup or
 joining the network the host does not wait for the Router
 Advertisements as the NEAR routers do not perform periodic multicast
 RA as per RFC 4861. Instead, the EAH sends a multicast RS to find
 out a NEAR router in the network. The RS message is the same as in
 RFC 4861. The advertising routers in the link responds to the RS
 message with RA with Prefix Information Option and any other options

Chakrabarti, et al. Expires May 3, 2012 [Page 7]

Internet-Draft Energy-aware-nd October 2011

 configured in the network. If EAH hosts will look for a RA from a
 NEAR (E-flag) and choose a NEAR as its default router and
 consequently sends a unicast Neighbor Solicitation Message with ARO
 option in order to register itself with the default router. The EAH
 does not do Duplicate Address Detection or NS Resolution of
 addresses. NEAR maintains a binding of registered nodes and
 registration life-time information along with the neighbor Cache
 information. The NEAR is responsible for forwarding all the messages
 from its EAH including on-link messages from one EAH to another. For
 details of protocol operations please see the sections below.

 When a IPv6 network consists of both legacy hosts and EAH, and if the
 NEAR is configured for ’mixed mode’ operation, it should be able to
 handle ARO requests and send periodic RA. Thus it should be able to
 serve both energy-aware hosts and legacy hosts. Similarly, a legacy
 host compatible EAH falls back to RFC 4861 host behavior if a NEAR is
 not present in the link. See the section on ’Mixed Mode Operations’
 for details below.

6. Applicability Statement

 This document aims to guide the implementors to choose an appropriate
 IPv6 neighbor discovery and Address configuration procedures suitable
 for any IPv6 energy-aware network. These optimization is useful for
 the classical IPv6 subnet and as well as future home networks, Data-
 Centers where saving Neighbor Discovery messages will reduce cost of
 control signaling and network bandwidth and as well as energy of the
 connected nodes. See use cases towards the end of the document.

 Note that the specification allows ’Mixed-mode’ operation in the
 energy-aware nodes for backward compatibility and transitioning to a
 complete energy-aware network of hosts and routers. Though the
 energy-aware only nodes will minimize the ND signalling and DOS
 attacks in the LAN.

7. New Neighbor Discovery Options and Messages

 This section will discuss the registration and de-registration
 procedure of the hosts in the network.

7.1. Address Registration Option

 The Address Registration Option(ARO) is useful for avoiding Duplicate
 Address Detection messages since it requires a unique ID for
 registration. The address registration is used for maintaining
 reachability of the node or host by the router. This option is

Chakrabarti, et al. Expires May 3, 2012 [Page 8]

Internet-Draft Energy-aware-nd October 2011

 exactly the same as in [6LOWPAN-ND] which is reproduced here for the
 benefits of the readers.

 The routers keep track of host IP addresses that are directly
 reachable and their corresponding link-layer addresses. This is
 useful for lossy and lowpower networks and as well as wired networks.
 An Address Registration Option (ARO) can be included in unicast
 Neighbor Solicitation (NS) messages sent by hosts. Thus it can be
 included in the unicast NS messages that a host sends as part of
 Neighbor Unreachability Detection to determine that it can still
 reach a default router. The ARO is used by the receiving router to
 reliably maintain its Neighbor Cache. The same option is included in
 corresponding Neighbor Advertisement (NA) messages with a Status
 field indicating the success or failure of the registration. This
 option is always host initiated.

 The ARO is required for reliability and power saving. The lifetime
 field provides flexibility to the host to register an address which
 should be usable (the reachability information may be propagated to
 the routing protocols) during its intended sleep schedule of nodes
 that switches to frequent sleep mode.

 The sender of the NS also includes the EUI-64 of the interface it is
 registering an address from. This is used as a unique ID for the
 detection of duplicate addresses. It is used to tell the difference
 between the same node re-registering its address and a different node
 (with a different EUI-64) registering an address that is already in
 use by someone else. The EUI-64 is also used to deliver an NA
 carrying an error Status code to the EUI-64 based link-local IPv6
 address of the host.

 When the ARO is used by hosts an SLLA option MUST be included and the
 address that is to be registered MUST be the IPv6 source address of
 the Neighbor Solicitation message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length = 2 | Status | Reserved |
 +-+
 | Reserved | Registration Lifetime |
 +-+
 | |
 + EUI-64 or equivalent +
 | |
 +-+

Chakrabarti, et al. Expires May 3, 2012 [Page 9]

Internet-Draft Energy-aware-nd October 2011

 Fields:
 Type: TBD1 (See [6LOWPAN-ND])
 Length: 8-bit unsigned integer. The length of the option in
 units of 8 bytes. Always 2.
 Status: 8-bit unsigned integer. Indicates the status of a
 registration in the NA response. MUST be set to 0 in
 NS messages. See below.
 Reserved: This field is unused. It MUST be initialized to zero
 by the sender and MUST be ignored by the receiver.
 Registration Lifetime: 16-bit unsigned integer. The amount of time
 in a unit of 10 seconds that the router should retain
 the Neighbor Cache entry for the sender of the NS that
 includes this option.
 EUI-64: 64 bits. This field is used to uniquely identify the
 interface of the registered address by including the
 EUI-64 identifier assigned to it unmodified.

 The Status values used in Neighbor Advertisements are:

 +--------+--+
 | Status | Description |
 +--------+--+
 | 0 | Success |
 | 1 | Duplicate Address |
 | 2 | Neighbor Cache Full |
 | 3-255 | Allocated using Standards Action [RFC2434] |
 +--------+--+

 Table 1

7.2. Refresh and De-registration

 A host SHOULD send a Registration messge in order to renew its
 registration before its registration lifetime expires in order to
 continue its connectivity with the network. If anytime, the node
 decides that it does not need the default router’s service anymore,
 it MUST send a de-registration message - i,e, a registration message
 with lifetime being set to zero. A mobile host SHOULD first de-
 register with the default router before it moves away from the
 subnet.

7.3. A New Router Advertisement Flag

 A new Router Advertisment flag [RF] is needed in order to distnguish
 a router advertisement from a energy-aware default router or a legacy
 IPv6 router. This flag is ignored by the legacy IPv6 hosts. EAH
 hosts use this flag in oder to discover a NEAR router if it receives
 multiple RA from both legacy and NEAR routers.

Chakrabarti, et al. Expires May 3, 2012 [Page 10]

Internet-Draft Energy-aware-nd October 2011

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |M|O|H|Prf|P|E|R|
 +-+-+-+-+-+-+-+-+

 The ’E’ bit above MUST be 1 when a IPv6 router implements and
 configures the Energy-aware Router behavior for Neighbor Discovery as
 per this document. All other cases E bit is 0.

 The legacy IPv6 hosts will ignore the E bit in RA advertisement. All
 EAH MUST look for E bit in RA in order to determine the Energy-aware
 support in the default router in the link.

 This document assumes that an implementation will have configuration
 knobs to determine whether it is running in classical IPv6 ND [ND] or
 Optimized Energy Aware ND (this document) mode or both(Mixed mode).

8. Energy-aware Neighbor Discovery Messages

 Router Advertisement(RA): Periodic RAs SHOULD be avoided. Only
 solicited RAs are RECOMMENDED. An RA MUST
 contain the Source Link-layer Address option
 containing Router’s link-layer address (this
 is optional in [ND]. An RA MUST carry Prefix
 information option with L bit being unset, so
 that hosts do not multicast any NS messages
 as part of address resolution. A new flag
 (E-flag) is introduced in the RA in order to
 characterize the energy-aware mode support.
 Unlike RFC4861 which suggests multicast
 Router Advertisements, this specification
 optimizes the exchange by always unicasting
 RAs in response to RS. This is possible
 since the RS always includes a SLLA option,
 which is used by the router to unicast the
 RA.
 Router Solicitation(RS): Upon system startup, the node sends a
 multicast or link broadcast (when multicast
 is not supported at the link-layer) RS to
 find out the available routers in the link.
 An RS may be sent at other times as described
 in section 6.3.7 of RFC 4861. A Router
 Solicitation MUST carry Source Link-layer
 Address option. Since no periodic RAs are
 allowed in the energy-aware IPv6 network, the
 host may send periodic unicast RS to the

Chakrabarti, et al. Expires May 3, 2012 [Page 11]

Internet-Draft Energy-aware-nd October 2011

 routers. The time-periods for the RS varies
 on the deployment scenarios and the Default
 Router Lifetime advertised in the RAs.
 Default Router Selection: Same as in section 6.3.6 of RFC 4861[ND].
 Neighbor Solicitation (NS): Neighbor solicitation is used between
 the hosts and the default-router as part of
 NUD and registering the host’s address(es).
 An NS message MUST use the Address
 Registration option in order to accomplish
 the registration.
 Neighbor Advertisement (NA): As defined in [ND] and ARO option.
 Redirect Messages: A router SHOULD NOT send a Redirect message
 to a host since the link has non-transitive
 reachability. The host behavior is same as
 described in section 8.3 of RFC 4861[ND],
 i,e. a host MUST NOT send or accept redirect
 messages when in energy-aware mode.
 Same as in RFC 4861[ND]
 MTU option: As per the RFC 4861.
 Address Resolution: No NS/NA are sent as the prefixes are treated
 as off-link. Thus no address resolution is
 performed at the hosts. The routers keep
 track of Neighbor Solicitations with Address
 Registration options(ARO) and create an
 extended neighbor cache of reachable
 addresses. The router also knows the nexthop
 link-local address and corresponding link-
 layer address when it wants to route a
 packet.
 Neighbor Unreachability Detection(NUD): NUD is performed in
 "forward-progress" fashion as described in
 section 7.3.1 of RFC 4861[ND]. However, if
 Address Registration Option is used, the NUD
 SHOULD be combined with the Re-registration
 of the node. This way no extra message for
 NUD is required.

9. Energy-Aware Host Behavior

 A host sends Router Solicitation at the system startup and also when
 it suspects that one of its default routers have become
 unreachable(after NUD fails). The EAH MUST process the E-bit in RA
 as described in this document. The EAH MUST use ARO option to
 register with the neighboring NEAR router.

 A host SHOULD be able to autoconfigure its IPv6 addresses using the
 IPv6 prefix obtained from Router Advertisement. The host SHOULD form

Chakrabarti, et al. Expires May 3, 2012 [Page 12]

Internet-Draft Energy-aware-nd October 2011

 its link-local address from the EUI-64 as specified by IEEE
 Registration Authority and RFC 2373. If this draft feature is
 implemented and configured, the host MUST NOT re-direct Neighbor
 Discovery messages. The host does not require to join solicited-node
 multicast address but it MUST join the all-node multicast address.

 A host always sends packets to (one of) its default router(s). This
 is accomplished by the routers never setting the ’L’ flag in the
 Prefix options.

 The host is unable to forward routes or participate in a routing
 protocol. A legacy IPv6 Host compliant EAH SHOULD be able to fall
 back to RFC 4861 host behavior if there is no energy-aware router
 (NEAR) in the link.

 The energy-aware host MUST NOT send or accept re-direct messages. It
 does not join solicited node multicast address.

10. The Energy Aware Default Router (NEAR) Behavior

 The main purpose of the default router in the context of this
 document is to receive and process the registration request, forward
 packets from one neighbor to the other, informs the routing protocol
 about the un-availability of the registered nodes if the routing
 protocol requires this information for the purpose of mobility or
 fast convergence. A default router (NEAR) behavior may be observed
 in one or more interfaces of a Border Router(BR).

 A Border Router normally may have multiple interfaces and connects
 the nodes in a link like a regular IPv6 subnet(s) or acts as a
 gateway between separate networks such as Internet and home networks
 . The Border Router is responsible for distributing one or more /64
 prefixes to the nodes to identify a packet belonging to the
 particular network. One or more of the interfaces of the Border
 Router may be connected with the energy-aware hosts or a energy-aware
 router(NEAR).

 The Energy-Aware default router MUST not send periodic RA unless it
 is configured to support both legacy IPv6 and energy-aware hosts. If
 the Router is configured for Energy-Aware hosts support, it MUST send
 Router Advertisments with E-bit flag ON and MUST NOT set ’L’ bit in
 the advertisements.

 The router SHOULD NOT garbage collect Registered Neighbor Cache
 entries since they need to retain them until the Registration
 Lifetime expires. If a NEAR receives a NS message from the same host
 one with ARO and another without ARO then the NS message with ARO

Chakrabarti, et al. Expires May 3, 2012 [Page 13]

Internet-Draft Energy-aware-nd October 2011

 gets the precedence and the NS without ARO is ignored. This behavior
 protects the router from Denial Of Service attacks. Similarly, if
 Neighbor Unreachability Detection on the router determines that the
 host is UNREACHABLE (based on the logic in [ND]), the Neighbor Cache
 entry SHOULD NOT be deleted but be retained until the Registration
 Lifetime expires. If an ARO arrives for an NCE that is in
 UNCREACHABLE state, that NCE should be marked as STALE.

 A default router keeps a cache for all the nodes’ IP addresses,
 created from the Address Registration processing.

10.1. Router Configuration Modes

 An energy-aware Router(NEAR) MUST be able to configure in energy-
 aware-only mode where it will expect all hosts register with the
 router following RS; thus will not support legacy hosts. However, it
 will create legacy NCE for NS messages for other routers in the
 network. This mode is able to prevent ND flooding on the link.

 An energy-aware Router(NEAR) SHOULD be able to have configuration
 knob to configure itself in Mixed-Mode where it will support both
 energy-aware hosts and legacy hosts. However even in mixed-mode the
 router should check for duplicate entries in the NCE before creating
 a new ones and it should rate-limit creating new NCE based on
 requests from the same host MAC address.

 The RECOMMENDED default mode of operation for the energy-aware router
 is Mixed-mode.

11. NCE Management in Energy-Aware Routers

 The use of explicit registrations with lifetimes plus the desire to
 not multicast Neighbor Solicitation messages for hosts imply that we
 manage the Neighbor Cache entries slightly differently than in [ND].
 This results in two different types of NCEs and the types specify how
 those entries can be removed:

 Legacy: Entries that are subject to the normal rules in
 [ND] that allow for garbage collection when low
 on memory. Legacy entries are created only
 when there is no duplicate NCE. In mixed-mode
 and energy-aware mode the legacy entries are
 converted to the registered entries upon
 successful processing of ARO. Legacy type can
 be considered as union of garbage-collectible
 and Tentative Type NCEs described in
 [6LOWPAN-ND].

Chakrabarti, et al. Expires May 3, 2012 [Page 14]

Internet-Draft Energy-aware-nd October 2011

 Registered: Entries that have an explicit registered
 lifetime and are kept until this lifetime
 expires or they are explicitly unregistered.

 Note that the type of the NCE is orthogonal to the states specified
 in [ND].

 When a host interacts with a router by sending Router Solicitations
 that does not match with the existing NCE entry of any type, a Legacy
 NCE is first created. Once a node successfully registers with a
 Router the result is a Registered NCE. As Routers send RAs to legacy
 hosts, or receive multicast NS messages from other Routers the result
 is Legacy NCEs. There can only be one kind of NCE for an IP address
 at a time.

 A Router Solicitation might be received from a host that has not yet
 registered its address with the router or from a legacy[ND] host in
 the Mixed-mode of operation.

 In the ’Enrgy-aware’ only mode the router MUST NOT modify an existing
 Neighbor Cache entry based on the SLLA option from the Router
 Solicitation. Thus, a router SHOULD create a tentative Legacy
 Neighbor Cache entry based on SLLA option when there is no match with
 the existing NCE. Such a legacy Neighbor Cache entry SHOULD be timed
 out in TENTATIVE_LEGACY_NCE_LIFETIME seconds unless a registration
 converts it into a Registered NCE.

 However, in ’Mixed-mode’ operation, the router does not require to
 keep track of TENTATIVE_LEGACY_NCE_LIFETIME as it does not know if
 the RS request is from a legacy host or the energy-aware hosts.
 However, it creates the legacy type of NCE and updates it to a
 registered NCE if the ARO NS request arrives corresponding to the
 legacy NCE. Successful processing of ARO will complete the NCE
 creation phase.

 If ARO did not result in a duplicate address being detected, and the
 registration life-time is non-zero, the router creates and updates
 the registered NCE for the IPv6 address. if the Neighbor Cache is
 full and new entries need to be created, then the router SHOULD
 respond with a NA with status field set to 2. For successful
 creation of NCE, the router SHOULD include a copy of ARO and send NA
 to the requestor with the status field 0. A TLLA(Target Link Layer)
 Option is not required with this NA.

 Typically for energy-aware routers (NEAR), the registration life-time
 and EUI-64 are recorded in the Neighbor Cache Entry along with the
 existing information described in [ND]. The registered NCE are meant
 to be ready and reachable for communication and no address resolution

Chakrabarti, et al. Expires May 3, 2012 [Page 15]

Internet-Draft Energy-aware-nd October 2011

 is required in the link. The energy-aware hosts will renew their
 registration to keep maintain the state of reachability of the NCE at
 the router. However the router may do NUD to the idle or unreachable
 hosts as per [ND].

11.1. Handling ND DOS Attack

 IETF community has discussed possible issues with /64 DOS attacks on
 the ND networks when a attacker host can send thousands of packets to
 the router with a on-link destination address or sending RS messages
 to initiate a Neighbor Solicitation from the neighboring router which
 will create a number of INCOMPLETE NCE entries for non-existent nodes
 in the network resulting in table overflow and denial of service of
 the existing communications.

 The energy-aware behavior documented in this specification avoids the
 ND DOS attacks by:

 o Having the hosts register with the default router
 o Having the hosts send their packets via the default router
 o Not resolving addresses for the Routing Solicitor by mandating
 SLLA option along with RS
 o Checking for duplicates in NCE before the registration
 o Checking against the MAC-address and EUI-64 id is possible now for
 NCE matches
 o On-link IPv6-destinations on a particular link must be registered
 else these packets are not resolved and extra NCEs are not created

 It is recomended that Mixed-mode operation and legacy hosts SHOULD
 NOT be used in the IPv6 link in order to avoid the ND DOS attacks.
 For the general case of Mixed-mode the router does not create
 INCOMPLETE NCEs for the registered hosts, but it follows the [ND]
 steps of NCE states for legacy hosts.

12. Mixed-Mode Operations

 Mixed-Mode operation discusses the protocol behavior where the IPv6
 subnet is composed with legacy IPv6 Neighbor Discovery compliant
 nodes and energy-aware IPv6 nodes implementing this specification.

 The mixed-mode model SHOULD support the following configurations in
 the IPv6 link:
 o The legacy IPv6 hosts and energy-aware-hosts in the network and a
 NEAR router
 o legacy IPv6 default-router and energy-aware hosts(EAH) in the link

Chakrabarti, et al. Expires May 3, 2012 [Page 16]

Internet-Draft Energy-aware-nd October 2011

 o one router is in mixed mode and the link contains both legacy IPv6
 hosts and EAH
 o A link contains both energy-aware IPv6 router and hosts and legacy
 IPv6 routers and hosts and each host should be able to communicate
 with each other.

 In mixed-mode operation, a NEAR MUST be configured for mixed-mode in
 order to support the legacy IPv6 hosts in the network. In mixed-
 mode, the NEAR MUST act as proxy for Neighbor Solicitation for DAD
 and Address Resolution on behalf of its registered hosts on that
 link. It should follow the NCE management for the EAH as described
 in this document and follow RFC 4861 NCE management for the legacy
 IPv6 hosts. Both in mixed-mode and energy-aware mode, the NEAR sets
 E-bit flag in the RA and does not set ’L’ on-link bit.

 If a NEAR receives NS message from the same host one with ARO and
 another without ARO then the NS message with ARO gets the precedence.

 An Energy-Aware Host implementation SHOULD support falling back to
 legacy IPv6 node behavior when no energy-aware routers are available
 in the network during the startup. If the EAH was operational in
 energy-aware mode and it determines that the NEAR is no longer
 available, then it should send a RS and find an alternate default
 router in the link. If no energy-aware router is indicated from the
 RA, then the EAH SHOULD fall back into RFC 4861 behavior. On the
 otherhand, in the energy-aware mode EAH SHOULD ignore multicast
 Router Advertisements(RA) sent by the legacy and Mixed-mode routers
 in the link.

 The routers that are running on energy-aware mode or legacy mode
 SHOULD NOT dynamically switch the mode without flushing the Neighbor
 Cache Entries.

13. Bootstrapping

 If the network is a energy-aware IPv6 subnet, and the energy-aware
 Neighbor Discovery mechansim is used by the hosts and routers as
 described in this document. At the start, the node uses its link-
 local address to send Router Solicitation and then it sends the Node
 Registration message as described in this document in order to form
 the address. The Duplicate address detection process should be
 skipped if the network is guaranteed to have unique interface
 identifiers which is used to form the IPv6 address.

Chakrabarti, et al. Expires May 3, 2012 [Page 17]

Internet-Draft Energy-aware-nd October 2011

 Node Router

 | |

 1. | ---------- Router Solicitation --------> |

 | [SLLAO] |

 2. | <-------- Router Advertisement --------- |

 | [PIO + SLLAO] |
 | |

 3. | ----- Address Registration (NS) --------> |

 | [ARO + SLLAO] |

 4. | <-------- Neighbor Advertisement ------- |

 | [ARO with Status code] |

 5. ====> Address Assignment Complete

 Figure 1: Neighbor Discovery Address Registration and bootstrapping

 In the mixed mode operation, it is expected that logically there will
 be at least one legacy IPv6 router and another NEAR router present in
 the link. The legacy IPv6 router will follow RFC 4861 behavior and
 NEAR router will follow the energy-aware behavior for registration,
 NCE maintenance, forwarding packets from a EAH and it will also act
 as a ND proxy for the legacy IPv6 hosts querying to resolve a EAH
 node.

 A legacy IPv6 host and EAH are not expected to see a difference in
 their bootstrapping if both legacy and energy-aware functionalities
 of rotuers are available in the network. It is RECOMMEDED that the
 EAH implementation SHOULD be able to behave like a legacy IPv6 host
 if it discovers that no energy-aware routing support is present in
 the link.

14. Handling Sleepy Nodes

 The solution allows the sleepy nodes to complete its sleep schedule
 without waking up due to periodic Router Advertisement messages or
 due to Multicast Neighbor Solicitation for address resolution. The
 node registration lifetime SHOULD be synchronized with its sleep

Chakrabarti, et al. Expires May 3, 2012 [Page 18]

Internet-Draft Energy-aware-nd October 2011

 interval period in order to avoid waking up in the middle of sleep
 for registration refresh. Depending on the application, the
 registration lifetime SHOULD be equal to or integral multiple of a
 node’s sleep interval period.

15. Use Case Analysis

 This section provides applicability scenarios where the energy-aware
 Neighbor Discovery will be most beneficial.

15.1. Data Center Routers on the link

 Energy-aware Routers and hosts are useful in IPv6 networks in the
 Data Center as they produce less signaling and also provides ways to
 minimize the ND flood of messages. Moreover, this mechanism will
 work with data-center nodes which are deliberately in sleep mode for
 saving energy.

 This solution will work well in Data Center Virtual network and VM
 scenarios where number of VLANs are very high and ND signalings are
 undesirably high due the multicast messaging and periodic Router
 Advertisments and Neighbor Unreachability detections.

15.2. Edge Routers and Home Networks

 An Edge Router in the network will also benefit implementing the
 energy-aware Neighbor Discovery behavior in order to save the
 signaling and keeping track of the registered nodes in its domain. A
 BNG sits at the operator’s edge network and often the BNG has to
 handle a large number of home CPEs. If a BNG runs Neighbor Discovery
 protocol and acts as the default router for the CPE at home, this
 solution will be helpful for reducing the control messages and
 improving network performances.

 The same solution can be run on CPE or Home Residential Gateways to
 assign IPv6 addresses to the wired and wireless home devices without
 the problem of ND flooding issues and consuming less power. It
 provides mechanism for the sleepy nodes to adjust their registration
 lifetime according to their sleep schedules.

15.3. M2M Networks

 Any Machine-to-machine(M2M) networks such as IPv6 surveilance
 networks, wireless monitoring networks and other m2m networks desire
 for energy-aware control protocols and dynamic address allocation.
 The in-built address allocation and autoconfiguration mechanism in
 IPv6 along with the default router capability will be useful for the

Chakrabarti, et al. Expires May 3, 2012 [Page 19]

Internet-Draft Energy-aware-nd October 2011

 simple small-scale networks without having the burden of DHCPv6
 service and Routing Protocols.

16. Mobility Considerations

 If the hosts move from one subnet to another, they MUST first de-
 register and then register themselves in the new subnet or network.
 Otherwise, the regular IPv6 Mobility [IPV6M]behavior applies.

17. Updated Neighbor Discovery Constants

 This section discusses the updated default values of ND constants
 based on [ND] section 10. New and changed constants are listed only
 for energy-aware-nd implementation.

 Router Constants:
 MAX_RTR_ADVERTISEMENTS(NEW) 3 transmissions
 MIN_DELAY_BETWEEN_RAS(CHANGED) 1 second
 TENTATIVE_LEGACY_NCE_LIFETIME(NEW) 30 seconds

 Host Constants:
 MAX_RTR_SOLICITATION_INTERVAL(NEW) 60 seconds

18. Security Considerations

 These optimizations are not known to introduce any new threats
 against Neighbor Discovery beyond what is already documented for IPv6
 [RFC 3756].

 Section 11.2 of [ND] applies to this document as well.

 This mechanism minimizes the possibility of ND /64 DOS attacks in
 energy-aware mode. See Section 11.1.

19. IANA Considerations

 A new flag (E-bit) in RA has been introduced. IANA assignment of the
 E-bit flag is required upon approval of this document.

20. Changelog

 Changes from 00 to 01:

Chakrabarti, et al. Expires May 3, 2012 [Page 20]

Internet-Draft Energy-aware-nd October 2011

 o Removed ABRO options and Multi-level subnet concept
 o Removed intermediate-router concept, behavior and definition
 o Added use-cases, Support for Mixed-mode operations and a diagram
 for bootstrapping scenario.
 o Added updates to ND constant values
 o A new co-author has beed added
 o Text for NCE Management and ND-DOS handling has been added
 o A new Router Advertisement flag has been added

21. Acknowledgements

 The primary idea of this document are from 6LoWPAN Neighbor Discovery
 document [6LOWPAN-ND] and the discussions from the 6lowpan working
 group members, chairs Carsten Bormann and Geoff Mulligan and through
 our discussions with Zach Shelby, editor of the [6LOWPAN-ND].

 The inspiration of such a IPv6 generic document came from Margaret
 Wasserman who saw a need for such a document at the IOT workshop at
 Prague IETF.

22. References

22.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [6LOWPAN-ND]
 Shelby, Z., Chakrabarti, S., and E. Nordmark, "ND
 Optimizations for 6LoWPAN", draft-ietf-6lowpan-nd-17.txt
 (work in progress), June 2011.

 [ND] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6", RFC 4861,
 September 2007.

 [LOWPAN] Montenegro, G. and N. Kushalnagar, "Transmission of IPv6
 Packets over IEEE 802.15.4 networks", RFC 4944,
 September 2007.

 [LOWPANG] Kushalnagar, N. and G. Montenegro, "6LoWPAN: Overview,
 Assumptions, Problem Statement and Goals", RFC 4919,

Chakrabarti, et al. Expires May 3, 2012 [Page 21]

Internet-Draft Energy-aware-nd October 2011

 August 2007.

22.2. Informative References

 [IPV6] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6), Specification", RFC 2460, December 1998.

 [AUTOCONF]
 Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Autoconfiguration", RFC 4862, September 2007.

 [SEND] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "Secure
 Neighbor Discovery", RFC 3971, March 2005.

 [AUTOADHOC]
 Baccelli, E. and M. Townsley, "IP Addressing Model in
 Adhoc Networks",
 draft-ietf-autoconf-adhoc-addr-model-02.txt (work in
 progress), December 2009.

 [IEEE] IEEE Computer Society, "IEEE Std. 802.15.4-2003", ,
 October 2003.

 [PD] Miwakawya, S., "Requirements for Prefix Delegation",
 RFC 3769, June 2004.

 [RF] Haberman, B. and B. Hinden, "IPv6 Router Advertisement
 Flags option", RFC 5175, March 2008.

 [ULA] "Unique Local IPv6 Addresses", RFC 4193.

 [IPV6M] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support
 in IPv6", RFC 6275, July 2011.

Authors’ Addresses

 Samita Chakrabarti
 Ericsson
 San Jose, CA
 USA

 Email: samita.chakrabarti@ericsson.com

Chakrabarti, et al. Expires May 3, 2012 [Page 22]

Internet-Draft Energy-aware-nd October 2011

 Erik Nordmark
 Cisco Systems
 San Jose, CA
 USA

 Email: nordmark@cisco.com

 Margaret Wasserman
 Painless Security

 Email: mrw@lilacglade.org

Chakrabarti, et al. Expires May 3, 2012 [Page 23]

Network Working Group R. Asati
Internet-Draft H. Singh
Updates: 4862 (if approved) W. Beebee
Intended status: Standards Track Cisco Systems, Inc.
Expires: April 30, 2012 E. Dart
 Lawrence Berkeley National
 Laboratory
 W. George
 Time Warner Cable
 C. Pignatro
 Cisco Systems, Inc.
 October 28, 2011

 Enhanced Duplicate Address Detection
 draft-hsingh-6man-enhanced-dad-02.txt

Abstract

 Appendix A of the IPv6 Duplicate Address Detection (DAD) document in
 RFC 4862 discusses Loopback Suppression and DAD. However, RFC 4862
 does not settle on one specific automated means to detect loopback of
 Neighbor Discovery (ND of RFC 4861) messages used by DAD. Several
 service provider communities have expressed a need for automated
 detection of looped backed ND messages used by DAD. This document
 includes mitigation techniques and then outlines the Enhanced DAD
 algorithm to automate detection of looped back IPv6 ND messages used
 by DAD. For network loopback tests, the Enhanced DAD algorithm
 allows IPv6 to self-heal after a loopback is placed and removed.
 Further, for certain access networks the document automates resolving
 a specific duplicate address conflict.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2012.

Asati, et al. Expires April 30, 2012 [Page 1]

Internet-Draft Enhanced DAD October 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Terminology . 3
 2. Introduction . 3
 3. Operational Mitigation Options 4
 3.1. Disable DAD on Interface 4
 3.2. Dynamic Disable/Enable of DAD Using Layer 2 Protocol . . . 4
 3.3. Operational Considerations 5
 4. The Enhanced DAD Algorithm 5
 4.1. General Rules . 6
 4.2. Processing Rules for Senders 6
 4.3. Processing Rules for Receivers 7
 4.4. Impact on SEND . 7
 4.5. Changes to RFC 4862 . 7
 4.6. Actions to Perform on Detecting a Genuine Duplicate 7
 5. Security Considerations . 8
 6. IANA Considerations . 8
 7. Acknowledgements . 8
 8. Normative References . 8
 Authors’ Addresses . 9

Asati, et al. Expires April 30, 2012 [Page 2]

Internet-Draft Enhanced DAD October 2011

1. Terminology

 o DAD-failed state - Duplication Address Detection failure as
 specified in [RFC4862]. Failure also includes if the Target
 Address is optimistic. Optimistic DAD is specified in [RFC4429].

 o Looped back message - also referred to as a reflected message.
 The message sent by the sender is received by the sender due to
 the network or a Upper Layer Protocol on the sender looping the
 message back.

 o Loopback - A function in which the router’s interface to the
 network is looped back, resulting in interface unavailability for
 regular data traffic forwarding. See more details in section 9.1
 of [RFC1247]. Loopback function is commonly used to gain
 information on the quality of this interface, by employing
 mechanisms such as ICMPv6 pings, bit-error test etc. Loopback
 function may be done locally or remotely.

 o NS(DAD) - shorthand notation to denote an NS with unspecified IPv6
 source-address issued during DAD.

2. Introduction

 Appendix A of [RFC4862] discusses Loopback Suppression and Duplicate
 Address Detection (DAD). However, [RFC4862] does not settle on one
 specific automated means to detect loopback of ND messages used by
 DAD. One specific DAD message is a Neighbor Solicitation (NS),
 specified in [RFC4861]. The NS is issued by the network interface of
 an IPv6 node for DAD. Another message involved in DAD is a Neighbor
 Advertisement (NA). The Enhanced DAD algorithm proposed in this
 document focuses on detecting an NS looped back to the transmitting
 interface during the DAD operation. Detecting a looped back NA is of
 no use because no problems with DAD will occur if a node receives a
 looped back NA. Detecting of any other looped back ND messages
 outside of the DAD operation is not critical and thus this document
 does not cover such detection. The document also includes a
 Mitigation section that discusses means already available to mitigate
 the loopback problem.

 Recently service providers have reported a DAD loopback problem.
 Loopback testing is underway on a circuit connected to an interface
 on a router. The interface on the router is enabled for IPv6. The
 interface issues a NS for the IPv6 link-local address DAD. The NS is
 reflected back to the router interface due to the loopback condition
 of the circuit, and the router interface enters a DAD-failed state.
 In contrast to IPv4, IPv6 will not return to operation on the

Asati, et al. Expires April 30, 2012 [Page 3]

Internet-Draft Enhanced DAD October 2011

 interface when the loopback condition is cleared without manual
 intervention. In another service provider network, two broadband
 modems in a home have the Ethernet ports of each modem connected to a
 network hub. The access concentrator serving the modems is the
 first-hop IPv6 router for the modems. The access concentrator also
 supports proxying of DAD messages. Each modem is IPv4 online. The
 network interface of the access concentrator serving the two
 broadband modems is enabled for IPv6 and the interface issues a
 NS(DAD) message for the IPv6 link-local address. The NS message
 reaches one modem first and this modem sends the message to the hub
 which sends the message to the second modem which forwards the
 message back to the access concentrator. The looped back NS message
 causes the network interface on the access concentrator to be in a
 DAD-failed state. Such a network interface typically serves over six
 thousand broadband modems causing all the modems (and hosts behind
 the modems) to fail to get IPv6 online on the access network.
 Additionally, it may be tedious for the access concentrator to find
 out which of the six thousand or more homes looped back the DAD
 message. Clearly there is a need for automated detection of looped
 back NS messages during DAD operations by a node.

3. Operational Mitigation Options

 Two mitigation options are described below. The mechanisms do not
 require any change to existing implementations.

3.1. Disable DAD on Interface

 One can disable DAD on an interface and then there is no NS(DAD)
 issued to be looped back. DAD is disabled by setting the interface’s
 DupAddrDetectTransmits variable to zero. While this mitigation may
 be the simplest the mitigation has three drawbacks.

 It would likely require careful analysis of configuration on such
 point-to-point interfaces, a one-time manual configuration on each of
 such interfaces, and more importantly, genuine duplicates in the link
 will not be detected.

 A network operator MAY use this mitigation.

3.2. Dynamic Disable/Enable of DAD Using Layer 2 Protocol

 It is possible that one or more layer 2 protocols include provisions
 to detect the existence of a loopback on an interface circuit,
 usually by comparing protocol data sent and received. For example,
 PPP uses magic number (section 6.4 of [RFC1661]) to detect a loopback
 on an interface.

Asati, et al. Expires April 30, 2012 [Page 4]

Internet-Draft Enhanced DAD October 2011

 When a layer 2 protocol detects that a loopback is present on an
 interface circuit, the device MUST temporarily disable DAD on the
 interface, and when the protocol detects that a loopback is no longer
 present (or the interface state has changed), the device MUST
 (re-)enable DAD on that interface.

 This solution requires no protocol changes. This solution SHOULD be
 enabled by default, and MUST be a configurable option.

 This mitigation has several benefits. They are

 1. It leverages layer 2 protocol’s built-in loopback detection
 capability, if available.

 2. It scales better (since it relies on an event-driven), requires
 no additional state, timer etc. This may be a significant
 scaling consideration on devices with hundreds or thousands of
 interfaces that may be in loopback for long periods of time (such
 as while awaiting turn-up or during long-duration intrusive bit
 error rate tests).

3.3. Operational Considerations

 The mitigation options discussed in the document do not require the
 devices on both ends of the circuit to support the mitigation
 functionality simultaneously, and do not propose any capability
 negotiation. Suffice to say that the mitigation options are well
 effective for the unidirectional loopback.

 The mitigation options may not be effective for the bidirectional
 loopback (i.e. the loopback is placed in both directions of the
 circuit interface, so as to identify the faulty segment) if only one
 device followed a mitigation option specified in this document, since
 the other device would follow current behavior and disable IPv6 on
 that interface due to DAD until manual intervention restores it.

 This is nothing different from what happens today (without the
 solutions proposed by this document) in case of unidirectional
 loopback. Hence, it is expected that an operator would resort to
 manual intervention for the devices not compliant with this document,
 as usual.

4. The Enhanced DAD Algorithm

 The Enhanced DAD algorithm covers detection of a looped back NS(DAD)
 message. The document proposes use of the Nonce Option specified in
 the SEND document of [RFC3971]. The nonce is a random number as

Asati, et al. Expires April 30, 2012 [Page 5]

Internet-Draft Enhanced DAD October 2011

 specified in [RFC3971]. If SEND is enabled on the router and the
 router also supports the new automated ND loopback detection
 (specified in this document), there is integration with the Enhanced
 DAD algorithm and SEND. See more details in the Impact on SEND
 section.

 When the IPv6 network interface issues a NS(DAD) message, the
 interface includes the Nonce Option in the NS(DAD) message and saves
 the nonce in local store. Subsequently if the interface receives an
 identical NS(DAD) message, the interface logs a system management
 message, updates any statistics counter, and drops the looped back
 NS(DAD). If the DupAddrDetectTransmits variable for the interface is
 greater than one, subsequent NS(DAD) messages for the same Target
 Address should be suppressed. If the interface receives a NS(DAD)
 message with a different nonce but TargetAddress matches a tentative
 or optimistic address on the interface, the interface logs a DAD-
 failed system management message, updates any statistics, and behaves
 identical to the behavior specified in [RFC4862] for DAD failure.

 Six bytes of random nonce is sufficiently large for nonce collisions.
 However if there is a collision because two nodes generated the same
 random nonce (that are using the same Target address in their
 NS(DAD)), then the algorithm will incorrectly detect a looped back
 NS(DAD) when the NS(DAD) was issued to signal a genuine duplicate.
 Since each looped back NS(DAD) event is logged to system management,
 the administrator of the network will have to intervene manually.

 The algorithm is capable of detecting any ND solicitation (NS and
 Router Solicitation) or advertisement (NA and Router Advertisement)
 that is looped back. However, saving a nonce and nonce related data
 for all ND messages has impact on memory of the node and also adds
 the algorithm state to a substantially larger number of ND messages.
 Therefore this document does not recommend using the algorithm
 outside of the DAD operation by an interface on a node.

4.1. General Rules

 A node MUST implement detection of looped back NS(DAD) messages
 during DAD for an interface address.

4.2. Processing Rules for Senders

 If a node has been configured to use the Enhanced DAD algorithm, when
 sending a NS(DAD) for a tentative or optimistic interface address the
 sender MUST generate a random nonce associated with the interface
 address, MUST save the nonce, and MUST include the nonce in the Nonce
 Option included in the NS(DAD). If a looped back NS(DAD) is detected
 by the interface, and if the DupAddrDetectTransmits variable for the

Asati, et al. Expires April 30, 2012 [Page 6]

Internet-Draft Enhanced DAD October 2011

 interface is greater than one, subsequent NS(DAD) messages for the
 same Target Address SHOULD be suppressed.

4.3. Processing Rules for Receivers

 If the the node has been configured to use the Enhanced DAD algorithm
 and an interface on the node receives any NS(DAD) message that
 matches the interface address (in tentative or optimistic state), the
 receiver compares the nonce in the message with the saved nonce. If
 a match is found, the node SHOULD log a system management message,
 SHOULD update any statistics counter, and MUST drop the received
 message. If the received NS(DAD) message includes a nonce and no
 match is found with the saved nonce, the node SHOULD log a system
 management message for DAD-failed and SHOULD update any statistics
 counter.

4.4. Impact on SEND

 The SEND document uses the Nonce Option in the context of matching an
 NA with an NS. However, no text in SEND has an explicit mention of
 detecting looped back ND messages. If this document updates
 [RFC4862], SEND should be updated to integrate with the Enhanced DAD
 algorithm. A minor update to SEND would be to explicitly mention
 that the nonce in SEND is also used by SEND to detect looped back NS
 messages during DAD operations by the node. In a mixed SEND
 environment with SEND and unsecured nodes, the lengths of the nonce
 used by SEND and unsecured nodes MUST be identical.

4.5. Changes to RFC 4862

 The following text is added to [RFC4862] at a yet to be determined
 location in [RFC4862].

 A router that supports IPv6 DAD MUST implement the detection of
 looped back NS messages during DAD operation as specified in this
 document. A network interface on any other IPv6 node that is not a
 router SHOULD implement the detection of looped back NS messages
 during DAD operation as specified in this document.

4.6. Actions to Perform on Detecting a Genuine Duplicate

 As described in paragraphs above the nonce can also serve to detect
 genuine duplicates even when the network has potential for looping
 back ND messages. When a genuine duplicate is detected, the node
 follows the manual intervention specified in section 5.4.5 of
 [RFC4862]. However, in certain networks such as an access network if
 the genuine duplicate matches the tentative or optimistic IPv6
 address of a network interface of the access concentrator, automated

Asati, et al. Expires April 30, 2012 [Page 7]

Internet-Draft Enhanced DAD October 2011

 actions are proposed.

 One access network is a cable broadband deployment where the access
 concentrator is the first-hop IPv6 router to several thousand
 broadband modems. The router also supports proxying of DAD messages.
 The network interface on the access concentrator initiates DAD for an
 IPv6 address and detects a genuine duplicate due to receiving an
 NS(DAD) or an NA message. On detecting such a duplicate the access
 concentrator logs a system management message, drops the received ND
 message, and blocks the modem on whose layer 2 service identifier the
 NS(DAD) or NA message was received on.

 The network described above follows a trust model where a trusted
 router serves un-trusted IPv6 host nodes. Operators of such networks
 have a desire to take automated action if a network interface of the
 trusted router has a tentative or optimistic address duplicate with a
 host served by trusted router interface. Any other network that
 follows the same trust model MAY use the automated actions proposed
 in this section.

5. Security Considerations

 The nonce can be exploited by a rogue deliberately changing the nonce
 to fail the looped back detection specified by the Enhanced DAD
 algorithm. SEND is recommended for this exploit. For any mitigation
 suggested in the document such as disabling DAD has an obvious
 security issue before a remote node on the link can issue reflected
 NS(DAD) messages. Again, SEND is recommended for this exploit.

6. IANA Considerations

 None.

7. Acknowledgements

 Thanks to Eric Levy-Abegnoli, Erik Nordmark, and Fred Templin and
 Tassos Chatzithomaoglou for their guidance and review of the
 document. Thanks to Thomas Narten for encouraging this work. Thanks
 to Steinar Haug and Scott Beuker for describing the use cases.

8. Normative References

 [RFC1247] Moy, J., "OSPF Version 2", RFC 1247, July 1991.

Asati, et al. Expires April 30, 2012 [Page 8]

Internet-Draft Enhanced DAD October 2011

 [RFC1661] Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51,
 RFC 1661, July 1994.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3971] Arkko, J., Kempf, J., Zill, B., and P. Nikander, "SEcure
 Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC4429] Moore, N., "Optimistic Duplicate Address Detection (DAD)
 for IPv6", RFC 4429, April 2006.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

Authors’ Addresses

 Rajiv Asati
 Cisco Systems, Inc.
 7025 Kit Creek road
 Research Triangle Park, NC 27709-4987
 USA

 Email: rajiva@cisco.com
 URI: http://www.cisco.com/

 Hemant Singh
 Cisco Systems, Inc.
 1414 Massachusetts Ave.
 Boxborough, MA 01719
 USA

 Phone: +1 978 936 1622
 Email: shemant@cisco.com
 URI: http://www.cisco.com/

Asati, et al. Expires April 30, 2012 [Page 9]

Internet-Draft Enhanced DAD October 2011

 Wes Beebee
 Cisco Systems, Inc.
 1414 Massachusetts Ave.
 Boxborough, MA 01719
 USA

 Phone: +1 978 936 2030
 Email: wbeebee@cisco.com
 URI: http://www.cisco.com/

 Eli Dart
 Lawrence Berkeley National Laboratory
 ESnet Network Engineering Group
 USA

 Email: dart@es.net

 Wes George
 Time Warner Cable
 13820 Sunrise Valley Drive
 Herndon, VA 20171
 USA

 Email: wesley.george@twcable.com

 Carlos Pignatro
 Cisco Systems, Inc.
 7025 Kit Creek Road
 Research Triangle Park, NC 27709-4987
 USA

 Email: cpignataro@cisco.com
 URI: http://www.cisco.com/

Asati, et al. Expires April 30, 2012 [Page 10]

This Internet-Draft, draft-ietf-6man-addr-select-considerations-03.txt,
has expired, and has been deleted from the Internet-Drafts directory. An
Internet-Draft expires 185 days from the date that it is posted unless it
is replaced by an updated version, or the Secretariat has been notified
that the document is under official review by the IESG or has been passed
to the RFC Editor for review and/or publication as an RFC. This
Internet-Draft was not published as an RFC.

Internet-Drafts are not archival documents, and copies of Internet-Drafts
that have been deleted from the directory are not available. The
Secretariat does not have any information regarding the future plans of
the author or working group, if applicable, with respect to this deleted
Internet-Draft. For more information, or to request a copy of the
document, please contact the author directly.

Draft Author:
Tim Chown<tjc@ecs.soton.ac.uk>

6man Working Group A. Matsumoto
Internet-Draft T. Fujisaki
Intended status: Standards Track J. Kato
Expires: December 30, 2011 NTT
 T. Chown
 University of Southampton
 June 28, 2011

 Distributing Address Selection Policy using DHCPv6
 draft-ietf-6man-addr-select-opt-01.txt

Abstract

 RFC 3484 defines default address selection mechanisms for IPv6 that
 allow nodes to select appropriate address when faced with multiple
 source and/or destination addresses to choose between. The RFC
 allowed for the future definition of methods to administratively
 configure the address selection policy information. This document
 defines a new DHCPv6 option for such configuration, allowing a site
 administrator to distribute address selection policy, and thus
 control the address selection behavior of nodes in their site. While
 RFC 3484 is in the process of being updated, with a revised default
 policy table, that table may not suit every scenario, and thus the
 DHCPv6 option defined in this text may be used to override that
 policy where desired.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 30, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Matsumoto, et al. Expires December 30, 2011 [Page 1]

Internet-Draft DHCPv6 Address Selection Policy Opt June 2011

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

1. Introduction

 RFC 3484 [RFC3484] describes default algorithms for selecting an
 address when a node has multiple destination and/or source addresses
 to choose between by using an address selection policy. In Section 2
 of RFC 3484, it is suggested that the default policy table may be
 administratively configured to suit the specific needs of a site.
 This text defines a new DHCPv6 option for such configuration.

 Some problems have been identified with the default address selection
 policy detailed in RFC 3484 [RFC5220], and as a result the RFC is in
 the process of being updated, as per [I-D.ietf-6man-rfc3484-revise].
 While this update provides a better default address selection policy,
 it is unlikely that such a default will suit all scenarios, and thus
 mechanisms to control the source address selection policy will be
 necessary. Requirements for those mechanisms are described in
 [RFC5221], while solutions are discussed in
 [I-D.ietf-6man-addr-select-sol] and
 [I-D.ietf-6man-addr-select-considerations]. Those documents have
 helped shape the improvements in [I-D.ietf-6man-rfc3484-revise] as
 well as the DHCPv6 option defined here.

Matsumoto, et al. Expires December 30, 2011 [Page 2]

Internet-Draft DHCPv6 Address Selection Policy Opt June 2011

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Terminology

 This document uses the terminology defined in [RFC2460] and the
 DHCPv6 specification defined in [RFC3315]

2. Address Selection Policy Option

 The Address Selection Policy Option provides the policy table for
 address selection rules as described in RFC 3484 and updated in
 [I-D.ietf-6man-rfc3484-revise].

 Each end node is expected to configure its policy table, as described
 in RFC 3484, using the Address Selection Policy option information as
 described in the section below on processing the option.

 The format of the Address Selection Policy option is given below:

Matsumoto, et al. Expires December 30, 2011 [Page 3]

Internet-Draft DHCPv6 Address Selection Policy Opt June 2011

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_DASP | option-len |
 +-+
 | label | precedence |z| reserved | prefix-len |
 +-+
 | zone-index (if present (z = 1)) |
 +-+
 | |
 | Prefix (Variable Length) |
 | |
 | |
 +-+
 | label | precedence |z| reserved | prefix-len |
 +-+
 | zone-index (if present (z = 1)) |
 +-+
 | |
 | Prefix (Variable Length) |
 | |
 | |
 +-+
 . .
 . .
 . .
 +-+
 | label | precedence |z| reserved | prefix-len |
 +-+
 | zone-index (if present (z = 1)) |
 +-+
 | |
 | Prefix (Variable Length) |
 | |
 | |
 +-+

 [Fig. 1]

 Fields:

Matsumoto, et al. Expires December 30, 2011 [Page 4]

Internet-Draft DHCPv6 Address Selection Policy Opt June 2011

 option-code: OPTION_DASP (TBD)

 option-len: The total length of the label fields, precedence fields,
 zone-index fields, prefix-len fields, and prefix fields in
 octets.

 label: An 8-bit unsigned integer; this value is used to make a
 combination of source address prefixes and destination address
 prefixes.

 precedence: An 8-bit unsigned integer; this value is used for
 sorting destination addresses.

 z bit: ’zone-index’ bit. If z bit is set to 1, 32 bit zone-index
 value is included right after the "prefix-len" field, and
 "Prefix" value continues after the "zone-index" field. If z bit
 is 0, "Prefix" value continues right after the "prefix-len"
 value.

 reserved: 6-bit reserved field. Initialized to zero by sender, and
 ignored by receiver.

 zone-index: If the z-bit is set to 1, this field is inserted between
 "prefix-len" field and "Prefix" field. The zone-index field is
 an 32-bit unsigned integer and used to specify zones for scoped
 addresses. This bit length is defined in RFC3493 [RFC3493] as
 ’scope ID’.

 prefix-len: An 8-bit unsigned integer; the number of leading bits in
 the prefix that are valid. The value ranges from 0 to 128. The
 Prefix field is 0, 4, 8, 12, or 16 octets, depending on the
 length.

 Prefix: A variable-length field containing an IP address or the
 prefix of an IP address. An IPv4-mapped address [RFC4291] must
 be used to represent an IPv4 address as a prefix value.

3. Appearance of this Option

 The Address Selection Policy option MUST NOT appear in any messages
 other than the following ones: Solicit, Advertise, Request, Renew,
 Rebind, Information-Request, and Reply.

Matsumoto, et al. Expires December 30, 2011 [Page 5]

Internet-Draft DHCPv6 Address Selection Policy Opt June 2011

4. Processing the Address Selection Policy Option

 This section describes how to process received Address Selection
 Policy Options at the DHCPv6 client.

 This option’s concept is to serve as a hint for a node about how to
 behave in the network. So, basically, it should be up to the node’s
 administrator how to make use of or even ignore the received policy
 information.

 However, we need to define the default behavior of the receiving node
 in order to reduce operational complexity.

4.1. Handling the local policy table

 RFC3484 defines the default policy for the policy table. Also, a
 user is usually able to configure the policy table to satisfy his
 requirement.

 The client node SHOULD provide the following choices:

 a) It receives distributed policy table, and replaces the existing
 policy tables with that.
 b) It preserves the default policy table, or manually configured
 policy.

4.2. Processing multiple received policy tables

 The policy table is node-global information by its nature. So, the
 node cannot use multiple received policy tables at the same time.

 It should be noted that adopting a received policy table as the node-
 global information can cause security problems, such as DOS attack,
 and leak of privacy information.

 Moreover, it also should be noted that, when a node is single-homed
 and has only one upstream line, adopting a received policy table does
 not degrade the security level.

 Under the above assumptions, we specify how to handle multiple
 received policy tables below.

 A node MAY use OPTION_DASP in any of the following two cases:

Matsumoto, et al. Expires December 30, 2011 [Page 6]

Internet-Draft DHCPv6 Address Selection Policy Opt June 2011

 1: The address selection option is delivered across a secure, trusted
 channel.
 2: The address selection option is not secured, but the node is
 single-homed.

 In other cases the node MUST NOT use OPTION_DASP unless the node is
 specifically configured to do so.

5. Implementation Considerations

 o The value ’label’ is passed as an unsigned integer, but there is
 no special meaning for the value, that is whether it is a large or
 small number. It is used to select a preferred source address
 prefix corresponding to a destination address prefix by matching
 the same label value within the DHCP message. DHCPv6 clients need
 to convert this label to a representation specified by each
 implementation (e.g., string).

 o Currently, the label and precedence values are defined as 8-bit
 unsigned integers. In almost all cases, this value will be
 enough.

 o The maximum number of address selection rules that may be conveyed
 in one DHCPv6 message depends on the prefix length of each rule
 and the maximum DHCPv6 message size defined in RFC 3315. It is
 possible to carry over 3,000 rules in one DHCPv6 message (maximum
 UDP message size), but the usual number would be much smaller,
 e.g. the default policy table defined in RFC 3484 contains 5
 rules.

 o Since the number of selection rules could be large, an
 administrator configuring the policy to be distributed should
 consider the resulting DHCPv6 message size.

6. Security Considerations

 A rogue DHCPv6 server could issue bogus address selection policies to
 a client. This might lead to incorrect address selection by the
 client, and the affected packets might be blocked at an outgoing ISP
 because of ingress filtering. Alternatively, an IPv6 transition
 mechanism might be preferred over native IPv6, even if it is
 available.

 To guard against such attacks, both DCHP clients and servers SHOULD
 use DHCP authentication, as described in section 21 of RFC 3315,

Matsumoto, et al. Expires December 30, 2011 [Page 7]

Internet-Draft DHCPv6 Address Selection Policy Opt June 2011

 "Authentication of DHCP messages."

7. IANA Considerations

 IANA is requested to assign option codes to OPTION_DASP from the
 option-code space as defined in section "DHCPv6 Options" of RFC 3315.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3484] Draves, R., "Default Address Selection for Internet
 Protocol version 6 (IPv6)", RFC 3484, February 2003.

8.2. Informative References

 [I-D.ietf-6man-addr-select-considerations]
 Chown, T., "Considerations for IPv6 Address Selection
 Policy Changes",
 draft-ietf-6man-addr-select-considerations-03 (work in
 progress), March 2011.

 [I-D.ietf-6man-addr-select-sol]
 Matsumoto, A., Fujisaki, T., and R. Hiromi, "Solution
 approaches for address-selection problems",
 draft-ietf-6man-addr-select-sol-03 (work in progress),
 March 2010.

 [I-D.ietf-6man-rfc3484-revise]
 Matsumoto, A., Kato, J., and T. Fujisaki, "Update to RFC
 3484 Default Address Selection for IPv6",
 draft-ietf-6man-rfc3484-revise-03 (work in progress),
 June 2011.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",

Matsumoto, et al. Expires December 30, 2011 [Page 8]

Internet-Draft DHCPv6 Address Selection Policy Opt June 2011

 RFC 3493, February 2003.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, September 2007.

 [RFC5220] Matsumoto, A., Fujisaki, T., Hiromi, R., and K. Kanayama,
 "Problem Statement for Default Address Selection in Multi-
 Prefix Environments: Operational Issues of RFC 3484
 Default Rules", RFC 5220, July 2008.

 [RFC5221] Matsumoto, A., Fujisaki, T., Hiromi, R., and K. Kanayama,
 "Requirements for Address Selection Mechanisms", RFC 5221,
 July 2008.

Appendix A. Past Discussion

 o The ’zone index’ value is used to specify a particular zone for
 scoped addresses. This can be used effectively to control address
 selection in the site scope (e.g., to tell a node to use a
 specified source address corresponding to a site-scoped multicast
 address). However, in some cases such as a link-local scope
 address, the value specifying one zone is only meaningful locally
 within that node. There might be some cases where the
 administrator knows which clients are on the network and wants
 specific interfaces to be used though. However, in general case,
 it is hard to use this value.

 o Since we got a comment that some implementations use 32-bit
 integers for zone index value, we extended the bit length of the
 ’zone index’ field. However, as described above, there might be
 few cases to specify ’zone index’ in policy distribution, we
 defined this field as optional, controlled by a flag.

 o There may be some demands to control the use of special address
 types such as the temporary addresses described in RFC4941
 [RFC4941], address assigned by DHCPv6 and so on. (e.g., informing
 not to use a temporary address when it communicate within the an
 organization’s network). It is possible to indicate the type of
 addresses using reserved field value.

Matsumoto, et al. Expires December 30, 2011 [Page 9]

Internet-Draft DHCPv6 Address Selection Policy Opt June 2011

Authors’ Addresses

 Arifumi Matsumoto
 NTT SI Lab
 3-9-11 Midori-Cho
 Musashino-shi, Tokyo 180-8585
 Japan

 Phone: +81 422 59 3334
 Email: arifumi@nttv6.net

 Tomohiro Fujisaki
 NTT PF Lab
 3-9-11 Midori-Cho
 Musashino-shi, Tokyo 180-8585
 Japan

 Phone: +81 422 59 7351
 Email: fujisaki@nttv6.net

 Jun-ya Kato
 NTT SI Lab
 3-9-11 Midori-Cho
 Musashino-shi, Tokyo 180-8585
 Japan

 Phone: +81 422 59 2939
 Email: kato@syce.net

 Tim Chown
 University of Southampton
 Southampton, Hampshire SO17 1BJ
 United Kingdom

 Email: tjc@ecs.soton.ac.uk

Matsumoto, et al. Expires December 30, 2011 [Page 10]

Network Working Group M. Eubanks
Internet-Draft AmericaFree.TV LLC
Intended status: Standards Track P. Chimento
Expires: May 3, 2012 Johns Hopkins University Applied
 Physics Laboratory
 October 31, 2011

 UDP Checksums for Tunneled Packets
 draft-ietf-6man-udpchecksums-01

Abstract

 This document provides an update of RFC 2460[RFC2460] in order to
 improve the performance of IPv6 in an increasingly important use
 case, the use of tunneling to carry new transport protocols. The
 performance improvement is obtained by relaxing the IPv6 UDP checksum
 requirement for suitable tunneling protocol where header information
 is protected on the "inner" packet being carried. This relaxation
 removes the overhead associated with the computation of UDP checksums
 on tunneled IPv6 packets and thereby improves the efficiency of the
 traversal of firewalls and other network middleware by such new
 protocols. We describe how the IPv6 UDP checksum requirement can be
 relaxed in the situation where the encapsulated packet itself
 contains a checksum, the limitations and risks of this approach, and
 provides restrictions on the use of this relaxation to mitigate these
 risks.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Eubanks & Chimento Expires May 3, 2012 [Page 1]

Internet-Draft udp-checksum October 2011

 This Internet-Draft will expire on May 3, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Eubanks & Chimento Expires May 3, 2012 [Page 2]

Internet-Draft udp-checksum October 2011

Table of Contents

 1. Introduction . 4
 2. Some Terminology . 5
 3. Problem Statement . 5
 4. Discussion . 5
 5. The Zero-Checksum Solution 7
 6. Additional Observations 10
 7. IANA Considerations . 10
 8. Security Considerations 10
 9. Acknowledgements . 11
 10. References . 11
 10.1. Normative References 11
 10.2. Informative References 11
 Authors’ Addresses . 12

Eubanks & Chimento Expires May 3, 2012 [Page 3]

Internet-Draft udp-checksum October 2011

1. Introduction

 This work constitutes the first upgrade of RFC 2460[RFC2460], in
 order to improve the performance of IPv6 with transport layer
 protocols carried encapsulated in tunnels. With the rapid growth of
 the Internet, tunneling protocols have become increasingly important
 to enable the deployment of new transport layer protocols. Tunneled
 protocols can be deployed rapidly, while the time to upgrade and
 deploy a critical mass of routers, switches and end hosts on the
 global Internet for a new transport protocol is now measured in
 decades. At the same time, the increasing use of firewalls and other
 security related middleware means that truly new tunnel protocols,
 with new protocol numbers, are also unlikely to be deployable in a
 reasonable time frame, which has resulted in an increasing interest
 in and use of UDP-based tunneling protocols. In such protocols,
 there is an encapsulated "inner" packet, and the "outer" packet
 carrying the tunneled inner packet is a UDP packet, which can pass
 through firewalls and other middleware filtering that is a fact of
 life on the current Internet.

 As tunnel endpoints may be routers or middleware aggregating traffic
 from large numbers of tunnel users, the computation of an additional
 checksum on the outer UDP packet, when protected, is seen to be an
 unwarranted burden on the nodes implementing lightweight tunneling
 protocols, especially if the inner packet(s) are already protected by
 a checksum. In IPv4, there is a checksum on the IP packet itself,
 and the checksum on the outer UDP packet can be set to zero. However
 in IPv6 there is not a checksum on the IP packet and RFC 2460
 [RFC2460] explicitly states that IPv6 receivers MUST discard UDP
 packets with a 0 checksum. So, while sending a UDP packet with a 0
 checksum is permitted in IPv4 packets, it is explicitly forbidden in
 IPv6 packets. In order to meet the needs of the deployers of IPv6
 UDP tunnels, this document modifies RFC 2460 to allow for the
 ignoring of UDP checksums under constrained situations (IPv6
 tunneling where the inner packet exists and has a checksum), based on
 the considerations set forth in [I-D.ietf-6man-udpzero].

 While the origin of this I-D is the problem raised by the draft
 titled "Automatic IP Multicast Without Explicit Tunnels", also known
 as "AMT," [I-D.ietf-mboned-auto-multicast] we expect it to have wide
 applicability, immediately to LISP [I-D.ietf-lisp], and also to other
 tunneling protocols to come out of Softwires and other IETF Working
 Groups.

 Since the first version of this document, the need for an efficient,
 lightweight UDP tunneling mechanism has increased. Indeed, other
 workgroups, notably LISP [I-D.ietf-lisp] and Softwires [RFC5619] have
 also expressed a need to have exceptions to the RFC 2460 prohibition.

Eubanks & Chimento Expires May 3, 2012 [Page 4]

Internet-Draft udp-checksum October 2011

 Other users of UDP as a tunneling protocol, for example, L2TP and
 Softwires may benefit from a relaxation of the RFC 2460 restriction.

 The third version of this document benefited from a close read by
 Magnus Westerlund and Gorry Fairhurst.

2. Some Terminology

 For the remainder of this document, we discuss only IPv6, since this
 problem does not exist for IPv4. So any reference to ’IP’ should be
 understood as a reference to IPv6.

 Although we will try to avoid them when possible, we may use the
 terms "tunneling" and "tunneled" as adjectives when describing
 packets. When we refer to ’tunneling packets’ we refer to the outer
 packet header that provides the tunneling function. When we refer to
 ’tunneled packets’ we refer to the inner packet, i.e. the packet
 being carried in the tunnel.

3. Problem Statement

 The argument is that since in the case of AMT multicast packets
 already have a UDP header with a checksum, there is no additional
 benefit and indeed some cost to nodes to both compute and check the
 UDP checksum of the outer (encapsulating) header. Consequently, IPv6
 should make an exception to the rule that the UDP checksum MUST not
 be 0, and allow tunneling protocols to set the checksum field of the
 outer header only to 0 and skip both the sender and receiver
 computation.

4. Discussion

 [I-D.ietf-6man-udpzero] describes the issues related to allowing UDP
 over IPv6 to have a valid checksum of zero and is not repeated here.

 In Section 5.1 of [I-D.ietf-6man-udpzero], the authors propose nine
 (9) constraints on the usage of a zero checksum for UDP over IPv6.
 We agree with the restrictions proposed, and in fact proposed some of
 those restrictions ourselves in the previous version of the current
 draft. These restrictions are incorporated into the proposed changes
 below.

 As has been pointed out in [I-D.ietf-6man-udpzero] and in many
 mailing lists, there is still the possibility of deep-inspection
 firewall devices or other middleboxes actually checking the UDP

Eubanks & Chimento Expires May 3, 2012 [Page 5]

Internet-Draft udp-checksum October 2011

 checksum field of the outer packet and discarding the tunneling
 packets. This is would be an issue also for legacy systems which
 have not implemented the change in the IPv6 specification. So in any
 case, there may be packet loss of lightweight tunneling packets
 because of mixed new-rule and old-rule nodes.

 As an example, we discuss how can errors be detected and handled in a
 lightweight UDP tunneling protocol when the checksum protection is
 disabled. Note that other (non-tunneling) protocols may have
 different approaches. We suggest that the following could be an
 approach to this problem:

 o Context (i.e. tunneling state) should be established via
 application PDUs that are carried in checksummed UDP packets.
 That is, any control packets flowing between the tunnel endpoints
 should be protected by UDP checksums. The control packets can
 also contain any negotiation that is necessary to set up the
 endpoint/adapters to accept UDP packets with a zero checksum.

 o Only UDP packets containing tunneled packets should have a UDP
 checksum equal to zero.

 o UDP keep-alive packets with checksum zero can be sent to validate
 paths, given that paths between tunnel endpoints can change and so
 middleboxes in the path may vary during the life of the
 association. Paths with middleboxes that are intolerant of a UDP
 checksum of zero will drop the keep-alives and the endpoints will
 discover that. Note that this need only be done per tunnel
 endpoint pair, not per tunnel context. Keep-alive traffic SHOULD
 include both packets with tunnel checksums and packets with
 checksums equal to zero to enable the remote end to distinguish
 between path failures and the blockage of packets with checksum
 equal to zero.

 o Corruption of the encapsulating IPv6 source address, destination
 address and/or the UDP source port, destination port fields : If
 the 9 restrictions in [I-D.ietf-6man-udpzero] are followed, the
 inner packets (tunneled packets) should be protected and run the
 usual (presumably small) risk of having undetected corruption(s).
 If lightweight tunneling protocol contexts contain (at a minimum)
 source and destination IP addresses and source and destination
 ports, there are 16 possible corruption outcomes. We note that
 these outcomes not equally likely, as most require multiple bit
 errors with errored bits in separate fields. The possible
 corruption outcomes fall out this way:

 * Half of the 16 possible corruption combinations have a
 corrupted destination address. If the incorrect destination is

Eubanks & Chimento Expires May 3, 2012 [Page 6]

Internet-Draft udp-checksum October 2011

 reached and the node doesn’t have an application for the
 destination port, the packet will be dropped. If the
 application at the incorrect destination is the same
 lightweight tunneling protocol and if it has a matching context
 (which can be assumed to be a very low probability event) the
 inner packet will be decapsulated and forwarded. If it is some
 other application, with very high probability, the application
 will not recognize the contents of the packet.

 * Half of the 8 possible corruption combinations with a correct
 destination address have a corrupted source address. If the
 tunnel contexts contain all elements of the address-port
 4-tuple, then the likelihood is that this corruption will be
 detected.

 * Of the remaining 4 possibilities, with valid source and
 destination IPv6 addresses, 1 has all 4 fields valid, the other
 three have one or both ports corrupted. Again, if the
 tunneling endpoint context contains sufficient information,
 these error should be detected with high probability.

 o Corruption of source-fragmented encapsulating packets: In this
 case, a tunneling protocol may reassemble fragments associated
 with the wrong context at the right tunnel endpoint, or it may
 reassemble fragments associated with a context at the wrong tunnel
 endpoint, or corrupted fragments may be reassembled at the right
 context at the right tunnel endpoint. In each of these cases, the
 IPv6 length of the encapsulating header may be checked (though
 [I-D.ietf-6man-udpzero] points out the weakness in this check).
 In addition, if the encapsulated packet is protected by a
 transport (or other) checksum, these errors can be detected (with
 some probability).

 While this is not a perfect solution, it can reduce the risks of
 relaxing the UDP checksum requirement for IPv6.

5. The Zero-Checksum Solution

 The solution to the overhead associated with UDP packets carrying
 encapsulated tunnel traffic is to allow a UDP checksum of zero on the
 outer encapsulating packet of a lightweight tunneling protocol. UDP
 endpoints that implement this solution MUST change their behavior and
 not discard UDP packets received with a 0 checksum on the outer
 packet of tunneling protocols. If this is done constraints in
 Section 5.1 of [I-D.ietf-6man-udpzero] also MUST be adopted.

 Specifically, the text in [RFC2460] Section 8.1, 4th bullet is

Eubanks & Chimento Expires May 3, 2012 [Page 7]

Internet-Draft udp-checksum October 2011

 amended. We refer to the following text:

 "Unlike IPv4, when UDP packets are originated by an IPv6 node, the
 UDP checksum is not optional. That is, whenever originating a UDP
 packet, an IPv6 node must compute a UDP checksum over the packet and
 the pseudo-header, and, if that computation yields a result of zero,
 it must be changed to hex FFFF for placement in the UDP header. IPv6
 receivers must discard UDP packets containing a zero checksum, and
 should log the error."

 This item should be taken out of the bullet list and should be
 modified as follows:

 Whenever originating a UDP packet, an IPv6 node SHOULD compute a
 UDP checksum over the packet and the pseudo-header, and, if that
 computation yields a result of zero, it must be changed to hex
 FFFF for placement in the UDP header. IPv6 receivers SHOULD
 discard UDP packets containing a zero checksum, and SHOULD log the
 error. However, some protocols, such as lightweight tunneling
 protocols that use UDP as a tunnel encapsulation, MAY omit
 computing the UDP checksum of the encapsulating UDP header and set
 it to zero, subject to the constraints described in
 [I-D.ietf-6man-udpzero]. In cases where the encapsulating
 protocol uses a zero checksum for UDP, the receiver of packets
 sent to a port enabled to receive zero-checksum packets MUST NOT
 discard packets solely for having a UDP checksum of zero. Note
 that these constraints apply only to encapsulating protocols that
 omit calculating the UDP checksum and set it to zero. An
 encapsulating protocol can always choose to compute the UDP
 checksum, in which case, its behavior should be as specified
 originally.

 1. IPv6 protocol stack implementations SHOULD NOT by default
 allow the new method. The default node receiver behavior MUST
 discard all IPv6 packets carrying UDP packets with a zero
 checksum.

 2. Implementations MUST provide a way to signal the set of ports
 that will be enabled to receive UDP datagrams with a zero
 checksum. An IPv6 node that enables reception of UDP packets
 with a zero-checksum, MUST enable this only for a specific
 port or port-range. This may be implemented via a socket API
 call, or similar mechanism.

 3. RFC 2460 specifies that IPv6 nodes should log UDP datagrams
 with a zero-checksum. A port for which zero-checksum has been

Eubanks & Chimento Expires May 3, 2012 [Page 8]

Internet-Draft udp-checksum October 2011

 enabled MUST NOT log zero-checksum datagrams for that reason
 (of course, there might be other reasons to log such packets).

 4. A stack may separately identify UDP datagrams that are
 discarded with a zero checksum. It SHOULD NOT add these to
 the standard log, since the endpoint has not been verified.

 5. UDP Tunnels that encapsulate IP may rely on the inner packet
 integrity checks provided that the tunnel will not
 significantly increase the rate of corruption of the inner IP
 packet. If a significantly increased corruption rate can
 occur, then the tunnel MUST provide an additional integrity
 verification mechanism. An integrity mechanism is always
 recommended at the tunnel layer to ensure that corruption
 rates of the inner most packet are not increased.

 6. Tunnels that encapsulate Non-IP packets MUST have a CRC or
 other mechanism for checking packet integrity, unless the
 Non-IP packet specifically is designed for transmission over
 lower layers that do not provide any packet integrity
 guarantee. In particular, the application must be designed so
 that corruption of this information does not result in
 accumulated state or incorrect processing of a tunneled
 payload.

 7. UDP applications that support use of a zero-checksum, SHOULD
 NOT rely upon correct reception of the IP and UDP protocol
 information (including the length of the packet) when decoding
 and processing the packet payload. In particular, the
 application must be designed so that corruption of this
 information does not result in accumulated state or incorrect
 processing of a tunneled payload.

 8. If a method proposes recursive tunnels, it MUST provide
 guidance that is appropriate for all use-cases. Restrictions
 may be needed to the use of a tunnel encapsulations and the
 use of recursive tunnels (e.g. Necessary when the endpoint is
 not verified).

 9. IPv6 nodes that receive ICMPv6 messages that refer to packets
 with a zero UDP checksum MUST provide appropriate checks
 concerning the consistency of the reported packet to verify
 that the reported packet actually originated from the node,
 before acting upon the information (e.g. validating the
 address and port numbers in the ICMPv6 message body).

Eubanks & Chimento Expires May 3, 2012 [Page 9]

Internet-Draft udp-checksum October 2011

 Middleboxes MUST allow IPv6 packets with UDP checksum equal to
 zero to pass. Implementations of middleboxes MAY allow
 configuration of specific port ranges for which a zero UDP
 checksum is valid and may drop IPv6 UDP packets outside those
 ranges.

6. Additional Observations

 The persistence of this issue among a significant number of protocols
 being developed in the IETF requires a definitive policy. The
 authors would like to make the following observations:

 o An empirically-based analysis of the probabilities of packet
 corruptions (with or without checksums) has not (to our knowledge)
 been conducted since about 2000. It is now 2011. We strongly
 suggest that an empirical study is in order, along with an
 extensive analysis of IPv6 header corruption probabilities.

 o A key cause of this issue generally is the lack of protocol
 support in middleboxes. Specifically, new protocols, such as
 LISP, are being forced to use UDP tunnels just to traverse an end-
 to-end path successfully and avoid having their packets dropped by
 middleboxes. If this were not the case, the use of UDP-lite might
 become more viable for some (but not necessarily all) lightweight
 tunneling protocols.

 o Another cause of this issue is that the UDP checksum is overloaded
 with the task of protecting the IPv6 header for UDP flows (as it
 the TCP checksum for TCP flows). Protocols that do not use a
 pseudo-header approach to computing a checksum or CRC have
 essentially no protection from misdelivered packets.

7. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

8. Security Considerations

 It is of course less work to generate zero-checksum attack packets
 than ones with full UDP checksums. However, this does not lead to
 any significant new vulnerabilities as checksums are not a security
 measure and can be easily generated by any attacker, as properly

Eubanks & Chimento Expires May 3, 2012 [Page 10]

Internet-Draft udp-checksum October 2011

 configured tunnels should check the validity of the inner packet and
 perform any needed security checks, regardless of the checksum
 status, and finally as most attacks are generated from compromised
 hosts which automatically create checksummed packets (in other words,
 it would generally be more, not less, effort for most attackers to
 generate zero UDP checksums on the host).

9. Acknowledgements

 We would like to thank Brian Haberman, Magnus Westerlund and Gorry
 Fairhurst for discussions and reviews.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2401] Kent, S. and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
 G. Fairhurst, "The Lightweight User Datagram Protocol
 (UDP-Lite)", RFC 3828, July 2004.

 [RFC5619] Yamamoto, S., Williams, C., Yokota, H., and F. Parent,
 "Softwire Security Analysis and Requirements", RFC 5619,
 August 2009.

10.2. Informative References

 [I-D.ietf-6man-udpzero]
 Fairhurst, G. and M. Westerlund, "IPv6 UDP Checksum
 Considerations", draft-ietf-6man-udpzero-04 (work in
 progress), October 2011.

 [I-D.ietf-lisp]
 Farinacci, D., Fuller, V., Meyer, D., and D. Lewis,
 "Locator/ID Separation Protocol (LISP)",
 draft-ietf-lisp-15 (work in progress), July 2011.

 [I-D.ietf-mboned-auto-multicast]

Eubanks & Chimento Expires May 3, 2012 [Page 11]

Internet-Draft udp-checksum October 2011

 Thaler, D., Talwar, M., Aggarwal, A., Vicisano, L., and T.
 Pusateri, "Automatic IP Multicast Without Explicit Tunnels
 (AMT)", draft-ietf-mboned-auto-multicast-11 (work in
 progress), July 2011.

Authors’ Addresses

 Marshall Eubanks
 AmericaFree.TV LLC
 P.O. Box 141
 Clifton, Virginia 20124
 USA

 Phone: +1-703-501-4376
 Fax:
 Email: marshall.eubanks@gmail.com

 P.F. Chimento
 Johns Hopkins University Applied Physics Laboratory
 11100 Johns Hopkins Road
 Laurel, MD 20723
 USA

 Phone: +1-443-778-1743
 Fax:
 Email: Philip.Chimento@jhuapl.edu
 URI:

Eubanks & Chimento Expires May 3, 2012 [Page 12]

Internet Engineering Task Force G. Fairhurst
Internet-Draft University of Aberdeen
Intended status: Informational M. Westerlund
Expires: April 27, 2012 Ericsson
 October 25, 2011

 IPv6 UDP Checksum Considerations
 draft-ietf-6man-udpzero-04

Abstract

 This document examines the role of the UDP transport checksum when
 used with IPv6, as defined in RFC2460. It presents a summary of the
 trade-offs for evaluating the safety of updating RFC 2460 to permit
 an IPv6 UDP endpoint to use a zero value in the checksum field as an
 indication that no checksum is present. This method is compared with
 some other possibilities. The document also describes the issues and
 design principles that need to be considered when UDP is used with
 IPv6 to support tunnel encapsulations. It concludes that UDP with a
 zero checksum in IPv6 can safely be used for this purpose, provided
 that this usage is governed by a set of constraints.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 27, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Fairhurst & Westerlund Expires April 27, 2012 [Page 1]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Document Structure . 4
 1.2. Background . 5
 1.2.1. The Role of a Transport Endpoint 5
 1.2.2. The UDP Checksum 5
 1.2.3. Differences between IPv6 and IPv4 7
 1.3. Use of UDP Tunnels . 7
 1.3.1. Motivation for new approaches 8
 1.3.2. Reducing forwarding cost 8
 1.3.3. Need to inspect the entire packet 9
 1.3.4. Interactions with middleboxes 9
 1.3.5. Support for load balancing 10
 2. Standards-Track Transports 10
 2.1. UDP with Standard Checksum 10
 2.2. UDP-Lite . 11
 2.2.1. Using UDP-Lite as a Tunnel Encapsulation 11
 2.3. General Tunnel Encapsulations 11
 3. Issues Requiring Consideration 12
 3.1. Effect of packet modification in the network 13
 3.1.1. Corruption of the destination IP address 14
 3.1.2. Corruption of the source IP address 14
 3.1.3. Corruption of Port Information 15
 3.1.4. Delivery to an unexpected port 15
 3.1.5. Corruption of Fragmentation Information 16
 3.2. Validating the network path 18
 3.3. Applicability of method 19
 3.4. Impact on non-supporting devices or applications 20
 4. Evaluation of proposal to update RFC 2460 to support zero
 checksum . 20
 4.1. Alternatives to the Standard Checksum 20
 4.2. Comparison . 22
 4.2.1. Middlebox Traversal 22
 4.2.2. Load Balancing . 23
 4.2.3. Ingress and Egress Performance Implications 23
 4.2.4. Deployability . 23
 4.2.5. Corruption Detection Strength 24
 4.2.6. Comparison Summary 24
 5. Requirements on the specification of transported protocols . . 26

Fairhurst & Westerlund Expires April 27, 2012 [Page 2]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 5.1. Constraints required on usage of a zero checksum 26
 6. Summary . 28
 7. Acknowledgements . 29
 8. IANA Considerations . 30
 9. Security Considerations 30
 10. References . 30
 10.1. Normative References 30
 10.2. Informative References 30
 Appendix A. Document Change History 32
 Authors’ Addresses . 33

Fairhurst & Westerlund Expires April 27, 2012 [Page 3]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

1. Introduction

 The User Datagram Protocol (UDP) [RFC0768] transport is defined for
 the Internet Protocol (IPv4) [RFC0791] and is defined in Internet
 Protocol, Version 6 (IPv6) [RFC2460] for IPv6 hosts and routers. The
 UDP transport protocol has a minimal set of features. This limited
 set has enabled a wide range of applications to use UDP, but these
 application do need to provide many important transport functions on
 top of UDP. The UDP Usage Guidelines [RFC5405] provides overall
 guidance for application designers, including the use of UDP to
 support tunneling. The key difference between UDP usage with IPv4
 and IPv6 is that IPv6 mandates use of the UDP checksum, i.e. a non-
 zero value, due to the lack of an IPv6 header checksum.

 The lack of a possibility to use UDP with a zero-checksum in IPv6 has
 been observed as a real problem for certain classes of application,
 primarily tunnel applications. This class of application has been
 deployed with a zero checksum using IPv4. The design of IPv6 raises
 different issues when considering the safety of using a zero checksum
 for UDP with IPv6. These issues can significantly affect
 applications, both when an endpoint is the intended user and when an
 innocent bystander (received by a different endpoint to that
 intended). The document examines these issues and compares the
 strengths and weaknesses of a number of proposed solutions. This
 analysis presents a set of issues that must be considered and
 mitigated to be able to safely deploy UDP with a zero checksum over
 IPv6. The provided comparison of methods is expected to also be
 useful when considering applications that have different goals from
 the ones that initiated the writing of this document, especially the
 use of already standardized methods.

 The analysis concludes that using UDP with a zero checksum is the
 best method of the proposed alternatives to meet the goals for
 certain tunnel applications. Unfortunately, this usage is expected
 to have some deployment issues related to middleboxes, limiting the
 usability more than desired in the currently deployed internet.
 However, this limitation will be largest initially and will reduce as
 updates for support of UDP zero checksum for IPv6 are provided to
 middleboxes. The document therefore derives a set of constraints
 required to ensure safe deployment of zero checksum in UDP. It also
 identifies some issues that require future consideration and possibly
 additional research.

1.1. Document Structure

 Section 1 provides a background to key issues, and introduces the use
 of UDP as a tunnel transport protocol.

Fairhurst & Westerlund Expires April 27, 2012 [Page 4]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 Section 2 describes a set of standards-track datagram transport
 protocols that may be used to support tunnels.

 Section 3 discusses issues with a zero checksum in UDP for IPv6. It
 considers the impact of corruption, the need for validation of the
 path and when it is suitable to use a zero checksum.

 Section 4 evaluates a set of proposals to update the UDP transport
 behaviour and other alternatives intended to improve support for
 tunnel protocols. It focuses on a proposal to allow a zero checksum
 for this use-case with IPv6 and assess the trade-offs that would
 arise.

 Section 5.1 lists the constraints perceived for safe deployment of
 zero-checksum.

 Section 6 provides the recommendations for standardization of zero-
 checksum with a summary of the findings and notes remaining issues
 needing future work.

1.2. Background

 This section provides a background on topics relevant to the
 following discussion.

1.2.1. The Role of a Transport Endpoint

 An Internet transport endpoint should concern itself with the
 following issues:

 o Protection of the endpoint transport state from unnecessary extra
 state (e.g. Invalid state from rogue packets).

 o Protection of the endpoint transport state from corruption of
 internal state.

 o Pre-filtering by the endpoint of erroneous data, to protect the
 transport from unnecessary processing and from corruption that it
 can not itself reject.

 o Pre-filtering of incorrectly addressed destination packets, before
 responding to a source address.

1.2.2. The UDP Checksum

 UDP, as defined in [RFC0768], supports two checksum behaviours when
 used with IPv4. The normal behaviour is for the sender to calculate
 a checksum over a block of data that includes a pseudo header and the

Fairhurst & Westerlund Expires April 27, 2012 [Page 5]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 UDP datagram payload. The UDP header includes a 16-bit one’s
 complement checksum that provides a statistical guarantee that the
 payload was not corrupted in transit. This also allows a receiver to
 verify that the endpoint was the intended destination of the
 datagram, because the transport pseudo header covers the IP
 addresses, port numbers, transport payload length, and Next Header/
 Protocol value corresponding to the UDP transport protocol [RFC1071].
 The length field verifies that the datagram is not truncated or
 padded. The checksum therefore protects an application against
 receiving corrupted payload data in place of, or in addition to, the
 data that was sent. Although the IPv4 UDP [RFC0768] checksum may be
 disabled, applications are recommended to enable UDP checksums
 [RFC5405].

 The network-layer fields that are validated by a transport checksum
 are:

 o Endpoint IP source address (always included in the pseudo header
 of the checksum)

 o Endpoint IP destination address (always included in the pseudo
 header of the checksum)

 o Upper layer payload type (always included in the pseudo header of
 the checksum)

 o IP length of payload (always included in the pseudo header of the
 checksum)

 o Length of the network layer extension headers (i.e. by correct
 position of the checksum bytes)

 The transport-layer fields that are validated by a transport checksum
 are:

 o Transport demultiplexing, i.e. ports (always included in the
 checksum)

 o Transport payload size (always included in the checksum)

 Transport endpoints also need to verify the correctness of reassembly
 of any fragmented datagram. For UDP, this is normally provided as a
 part of the integrity check. Disabling the IPv4 checksum prevents
 this check. A lack of the UDP header and checksum in fragments can
 lead to issues in a translator or middlebox. For example, many IPv4
 Network Address Translators, NATs, rely on port numbers to find the
 mappings, packet fragments do not carry port numbers, so fragments
 get dropped. IP/ICMP Translation Algorithm [RFC6145] provides some

Fairhurst & Westerlund Expires April 27, 2012 [Page 6]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 guidance on the processing of fragmented IPv4 UDP datagrams that do
 not carry a UDP checksum.

 IPv4 UDP checksum control is often a kernel-wide configuration
 control (e.g. In Linux and BSD), rather than a per socket call.
 There are also Networking Interface Cards (NICs) that automatically
 calculate TCP [RFC0793] and UDP checksums on transmission when a
 checksum of zero is sent to the NIC, using a method known as checksum
 offloading.

1.2.3. Differences between IPv6 and IPv4

 IPv6 does not provide a network-layer integrity check. The removal
 of the header checksum from the IPv6 specification released routers
 from a need to update a network-layer checksum for each router hop as
 the IPv6 Hop Count is changed (in contrast to the checksum update
 needed when an IPv4 router modifies the Time-To-Live (TTL)).

 The IP header checksum calculation was seen as redundant for most
 traffic (with UDP or TCP checksums enabled), and people wanted to
 avoid this extra processing. However, there was concern that the
 removal of the IP header checksum in IPv6 combined with a UDP
 checksum set to zero would lessen the protection of the source/
 destination IP addresses and result in a significant (a multiplier of
 ˜32,000) increase in the number of times that a UDP packet was
 accidentally delivered to the wrong destination address and/or
 apparently sourced from the wrong source address. This would have
 had implications on the detectability of mis-delivery of a packet to
 an incorrect endpoint/socket, and the robustness of the Internet
 infrastructure. The use of the UDP checksum is therefore required
 [RFC2460] when endpoint applications transmit UDP datagrams over
 IPv6.

1.3. Use of UDP Tunnels

 One increasingly popular use of UDP is as a tunneling protocol, where
 a tunnel endpoint encapsulates the packets of another protocol inside
 UDP datagrams and transmits them to another tunnel endpoint. Using
 UDP as a tunneling protocol is attractive when the payload protocol
 is not supported by the middleboxes that may exist along the path,
 because many middleboxes support transmission using UDP. In this
 use, the receiving endpoint decapsulates the UDP datagrams and
 forwards the original packets contained in the payload [RFC5405].
 Tunnels establish virtual links that appear to directly connect
 locations that are distant in the physical Internet topology and can
 be used to create virtual (private) networks.

Fairhurst & Westerlund Expires April 27, 2012 [Page 7]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

1.3.1. Motivation for new approaches

 A number of tunnel encapsulations deployed over IPv4 have used the
 UDP transport with a zero checksum. Users of these protocols expect
 a similar solution for IPv6.

 A number of tunnel protocols are also currently being defined (e.g.
 Automated Multicast Tunnels, AMT [I-D.ietf-mboned-auto-multicast],
 and the Locator/Identifier Separation Protocol, LISP [LISP]). These
 protocols have proposed an update to IPv6 UDP checksum processing.
 These tunnel protocols could benefit from simpler checksum processing
 for various reasons:

 o Reducing forwarding costs, motivated by redundancy present in the
 encapsulated packet header, since in tunnel encapsulations,
 payload integrity and length verification may be provided by
 higher layer encapsulations (often using the IPv4, UDP, UDP-Lite,
 or TCP checksums).

 o Eliminating a need to access the entire packet when forwarding the
 packet by a tunnel endpoint.

 o Enhancing ability to traverse middleboxes, especially Network
 Address Translators, NATs.

 o A desire to use the port number space to enable load-sharing.

1.3.2. Reducing forwarding cost

 It is a common requirement to terminate a large number of tunnels on
 a single router/host. Processing per tunnel concerns both state
 (memory requirements) and per-packet processing costs.

 Automatic IP Multicast Without Explicit Tunnels, known as AMT
 [I-D.ietf-mboned-auto-multicast] currently specifies UDP as the
 transport protocol for packets carrying tunneled IP multicast
 packets. The current specification for AMT requires that the UDP
 checksum in the outer packet header should be 0 (see Section 6.6 of
 [I-D.ietf-mboned-auto-multicast]). It argues that the computation of
 an additional checksum, when an inner packet is already adequately
 protected, is an unwarranted burden on nodes implementing lightweight
 tunneling protocols. The AMT protocol needs to replicate a multicast
 packet to each gateway tunnel. In this case, the outer IP addresses
 are different for each tunnel and therefore require a different
 pseudo header to be built for each UDP replicated encapsulation.

 The argument concerning redundant processing costs is valid regarding
 the integrity of a tunneled packet. In some architectures (e.g. PC-

Fairhurst & Westerlund Expires April 27, 2012 [Page 8]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 based routers), other mechanisms may also significantly reduce
 checksum processing costs: There are implementations that have
 optimised checksum processing algorithms, including the use of
 checksum-offloading. This processing is readily available for IPv4
 packets at high line rates. Such processing may be anticipated for
 IPv6 endpoints, allowing receivers to reject corrupted packets
 without further processing. However, there are certain classes of
 tunnel end-points where this off-loading is not available and
 unlikely to become available in the near future.

1.3.3. Need to inspect the entire packet

 The currently-deployed hardware in many routers uses a fast-path
 processing that only provides the first n bytes of a packet to the
 forwarding engine, where typically n <= 128. This prevents fast
 processing of a transport checksum over an entire (large) packet.
 Hence the currently defined IPv6 UDP checksum is poorly suited to use
 within a router that is unable to access the entire packet and does
 not provide checksum-offloading. Thus enabling checksum calculation
 over the complete packet can impact router design, performance
 improvement, energy consumption and/or cost.

1.3.4. Interactions with middleboxes

 In IPv4, UDP-encapsulation may be desirable for NAT traversal, since
 UDP support is commonly provided. It is also necessary due to the
 almost ubiquitous deployment of IPv4 NATs. There has also been
 discussion of NAT for IPv6, although not for the same reason as in
 IPv4. If IPv6 NAT becomes a reality they hopefully do not present
 the same protocol issues as for IPv4. If NAT is defined for IPv6, it
 should take UDP zero checksum into consideration.

 The requirements for IPv6 firewall traversal are likely be to be
 similar to those for IPv4. In addition, it can be reasonably
 expected that a firewall conforming to RFC 2460 will not regard UDP
 datagrams with a zero checksum as valid packets. If an zero-checksum
 for UDP were to be allowed for IPv6, this would need firewalls to be
 updated before full utility of the change is available.

 It can be expected that UDP with zero-checksum will initially not
 have the same middlebox traversal characteristics as regular UDP.
 However, if standardized we can expect an improvement over time of
 the traversal capabilities. We also note that deployment of IPv6-
 capable middleboxes is still in its initial phases. Thus, it might
 be that the number of non-updated boxes quickly become a very small
 percentage of the deployed middleboxes.

Fairhurst & Westerlund Expires April 27, 2012 [Page 9]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

1.3.5. Support for load balancing

 The UDP port number fields have been used as a basis to design load-
 balancing solutions for IPv4. This approach has also been leveraged
 for IPv6. An alternate method would be to utilise the IPv6 Flow
 Label as basis for entropy for the load balancing. This would have
 the desirable effect of releasing IPv6 load-balancing devices from
 the need to assume semantics for the use of the transport port field
 and also works for all type of transport protocols. This use of the
 flow-label is consistent with the intended use, although further
 clarity may be needed to ensure the field can be consistently used
 for this purpose, (e.g. Equal-Cost Multi-Path routing, ECMP [ECMP]).

 Router vendors could be encouraged to start using the IPv6 Flow Label
 as a part of the flow hash, providing support for ECMP without
 requiring use of UDP. However, the method for populating the outer
 IPv6 header with a value for the flow label is not trivial: If the
 inner packet uses IPv6, then the flow label value could be copied to
 the outer packet header. However, many current end-points set the
 flow label to a zero value (thus no entropy). The ingress of a
 tunnel seeking to provide good entropy in the flow label field would
 therefore need to create a random flow label value and keep
 corresponding state, so that all packets that were associated with a
 flow would be consistently given the same flow label. Although
 possible, this complexity may not be desirable in a tunnel ingress.

 The end-to-end use of flow labels for load balancing is a long-term
 solution. Even if the usage of the flow label is clarified, there
 would be a transition time before a significant proportion of end-
 points start to assign a good quality flow label to the flows that
 they originate, with continued use of load balancing using the
 transport header fields until any widespread deployment is finally
 achieved.

2. Standards-Track Transports

 The IETF has defined a set of transport protocols that may be
 applicable for tunnels with IPv6. There are also a set of network
 layer encapsulation tunnels such as IP-in-IP and GRE. These already
 standardized solutions are discussed here prior to the issues, as
 background for the issue description and some comparison of where the
 issue may already occur.

2.1. UDP with Standard Checksum

 UDP [RFC0768] with standard checksum behaviour is defined in RFC 2460
 has already been discussed. UDP usage guidelines are provided in

Fairhurst & Westerlund Expires April 27, 2012 [Page 10]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 [RFC5405].

2.2. UDP-Lite

 UDP-Lite [RFC3828] offers an alternate transport to UDP, specified as
 a proposed standard, RFC 3828. A MIB is defined in RFC 5097 and
 unicast usage guidelines in [RFC5405]. There is at least one open
 source implementation as a part of the Linux kernel since version
 2.6.20.

 UDP-Lite provides a checksum with optional partial coverage. When
 using this option, a datagram is divided into a sensitive part
 (covered by the checksum) and an insensitive part (not covered by the
 checksum). When the checksum covers the entire packet, UDP-Lite is
 fully equivalent with UDP. Errors/corruption in the insensitive part
 will not cause the datagram to be discarded by the transport layer at
 the receiving endpoint. A minor side-effect of using UDP-Lite is
 that this was specified for damage-tolerant payloads, and some link-
 layers may employ different link encapsulations when forwarding UDP-
 Lite segments (e.g. radio access bearers). Most link-layers will
 cover the insensitive part with the same strong layer 2 frame CRC
 that covers the sensitive part.

2.2.1. Using UDP-Lite as a Tunnel Encapsulation

 Tunnel encapsulations can use UDP-Lite (e.g. Control And
 Provisioning of Wireless Access Points, CAPWAP [RFC5415]), since UDP-
 Lite provides a transport-layer checksum, including an IP pseudo
 header checksum, in IPv6, without the need for a router/middelbox to
 traverse the entire packet payload. This provides most of the
 delivery verifications and still keep the complexity of the
 checksumming operation low. UDP-Lite may set the length of checksum
 coverage on a per packet basis. This feature could be used if a
 tunnel protocol is designed to only verify delivery of the tunneled
 payload and uses full checksumming for control information.

 There is currently poor support for middlebox traversal using UDP-
 Lite, because UDP-Lite uses a different IPv6 network-layer Next
 Header value to that of UDP, and few middleboxes are able to
 interpret UDP-Lite and take appropriate actions when forwarding the
 packet. This makes UDP-Lite less suited to protocols needing general
 Internet support, until such time that UDP-Lite has achieved better
 support in middleboxes and end-points.

2.3. General Tunnel Encapsulations

 The IETF has defined a set of tunneling protocols or network layer
 encapsulations, like IP-in-IP and GRE. These either do not include a

Fairhurst & Westerlund Expires April 27, 2012 [Page 11]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 checksum or use a checksum that is optional, since tunnel
 encapsulations are typically layered directly over the Internet layer
 (identified by the upper layer type in the IPv6 Next Header field)
 and are also not used as endpoint transport protocols. There is
 little chance of confusing a tunnel-encapsulated packet with other
 application data that could result in corruption of application state
 or data.

 From the end-to-end perspective, the principal difference is that the
 network-layer Next Header field identifies a separate transport,
 which reduces the probability that corruption could result in the
 packet being delivered to the wrong endpoint or application.
 Specifically, packets are only delivered to protocol modules that
 process a specific next header value. The next header field
 therefore provides a first-level check of correct demultiplexing. In
 contrast, the UDP port space is shared by many diverse applications
 and therefore UDP demultiplexing relies solely on the port numbers.

3. Issues Requiring Consideration

 This section evaluates issues around the proposal to update IPv6
 [RFC2460], to provide the option of using a UDP transport checksum
 set to zero. Some of the identified issues are shared with other
 protocols already in use.

 The decision by IPv6 to omit an integrity check at the network level
 has meant that the transport check was overloaded with many
 functions, including validating:

 o the endpoint address was not corrupted within a router - i.e. A
 packet was intended to be received by this destination and a wrong
 header has not been spliced to a different payload;

 o that extension header processing is correctly delimited - i.e.
 The start of data has not been corrupted. In this case, reception
 of a valid next header value provides some protection;

 o reassembly processing, when used;

 o the length of the payload;

 o the port values - i.e. The correct application receives the
 payload (applications should also check the expected use of source
 ports/addresses);

 o the payload integrity.

Fairhurst & Westerlund Expires April 27, 2012 [Page 12]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 In IPv4, the first four checks are performed using the IPv4 header
 checksum.

 In IPv6, these checks occur within the endpoint stack using the UDP
 checksum information. An IPv6 node also relies on the header
 information to determine whether to send an ICMPv6 error message
 [RFC4443] and to determine the node to which this is sent. Corrupted
 information may lead to misdelivery to an unintended application
 socket on an unexpected host.

3.1. Effect of packet modification in the network

 IP packets may be corrupted as they traverse an Internet path.
 Evidence has been presented [Sigcomm2000] to show that this was once
 an issue with IPv4 routers, and occasional corruption could result
 from bad internal router processing in routers or hosts. These
 errors are not detected by the strong frame checksums employed at the
 link-layer [RFC3819]. There is no current evidence that such cases
 are rare in the modern Internet, nor that they may not be applicable
 to IPv6. It therefore seems prudent not to relax this constraint.
 The emergence of low-end IPv6 routers and the proposed use of NAT
 with IPv6 further motivate the need to protect from this type of
 error.

 Corruption in the network may result in:

 o A datagram being mis-delivered to the wrong host/router or the
 wrong transport entity within an endpoint. Such a datagram needs
 to be discarded;

 o A datagram payload being corrupted, but still delivered to the
 intended host/router transport entity. Such a datagram needs to
 be either discarded or correctly processed by an application that
 provides its own integrity checks;

 o A datagram payload being truncated by corruption of the length
 field. Such a datagram needs to be discarded.

 When a checksum is used, this significantly reduces the impact of
 errors, reducing the probability of undetected corruption of state
 (and data) on both the host stack and the applications using the
 transport service.

 The following sections examine the impact of modifying each of these
 header fields.

Fairhurst & Westerlund Expires April 27, 2012 [Page 13]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

3.1.1. Corruption of the destination IP address

 An IP endpoint destination address could be modified in the network
 (e.g. corrupted by an error). This is not a concern for IPv4,
 because the IP header checksum will result in this packet being
 discarded by the receiving IP stack. Such modification in the
 network can not be detected at the network layer when using IPv6.

 There are two possible outcomes:

 o Delivery to a destination address that is not in use (the packet
 will not be delivered, but could result in an error report);

 o Delivery to a different destination address. This modification
 will normally be detected by the transport checksum, resulting in
 silent discard. Without this checksum, the packet would be passed
 to the endpoint port demultiplexing function. If an application
 is bound to the associated ports, the packet payload will be
 passed to the application (see the subsequent section on port
 processing).

3.1.2. Corruption of the source IP address

 This section examines what happens when the source address is
 corrupted in transit. This is not a concern in IPv4, because the IP
 header checksum will normally result in this packet being discarded
 by the receiving IP stack.

 Corruption of an IPv6 source address does not result in the IP packet
 being delivered to a different endpoint protocol or destination
 address. If only the source address is corrupted, the datagram will
 likely be processed in the intended context, although with erroneous
 origin information. The result will depend on the application or
 protocol that processes the packet. Some examples are:

 o An application that requires a per-established context may
 disregard the datagram as invalid, or could map this to another
 context (if a context for the modified source address was already
 activated).

 o A stateless application will process the datagram outside of any
 context, a simple example is the ECHO server, which will respond
 with a datagram directed to the modified source address. This
 would create unwanted additional processing load, and generate
 traffic to the modified endpoint address.

 o Some datagram applications build state using the information from
 packet headers. A previously unused source address would result

Fairhurst & Westerlund Expires April 27, 2012 [Page 14]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 in receiver processing and the creation of unnecessary transport-
 layer state at the receiver. For example, Real Time Protocol
 (RTP) [RFC3550] sessions commonly employ a source independent
 receiver port. State is created for each received flow.
 Reception of a datagram with a corrupted source address will
 therefore result in accumulation of unnecessary state in the RTP
 state machine, including collision detection and response (since
 the same synchronization source, SSRC, value will appear to arrive
 from multiple source IP addresses).

 In general, the effect of corrupting the source address will depend
 upon the protocol that processes the packet and its robustness to
 this error. For the case where the packet is received by a tunnel
 endpoint, the tunnel application is expected to correctly handle a
 corrupted source address.

 The impact of source address modification is more difficult to
 quantify when the receiving application is not that originally
 intended and several fields have been modified in transit.

3.1.3. Corruption of Port Information

 This section describes what happens if one or both of the UDP port
 values are corrupted in transit. This can also happen with IPv4 in
 the zero checksum case, but not when UDP checksums are enabled or
 with UDP-Lite. If the ports carried in the transport header of an
 IPv6 packet were corrupted in transit, packets may be delivered to
 the wrong process (on the intended machine) and/or responses or
 errors sent to the wrong application process (on the intended
 machine).

3.1.4. Delivery to an unexpected port

 If one combines the corruption effects, such as destination address
 and ports, there is a number of potential outcomes when traffic
 arrives at an unexpected port. This section discusses these
 possibilities and their outcomes for a packet that does not use the
 UDP checksum validation:

 o Delivery to a port that is not in use. The packet is discarded,
 but could generate an ICMPv6 message (e.g. port unreachable).

 o It could be delivered to a different node that implements the same
 application, where the packet may be accepted, generating side-
 effects or accumulated state.

 o It could be delivered to an application that does not implement
 the tunnel protocol, where the packet may be incorrectly parsed,

Fairhurst & Westerlund Expires April 27, 2012 [Page 15]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 and may be misinterpreted, generating side-effects or accumulated
 state.

 The probability of each outcome depends on the statistical
 probability that the address or the port information for the source
 or destination becomes corrupt in the datagram such that they match
 those of an existing flow or server port. Unfortunately, such a
 match may be more likely for UDP than for connection-oriented
 transports, because:

 1. There is no handshake prior to communication and no sequence
 numbers (as in TCP, DCCP, or SCTP). Together, this makes it hard
 to verify that an application is given only the data associated
 with a transport session.

 2. Applications writers often bind to wild-card values in endpoint
 identifiers and do not always validate correctness of datagrams
 they receive (guidance on this topic is provided in [RFC5405]).

 While these rules could, in principle, be revised to declare naive
 applications as "Historic". This remedy is not realistic: the
 transport owes it to the stack to do its best to reject bogus
 datagrams.

 If checksum coverage is suppressed, the application therefore needs
 to provide a method to detect and discard the unwanted data. A
 tunnel protocol would need to perform its own integrity checks on any
 control information if transported in UDP with zero-checksum. If the
 tunnel payload is another IP packet, the packets requiring checksums
 can be assumed to have their own checksums provided that the rate of
 corrupted packets is not significantly larger due to the tunnel
 encapsulation. If a tunnel transports other inner payloads that do
 not use IP, the assumptions of corruption detection for that
 particular protocol must be fulfilled, this may require an additional
 checksum/CRC and/or integrity protection of the payload and tunnel
 headers.

 A protocol using UDP zero-checksum can never assume that it is the
 only protocol using a zero checksum. Therefore, it needs to
 gracefully handle misdelivery. It must be robust to reception of
 malformed packets received on a listening port and expect that these
 packets may contain corrupted data or data associated with a
 completely different protocol.

3.1.5. Corruption of Fragmentation Information

 The fragmentation information in IPv6 employs a 32-bit identity
 field, compared to only a 16-bit filed in IPv4, a 13-bit fragment

Fairhurst & Westerlund Expires April 27, 2012 [Page 16]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 offset and a 1-bit flag, indicating if there are more fragments.
 Corruption of any of these field may result in one of two outcomes:

 Reassembly failure: An error in the "More Fragments" field for the
 last fragment will for example result in the packet never being
 considered complete and will eventually be timed out and
 discarded. A corruption in the ID field will result in the
 fragment not being delivered to the intended context thus leaving
 the rest incomplete, unless that packet has been duplicated prior
 to corruption. The incomplete packet will eventually be timed out
 and discarded.

 Erroneous reassembly: The re-assemblied packet did not match the
 original packet. This can occur when the ID field of a fragment
 is corrupted, resulting in a fragment becoming associated with
 another packet and taking the place of another fragment.
 Corruption in the offset information can cause the fragment to be
 misaligned in the reassembly buffer, resulting in incorrect
 reassembly. Corruption can cause the packet to become shorter or
 longer, however completion of reassembly is much less probable,
 since this would requires consistent corruption of the IPv6
 headers payload length field and the offset field. The
 possibility of mis-assembly requires the reassembling stack to
 provide strong checks that detect overlap or missing data, note
 however that this is not guaranteed and has recently been
 clarified in "Handling of Overlapping IPv6 Fragments" [RFC5722].

 The erroneous reassembly of packets is a general concern and such
 packets should be discarded instead of being passed to higher layer
 processes. The primary detector of packet length changes is the IP
 payload length field, with a secondary check by the transport
 checksum. The Upper-Layer Packet length field included in the pseudo
 header assists in verifying correct reassembly, since the Internet
 checksum has a low probability of detecting insertion of data or
 overlap errors (due to misplacement of data). The checksum is also
 incapable of detecting insertion or removal of all zero-data that
 occurs in a multiple of a 16-bit chunk.

 The most significant risk of corruption results following mis-
 association of a fragment with a different packet. This risk can be
 significant, since the size of fragments is often the same (e.g.
 fragments resulting when the path MTU results in fragmentation of a
 larger packet, common when addition of a tunnel encapsulation header
 expands the size of a packet). Detection of this type of error
 requires a checksum or other integrity check of the headers and the
 payload. Such protection is anyway desirable for tunnel
 encapsulations using IPv4, since the small fragmentation ID can
 easily result in wrap-around [RFC4963], this is especially the case

Fairhurst & Westerlund Expires April 27, 2012 [Page 17]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 for tunnels that perform flow aggregation [I-D.ietf-intarea-tunnels].

 Tunnel fragmentation behavior matters. There can be outer or inner
 fragmentation "Tunnels in the Internet Architecture"
 [I-D.ietf-intarea-tunnels]. If there is inner fragmentation by the
 tunnel, the outer headers will never be fragmented and thus a zero-
 checksum in the outer header will not affect the reassembly process.
 When a tunnel performs outer header fragmentation, the tunnel egress
 needs to perform reassembly of the outer fragments into an inner
 packet. The inner packet is either a complete packet or a fragment.
 If it is a fragment, the destination endpoint of the fragment will
 perform reassembly of the received fragments. The complete packet or
 the reassembled fragments will then be processed according to the
 packet next header field. The receiver may only detect reassembly
 anomalies when it uses a protocol with a checksum. The larger the
 number of reassembly processes to which a packet has been subjected,
 the greater the probability of an error.

 o An IP-in-IP tunnel that performs inner fragmentation has similar
 properties to a UDP tunnel with a zero-checksum that also performs
 inner fragmentation.

 o An IP-in-IP tunnel that performs outer fragmentation has similar
 properties to a UDP tunnel with a zero checksum that performs
 outer fragmentation.

 o A tunnel that performs outer fragmentation can result in a higher
 level of corruption due to both inner and outer fragmentation,
 enabling more chances for reassembly errors to occur.

 o Recursive tunneling can result in fragmentation at more than one
 header level, even for inner fragmentation unless it goes to the
 inner most IP header.

 o Unless there is verification at each reassembly the probability
 for undetected error will increase with the number of times
 fragmentation is recursively applied. Making IP-in-IP and UDP
 with zero checksum equal subject to this effect.

 In conclusion fragmentation of packets with a zero-checksum does not
 worsen the situation compared to some other commonly used tunnel
 encapsulations. However, caution is needed for recursive tunneling
 without any additional verification at the different tunnel layers.

3.2. Validating the network path

 IP transports designed for use in the general Internet should not
 assume specific path characteristics. Network protocols may reroute

Fairhurst & Westerlund Expires April 27, 2012 [Page 18]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 packets that change the set of routers and middleboxes along a path.
 Therefore transports such as TCP, SCTP and DCCP have been designed to
 negotiate protocol parameters, adapt to different network path
 characteristics, and receive feedback to verify that the current path
 is suited to the intended application. Applications using UDP and
 UDP-Lite need to provide their own mechanisms to confirm the validity
 of the current network path.

 The zero-checksum in UDP is explicitly disallowed in RFC2460. Thus
 it may be expected that any device on the path that has a reason to
 look beyond the IP header will consider such a packet as erroneous or
 illegal and may likely discard it, unless the device is updated to
 support a new behavior. A pair of end-points intending to use a new
 behavior will therefore not only need to ensure support at each end-
 point, but also that the path between them will deliver packets with
 the new behavior. This may require negotiation or an explicit
 mandate to use the new behavior by all nodes intended to use a new
 protocol.

 Support along the path between end points may be guaranteed in
 limited deployments by appropriate configuration. In general, it can
 be expected to take time for deployment of any updated behaviour to
 become ubiquitous. A sender will need to probe the path to verify
 the expected behavior. Path characteristics may change, and usage
 therefore should be robust and able to detect a failure of the path
 under normal usage and re-negotiate. This will require periodic
 validation of the path, adding complexity to any solution using the
 new behavior.

3.3. Applicability of method

 The expectation of the present proposal defined in
 [I-D.ietf-6man-udpchecksums] is that this change would only apply to
 IPv6 router nodes that implement specific protocols that permit
 omission of UDP checksums. However, the distinction between a router
 and a host is not always clear, especially at the transport level.
 Systems (such as unix-based operating systems) routinely provide both
 functions. There is also no way to identify the role of a receiver
 from a received packet.

 Any new method would therefore need a specific applicability
 statement indicating when the mechanism can (and can not) be used.
 Enabling this, and ensuring correct interactions with the stack,
 implies much more than simply disabling the checksum algorithm for
 specific packets at the transport interface.

 The IETF should carefully consider constraints on sanctioning the use
 of any new transport mode. If this is specified and widely

Fairhurst & Westerlund Expires April 27, 2012 [Page 19]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 available, it may be expected to be used by applications that are
 perceived to gain benefit. Any solution that uses an end-to-end
 transport protocol, rather than an IP-in-IP encapsulation, needs to
 minimise the possibility that end-hosts could confuse a corrupted or
 wrongly delivered packet with that of data addressed to an
 application running on their endpoint unless they accept that
 behavior.

3.4. Impact on non-supporting devices or applications

 It is important to consider what potential impact the zero-checksum
 behavior may have on end-points, devices or applications that are not
 modified to support the new behavior or by default or preference, use
 the regular behavior. These applications must not be significantly
 impacted by the changes.

 To illustrate a potential issue, consider the implications of a node
 that were to enable use of a zero-checksum at the interface level:
 This would result in all applications that listen to a UDP socket
 receiving datagram where the checksum was not verified. This could
 have a significant impact on an application that was not designed
 with the additional robustness needed to handle received packets with
 corruption, creating state or destroying existing state in the
 application.

 In contrast, the use of a zero-checksum could be enabled only for
 individual ports using an explicit request by the application. In
 this case, applications using other ports would maintain the current
 IPv6 behavior, discarding incoming UDP datagrams with a zero-
 checksum. These other applications would not be effected by this
 changed behavior. An application that allows the changed behavior
 should be aware of the risk for corruption and the increased level of
 misdirected traffic, and can be designed robustly to handle this
 risk.

4. Evaluation of proposal to update RFC 2460 to support zero checksum

 This section evaluates the proposal to update IPv6 [RFC2460], to
 provide the option that some nodes may suppress generation and
 checking of the UDP transport checksum. It also compares the
 proposal with other alternatives.

4.1. Alternatives to the Standard Checksum

 There are several alternatives to the normal method for calculating
 the UDP Checksum that do not require a tunnel endpoint to inspect the
 entire packet when computing a checksum. These include (in

Fairhurst & Westerlund Expires April 27, 2012 [Page 20]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 decreasing order of complexity):

 o Delta computation of the checksum from an encapsulated checksum
 field. Since the checksum is a cumulative sum [RFC1624], an
 encapsulating header checksum can be derived from the new pseudo
 header, the inner checksum and the sum of the other network-layer
 fields not included in the pseudo header of the encapsulated
 packet, in a manner resembling incremental checksum update
 [RFC1141]. This would not require access to the whole packet, but
 does require fields to be collected across the header, and
 arithmetic operations on each packet. The method would only work
 for packets that contain a 2’s complement transport checksum (i.e.
 it would not be appropriate for SCTP or when IP fragmentation is
 used).

 o UDP-Lite with the checksum coverage set to only the header portion
 of a packet. This requires a pseudo header checksum calculation
 only on the encapsulating packet header. The computed checksum
 value may be cached (before adding the Length field) for each
 flow/destination and subsequently combined with the Length of each
 packet to minimise per-packet processing. This value is combined
 with the UDP payload length for the pseudo header, however this
 length is expected to be known when performing packet forwarding.

 o The proposed UDP Tunnel Transport, UDPTT [UDPTT] suggested a
 method where UDP would be modified to derive the checksum only
 from the encapsulating packet protocol header. This value does
 not change between packets in a single flow. The value may be
 cached per flow/destination to minimise per-packet processing.

 o There has been a proposal to simply ignore the UDP checksum value
 on reception at the tunnel egress, allowing a tunnel ingress to
 insert any value correct or false. For tunnel usage, a non
 standard checksum value may be used, forcing an RFC 2460 receiver
 to drop the packet. The main downside is that it would be
 impossible to identify a UDP packet (in the network or an
 endpoint) that is treated in this way compared to a packet that
 has actually been corrupted.

 o A method has been proposed that uses a new (to be defined) IPv6
 Destination Options Header to provide an end-to-end validation
 check at the network layer. This would allow an endpoint to
 verify delivery to an appropriate end point, but would also
 require IPv6 nodes to correctly handle the additional header, and
 would require changes to middlebox behavior (e.g. when used with a
 NAT that always adjusts the checksum value).

Fairhurst & Westerlund Expires April 27, 2012 [Page 21]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 o UDP modified to disable checksum processing
 [I-D.ietf-6man-udpchecksums]. This requires no checksum
 calculation, but would require constraints on appropriate usage
 and updates to end-points and middleboxes.

 o IP-in-IP tunneling. As this method completely dispenses with a
 transport protocol in the outer-layer it has reduced overhead and
 complexity, but also reduced functionality. There is no outer
 checksum over the packet and also no ports to perform
 demultiplexing between different tunnel types. This reduces the
 information available upon which a load balancer may act.

 These options are compared and discussed further in the following
 sections.

4.2. Comparison

 This section compares the above listed methods to support datagram
 tunneling. It includes proposals for updating the behaviour of UDP.

4.2.1. Middlebox Traversal

 Regular UDP with a standard checksum or the delta encoded
 optimization for creating correct checksums have the best
 possibilities for successful traversal of a middlebox. No new
 support is required.

 A method that ignores the UDP checksum on reception is expected to
 have a good probability of traversal, because most middleboxes
 perform an incremental checksum update. UDPTT may also traverse a
 middlebox with this behaviour. However, a middlebox on the path that
 attempts to verify a standard checksum will not forward packets using
 either of these methods, preventing traversal. The methods that
 ignores the checksum has an additional downside in that middlebox
 traversal can not be improved, because there is no way to identify
 which packets use the modified checksum behaviour.

 IP-in-IP or GRE tunnels offer good traversal of middleboxes that have
 not been designed for security, e.g. firewalls. However, firewalls
 may be expected to be configured to block general tunnels as they
 present a large attack surface.

 A new IPv6 Destination Options header will suffer traversal issues
 with middleboxes, especially Firewalls and NATs, and will likely
 require them to be updated before the extension header is passed.

 Packets using UDP with a zero checksum will not be passed by any
 middlebox that validates the checksum using RFC 2460 or updates the

Fairhurst & Westerlund Expires April 27, 2012 [Page 22]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 checksum field, such as NAT or firewalls. This would require an
 update to correctly handle the zero checksum packets.

 UDP-Lite will require an update of almost all type of middleboxes,
 because it requires support for a separate network-layer protocol
 number. Once enabled, the method to support incremental checksum
 update would be identical to that for UDP, but different for checksum
 validation.

4.2.2. Load Balancing

 The usefulness of solutions for load balancers depends on the
 difference in entropy in the headers for different flows that can be
 included in a hash function. All the proposals that use the UDP
 protocol number have equal behavior. UDP-Lite has the potential for
 equally good behavior as for UDP. However, UDP-Lite is currently
 likely to not be supported by deployed hashing mechanisms, which may
 cause a load balancer to not use the transport header in the computed
 hash. A load balancer that only uses the IP header will have low
 entropy, but could be improved by including the IPv6 the flow label,
 providing that the tunnel ingress ensures that different flow labels
 are assigned to different flows. However, a transition to the common
 use of good quality flow labels is likely to take time to deploy.

4.2.3. Ingress and Egress Performance Implications

 IP-in-IP tunnels are often considered efficient, because they
 introduce very little processing and low data overhead. The other
 proposals introduce a UDP-like header incurring associated data
 overhead. Processing is minimised for the zero-checksum method,
 ignoring the checksum on reception, and only slightly higher for
 UDPTT, the extension header and UDP-Lite. The delta-calculation
 scheme operates on a few more fields, but also introduces serious
 failure modes that can result in a need to calculate a checksum over
 the complete packet. Regular UDP is clearly the most costly to
 process, always requiring checksum calculation over the entire
 packet.

 It is important to note that the zero-checksum method, ignoring
 checksum on reception, the Option Header, UDPTT and UDP-Lite will
 likely incur additional complexities in the application to
 incorporate a negotiation and validation mechanism.

4.2.4. Deployability

 The major factors influencing deployability of these solutions are a
 need to update both end-points, a need for negotiation and the need
 to update middleboxes. These are summarised below:

Fairhurst & Westerlund Expires April 27, 2012 [Page 23]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 o The solution with the best deployability is regular UDP. This
 requires no changes and has good middlebox traversal
 characteristics.

 o The next easiest to deploy is the delta checksum solution. This
 does not modify the protocol on the wire and only needs changes in
 tunnel ingress.

 o IP-in-IP tunnels should not require changes to the end-points, but
 raise issues when traversing firewalls and other security-type
 devices, which are expected to require updates.

 o Ignoring the checksum on reception will require changes at both
 end-points. The never ceasing risk of path failure requires
 additional checks to ensure this solution is robust and will
 require changes or additions to the tunneling control protocol to
 negotiate support and validate the path.

 o The remaining solutions offer similar deployability. UDP-Lite
 requires support at both end-points and in middleboxes. UDPTT and
 Zero-checksum with or without an Extension header require support
 at both end-points and in middleboxes. UDP-Lite, UDPTT, and Zero-
 checksum and Extension header may additionally require changes or
 additions to the tunneling control protocol to negotiate support
 and path validation.

4.2.5. Corruption Detection Strength

 The standard UDP checksum and the delta checksum can both provide
 some verification at the tunnel egress. This can significantly
 reduce the probability that a corrupted inner packet is forwarded.
 UDP-Lite, UDPTT and the extension header all provide some
 verification against corruption, but do not verify the inner packet.
 They only provide a strong indication that the delivered packet was
 intended for the tunnel egress and was correctly delimited. The
 Zero-checksum, ignoring the checksum on reception and IP-and-IP
 encapsulation provide no verification that a received packet was
 intended to be processed by a specific tunnel egress or that the
 inner packet was correct.

4.2.6. Comparison Summary

 The comparisons above may be summarised as "there is no silver bullet
 that will slay all the issues". One has to select which down side(s)
 can best be lived with. Focusing on the existing solutions, this can
 be summarized as:

Fairhurst & Westerlund Expires April 27, 2012 [Page 24]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 Regular UDP: Good middlebox traversal and load balancing and
 multiplexing, requiring a checksum in the outer headers covering
 the whole packet.

 IP in IP: A low complexity encapsulation, with limited middlebox
 traversal, no multiplexing support, and currently poor load
 balancing support that could improve over time.

 UDP-Lite: A medium complexity encapsulation, with good multiplexing
 support, limited middlebox traversal, but possible to improve over
 time, currently poor load balancing support that could improve
 over time, in most cases requiring application level negotiation
 and validation.

 The delta-checksum is an optimization in the processing of UDP, as
 such it exhibits some of the drawbacks of using regular UDP.

 The remaining proposals may be described in similar terms:

 Zero-Checksum: A low complexity encapsulation, with good
 multiplexing support, limited middlebox traversal that could
 improve over time, good load balancing support, in most cases
 requiring application level negotiation and validation.

 UDPTT: A medium complexity encapsulation, with good multiplexing
 support, limited middlebox traversal, but possible to improve over
 time, good load balancing support, in most cases requiring
 application level negotiation and validation.

 IPv6 Destination Option IP in IP tunneling: A medium complexity,
 with no multiplexing support, limited middlebox traversal,
 currently poor load balancing support that could improve over
 time, in most cases requiring application level negotiation and
 validation.

 IPv6 Destination Option combined with UDP Zero-checksuming: A medium
 complexity encapsulation, with good multiplexing support, limited
 load balancing support that could improve over time, in most cases
 requiring application level negotiation and validation.

 Ignore the checksum on reception: A low complexity encapsulation,
 with good multiplexing support, medium middlebox traversal that
 never can improve, good load balancing support, in most cases
 requiring application level negotiation and validation.

 There is no clear single optimum solution. If the most important
 need is to traverse middleboxes, then the best choice is to stay with
 regular UDP and consider the optimizations that may be required to

Fairhurst & Westerlund Expires April 27, 2012 [Page 25]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 perform the checksumming. If one can live with limited middlebox
 traversal, low complexity is necessary and one does not require load
 balancing, then IP-in-IP tunneling is the simplest. If one wants
 strengthened error detection, but with currently limited middlebox
 traversal and load-balancing. UDP-Lite is appropriate. UDP Zero-
 checksum addresses another set of constraints, low complexity and a
 need for load balancing from the current Internet, providing it can
 live with currently limited middlebox traversal.

 Techniques for load balancing and middlebox traversal do continue to
 evolve. Over a long time, developments in load balancing have good
 potential to improve. This time horizon is long since it requires
 both load balancer and end-point updates to get full benefit. The
 challenges of middlebox traversal are also expected to change with
 time, as device capabilities evolve. Middleboxes are very prolific
 with a larger proportion of end-user ownership, and therefore may be
 expected to take long time cycles to evolve. One potential advantage
 is that the deployment of IPv6 capable middleboxes are still in its
 initial phase and the quicker zero-checksum becomes standardized the
 fewer boxes will be non-compliant.

 Thus, the question of whether to allow UDP with a zero-checksum for
 IPv6 under reasonable constraints, is therefore best viewed as a
 trade-off between a number of more subjective questions:

 o Is there sufficient interest in zero-checksum with the given
 constraints (summarised below)?

 o Are there other avenues of change that will resolve the issue in a
 better way and sufficiently quickly ?

 o Do we accept the complexity cost of having one more solution in
 the future?

 The authors do think the answer to the above questions are such that
 zero-checksum should be standardized for use by tunnel
 encapsulations.

5. Requirements on the specification of transported protocols

5.1. Constraints required on usage of a zero checksum

 If a zero checksum approach were to be adopted by the IETF, the
 specification should consider adding the following constraints on
 usage:

Fairhurst & Westerlund Expires April 27, 2012 [Page 26]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 1. IPv6 protocol stack implementations should not by default allow
 the new method. The default node receiver behaviour must discard
 all IPv6 packets carrying UDP packets with a zero checksum.

 2. Implementations must provide a way to signal the set of ports
 that will be enabled to receive UDP datagrams with a zero
 checksum. An IPv6 node that enables reception of UDP packets
 with a zero-checksum, must enable this only for a specific port
 or port-range. This may be implemented via a socket API call, or
 similar mechanism.

 3. RFC 2460 specifies that IPv6 nodes should log UDP datagrams with
 a zero-checksum. This should remain the case for any datagram
 received on a port that does not explicitly enable zero-checksum
 processing. A port for which zero-checksum has been enabled must
 not log the datagram.

 4. A stack may separately identify UDP datagrams that are discarded
 with a zero checksum. It should not add these to the standard
 log, since the endpoint has not been verified.

 5. Tunnels that encapsulate IP may rely on the inner packet
 integrity checks provided that the tunnel will not significantly
 increase the rate of corruption of the inner IP packet. If a
 significantly increased corruption rate can occur, then the
 tunnel must provide an additional integrity verification
 mechanism. An integrity mechanisms is always recommended at the
 tunnel layer to ensure that corruption rates of the inner most
 packet are not increased.

 6. Tunnels that encapsulate Non-IP packets must have a CRC or other
 mechanism for checking packet integrity, unless the Non-IP packet
 specifically is designed for transmission over lower layers that
 do not provide any packet integrity guarantee. In particular,
 the application must be designed so that corruption of this
 information does not result in accumulated state or incorrect
 processing of a tunneled payload.

 7. UDP applications that support use of a zero-checksum, should not
 rely upon correct reception of the IP and UDP protocol
 information (including the length of the packet) when decoding
 and processing the packet payload. In particular, the
 application must be designed so that corruption of this
 information does not result in accumulated state or incorrect
 processing of a tunneled payload.

 8. If a method proposes recursive tunnels, it needs to provide
 guidance that is appropriate for all use-cases. Restrictions may

Fairhurst & Westerlund Expires April 27, 2012 [Page 27]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 be needed to the use of a tunnel encapsulations and the use of
 recursive tunnels (e.g. Necessary when the endpoint is not
 verified).

 9. IPv6 nodes that receive ICMPv6 messages that refer to packets
 with a zero UDP checksum must provide appropriate checks
 concerning the consistency of the reported packet to verify that
 the reported packet actually originated from the node, before
 acting upon the information (e.g. validating the address and port
 numbers in the ICMPv6 message body).

 Deployment of the new method needs to remain restricted to endpoints
 that explicitly enable this mode and adopt the above procedures. Any
 middlebox that examines or interact with the UDP header over IPv6
 should support the new method.

6. Summary

 This document examines the role of the transport checksum when used
 with IPv6, as defined in RFC2460.

 It presents a summary of the trade-offs for evaluating the safety of
 updating RFC 2460 to permit an IPv6 UDP endpoint to use a zero value
 in the checksum field to indicate that no checksum is present. A
 decision not to include a UDP checksum in received IPv6 datagrams
 could impact a tunnel application that receives these packets.
 However, a well-designed tunnel application should include
 consistency checks to validate any header information encapsulated
 with a packet. In most cases tunnels encapsulating IP packets can
 rely on the inner packets own integrity protection. When correctly
 implemented, such a tunnel endpoint will not be negatively impacted
 by omission of the transport-layer checksum. Recursive tunneling and
 fragmentation is a potential issues that can raise corruption rates
 significantly, and requires careful consideration.

 Other applications at the intended destination node or another IPv6
 node can be impacted if they are allowed to receive datagrams without
 a transport-layer checksum. It is particularly important that
 already deployed applications are not impacted by any change at the
 transport layer. If these applications execute on nodes that
 implement RFC 2460, they will reject all datagrams with a zero UDP
 checksum, thus this is not an issue. For nodes that implement
 support for zero-checksum it is important to ensure that only UDP
 applications that desire zero-checksum can receive and originate
 zero-checksum packets. Thus, the enabling of zero-checksum needs to
 be at a port level, not for the entire host or for all use of an
 interface.

Fairhurst & Westerlund Expires April 27, 2012 [Page 28]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 The implications on firewalls, NATs and other middleboxes need to be
 considered. It is not expected that IPv6 NATs handle IPv6 UDP
 datagrams in the same way that they handle IPv4 UDP datagrams. This
 possibly reduces the need to update the checksum. Firewalls are
 intended to be configured, and therefore may need to be explicitly
 updated to allow new services or protocols. IPv6 middlebox
 deployment is not yet as prolific as it is in IPv4. Thus, relatively
 few current middleboxes may actually block IPv6 UDP with a zero
 checksum.

 In general, UDP-based applications need to employ a mechanism that
 allows a large percentage of the corrupted packets to be removed
 before they reach an application, both to protect the applications
 data stream and the control plane of higher layer protocols. These
 checks are currently performed by the UDP checksum for IPv6, or the
 reduced checksum for UDP-Lite when used with IPv6.

 The use of UDP with no checksum has merits for some applications,
 such as tunnel encapsulation, and is widely used in IPv4. However,
 there are dangers for IPv6: There is a bigger risk of corruption and
 miss-delivery when using zero-checksum in IPv6 compared to IPv4 due
 to the removed IP header checksum. Thus, applications needs to make
 a new evaluation of the risks of enabling a zero-checksum. Some
 applications will need to re-consider their usage of zero-checksum,
 and possibly consider a solution that at least provides the same
 delivery protection as for IPv4, for example by utilizing UDP-Lite,
 or by enabling the UDP checksum. Tunnel applications using UDP for
 encapsulation can in many case use zero-checksum without significant
 impact on the corruption rate. In some cases, the use of checksum
 off-loading may help alleviate the checksum processing cost.

 Recursive tunneling and fragmentation is a difficult issue relating
 to tunnels in general. There is an increased risk of an error in the
 inner-most packet when fragmentation when several layers of tunneling
 and several different reassembly processes are run without any
 verification of correctness. This issue requires future thought and
 consideration.

 The conclusion is that UDP zero checksum in IPv6 should be
 standardized, as it satisfies usage requirements that are currently
 difficult to address. We do note that a safe deployment of zero-
 checksum will need to follow a set of constraints listed in
 Section 5.1.

7. Acknowledgements

 Brian Haberman, Brian Carpenter, Magaret Wasserman, Lars Eggert,

Fairhurst & Westerlund Expires April 27, 2012 [Page 29]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 others in the TSV directorate.

 Thanks also to: Remi Denis-Courmont, Pekka Savola and many others who
 contributed comments and ideas via the 6man, behave, lisp and mboned
 lists.

8. IANA Considerations

 This document does not require any actions by IANA.

9. Security Considerations

 Transport checksums provide the first stage of protection for the
 stack, although they can not be considered authentication mechanisms.
 These checks are also desirable to ensure packet counters correctly
 log actual activity, and can be used to detect unusual behaviours.

10. References

10.1. Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

 [RFC1071] Braden, R., Borman, D., Partridge, C., and W. Plummer,
 "Computing the Internet checksum", RFC 1071,
 September 1988.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

10.2. Informative References

 [ECMP] "Using the IPv6 flow label for equal cost multipath
 routing in tunnels (draft-carpenter-flow-ecmp)".

 [I-D.ietf-6man-udpchecksums]
 Eubanks, M., "UDP Checksums for Tunneled Packets",
 draft-ietf-6man-udpchecksums-00 (work in progress),
 March 2011.

 [I-D.ietf-intarea-tunnels]

Fairhurst & Westerlund Expires April 27, 2012 [Page 30]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 Touch, J. and M. Townsley, "Tunnels in the Internet
 Architecture", draft-ietf-intarea-tunnels-00 (work in
 progress), March 2010.

 [I-D.ietf-mboned-auto-multicast]
 Thaler, D., Talwar, M., Aggarwal, A., Vicisano, L.,
 Pusateri, T., and T. Morin, "Automatic IP Multicast
 Tunneling", draft-ietf-mboned-auto-multicast-11 (work in
 progress), July 2011.

 [LISP] D. Farinacci et al, "Locator/ID Separation Protocol
 (LISP)", March 2009.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC1141] Mallory, T. and A. Kullberg, "Incremental updating of the
 Internet checksum", RFC 1141, January 1990.

 [RFC1624] Rijsinghani, A., "Computation of the Internet Checksum via
 Incremental Update", RFC 1624, May 1994.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3819] Karn, P., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,
 RFC 3819, July 2004.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
 G. Fairhurst, "The Lightweight User Datagram Protocol
 (UDP-Lite)", RFC 3828, July 2004.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
 Errors at High Data Rates", RFC 4963, July 2007.

 [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
 for Application Designers", BCP 145, RFC 5405,
 November 2008.

 [RFC5415] Calhoun, P., Montemurro, M., and D. Stanley, "Control And
 Provisioning of Wireless Access Points (CAPWAP) Protocol

Fairhurst & Westerlund Expires April 27, 2012 [Page 31]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 Specification", RFC 5415, March 2009.

 [RFC5722] Krishnan, S., "Handling of Overlapping IPv6 Fragments",
 RFC 5722, December 2009.

 [RFC6145] Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
 Algorithm", RFC 6145, April 2011.

 [Sigcomm2000]
 Jonathan Stone and Craig Partridge , "When the CRC and TCP
 Checksum Disagree", 2000.

 [UDPTT] G Fairhurst, "The UDP Tunnel Transport mode", Feb 2010.

Appendix A. Document Change History

 {RFC EDITOR NOTE: This section must be deleted prior to publication}

 Individual Draft 00 This is the first DRAFT of this document - It
 contains a compilation of various discussions and contributions
 from a variety of IETF WGs, including: mboned, tsv, 6man, lisp,
 and behave. This includes contributions from Magnus with text on
 RTP, and various updates.

 Individual Draft 01

 * This version corrects some typos and editorial NiTs and adds
 discussion of the need to negotiate and verify operation of a
 new mechanism (3.3.4).

 Individual Draft 02

 * Version -02 corrects some typos and editorial NiTs.

 * Added reference to ECMP for tunnels.

 * Clarifies the recommendations at the end of the document.

 Working Group Draft 00

 * Working Group Version -00 corrects some typos and removes much
 of rationale for UDPTT. It also adds some discussion of IPv6
 extension header.

Fairhurst & Westerlund Expires April 27, 2012 [Page 32]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 Working Group Draft 01

 * Working Group Version -01 updates the rules and incorporates
 off-list feedback. This version is intended for wider review
 within the 6man working group.

 Working Group Draft 02

 * This version is the result of a major rewrite and re-ordering
 of the document.

 * A new section comparing the results have been added.

 * The constraints list has been significantly altered by removing
 some and rewording other constraints.

 * This contains other significant language updates to clarify the
 intent of this draft.

 Working Group Draft 03

 * Editorial updates

 Working Group Draft 04

 * Resubmission only updating the AMT and RFC2765 references.

Authors’ Addresses

 Godred Fairhurst
 University of Aberdeen
 School of Engineering
 Aberdeen, AB24 3UE,
 Scotland, UK

 Phone:
 Email: gorry@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk/users/gorry

Fairhurst & Westerlund Expires April 27, 2012 [Page 33]

Internet-Draft IPv6 UDP Checksum Considerations October 2011

 Magnus Westerlund
 Ericsson
 Farogatan 6
 Stockholm, SE-164 80
 Sweden

 Phone: +46 8 719 0000
 Fax:
 Email: magnus.westerlund@ericsson.com
 URI:

Fairhurst & Westerlund Expires April 27, 2012 [Page 34]

IPv6 Maintenance Working Group K. Lynn, Ed.
Internet-Draft Consultant
Intended status: Standards Track J. Martocci
Expires: April 12, 2012 Johnson Controls
 C. Neilson
 Delta Controls
 S. Donaldson
 Honeywell
 October 10, 2011

 Transmission of IPv6 over MS/TP Networks
 draft-lynn-6man-6lobac-02

Abstract

 MS/TP (Master-Slave/Token-Passing) is a contention-free access method
 for the TIA-485-A physical layer that is used extensively in building
 automation networks. This document describes the frame format for
 transmission of IPv6 packets and the method of forming link-local and
 statelessly autoconfigured IPv6 addresses on MS/TP networks.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 12, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Lynn, et al. Expires April 12, 2012 [Page 1]

Internet-Draft IPv6 over MS/TP October 2011

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. MS/TP Mode for IPv6 . 6
 3. Addressing Modes . 6
 4. Maximum Transmission Unit (MTU) 7
 5. LoBAC Adaptation Layer . 7
 6. Stateless Address Autoconfiguration 9
 7. IPv6 Link Local Address 10
 8. Unicast Address Mapping 10
 9. Multicast Address Mapping 11
 10. Header Compression . 11
 11. IANA Considerations . 11
 12. Security Considerations 12
 13. Acknowledgments . 12
 14. References . 12
 14.1. Normative References 12
 14.2. Informative References 13
 Authors’ Addresses . 13

Lynn, et al. Expires April 12, 2012 [Page 2]

Internet-Draft IPv6 over MS/TP October 2011

1. Introduction

 MS/TP (Master-Slave/Token-Passing) is a contention-free access method
 for the [TIA-485-A] physical layer that is used extensively in
 building automation networks. This document describes the frame
 format for transmission of IPv6 [RFC2460] packets and the method of
 forming link-local and statelessly autoconfigured IPv6 addresses on
 MS/TP networks. The general approach is to adapt elements of the
 6LoWPAN [RFC4944] specification to constrained wired networks.

 An MS/TP device is typically based on a low-cost microcontroller with
 limited processing power and memory. Together with low data rates
 and a small address space, these constraints are similar to those
 faced in 6LoWPAN networks and suggest some elements of that solution
 might be applied. MS/TP differs significantly from 6LoWPAN in at
 least three respects: a) MS/TP devices typically have a continuous
 source of power, b) all MS/TP devices on a segment can communicate
 directly so there are no hidden node or mesh routing issues, and c)
 proposed changes to MS/TP will support payloads of up to 1500 octets,
 eliminating the need for link-layer fragmentation and reassembly.

 The following sections provide a brief overview of MS/TP, then
 describe how to form IPv6 addresses and encapsulate IPv6 packets in
 MS/TP frames. This document also specifies a header compression
 mechanism, based on [RFC6282], that is recommended in order to make
 IPv6 practical on low speed MS/TP networks.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Abbreviations Used

 ASHRAE: American Society of Heating, Refrigerating, and Air-
 Conditioning Engineers (http://www.ashrae.org)

 BACnet: An ISO/ANSI/ASHRAE Standard Data Communication Protocol
 for Building Automation and Control Networks

 CRC: Cyclic Redundancy Check

 MAC: Medium Access Control

 MSDU: MAC Service Data Unit (MAC client data)

 UART: Universal Asynchronous Transmitter/Receiver

Lynn, et al. Expires April 12, 2012 [Page 3]

Internet-Draft IPv6 over MS/TP October 2011

1.3. MS/TP Overview

 This section provides a brief overview of MS/TP, which is specified
 in Clause 9 of ANSI/ASHRAE 135-2010 [BACnet] and included herein by
 reference. [BACnet] also covers physical layer deployment options.

 MS/TP is designed to enable multidrop networks over shielded twisted
 pair wiring. It can support segments up to 1200 meters in length or
 data rates up to 115,200 baud (at this highest data rate the segment
 length is limited to 1000 meters). An MS/TP link requires only a
 UART, a 5ms resolution timer, and a [TIA-485-A] transceiver with a
 driver that can be disabled. These features combine to make MS/TP a
 cost-effective field bus for the most numerous and least expensive
 devices in a building automation network.

 The differential signaling used by [TIA-485-A] requires a contention-
 free MAC. MS/TP uses a token to control access to a multidrop bus.
 A master node may initiate the transmission of a data frame when it
 holds the token. After sending at most a configured maximum number
 of data frames, a master node passes the token to the next master
 node (as determined by node address). Slave nodes transmit only when
 polled and are not considered part of this specification.

 MS/TP frames have the following format*:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x55 | 0xFF | Frame Type* | DA |
 +-+
 | SA | Length (MS octet first) | Header CRC |
 +-+
 /
 / Data*
 /
 +-+
 | Extended Data CRC* (LS octet first) |
 +-+
 | optional 0xFF |
 +-+-+-+-+-+-+-+-+

 Figure 1: MS/TP Frame Format

 *Note: BACnet [Addendum_an], now in public review, assigns a new
 Frame Type for IPv6, extends the maximum length of the Data field to
 1500 octets, and specifies a 32-bit Extended Data CRC. The Data and
 Extended Data CRC fields are present only if Length is non-zero.

Lynn, et al. Expires April 12, 2012 [Page 4]

Internet-Draft IPv6 over MS/TP October 2011

 The MS/TP frame fields have the following descriptions**:

 Preamble two octet preamble: 0x55, 0xFF
 Frame Type one octet
 Destination Address one octet address
 Source Address one octet address
 Length two octets, most significant octet first
 Header CRC one octet
 Data 0 - 1500 octets**
 (present only if Length is non-zero)
 Extended Data CRC four octets**, least significant octet first
 (present only if Length is non-zero)
 (pad) (optional) at most one octet of trailer: 0xFF

 The Frame Type is used to distinguish between different types of MAC
 frames. Currently defined types (in decimal) are:

 00 Token
 01 Poll For Master
 02 Reply To Poll For Master
 ...
 10 IPv6 over MS/TP Encapsulation**

 **See previous note regarding the BACnet [Addendum_an] change proposal
 to support IPv6 over MS/TP Encapsulation.

 Frame Types 11 through 127 are reserved for assignment by ASHRAE.
 All master nodes MUST understand Token, Poll For Master, and Reply to
 Poll For Master frames. See Section 2 for additional details.

 The Destination and Source Addresses are each one octet in length.
 See Section 3 for additional details.

 The Length field specifies the length of the Data field in octets and
 is transmitted most significant octet first. See Section 4 for
 additional details.

 The Header CRC field covers the Frame Type, Destination Address,
 Source Address, and Length fields. The Header CRC generation and
 check procedures are specified in [BACnet].

 The Data and Extended Data CRC fields are conditional on the Frame
 Type and the Length. (Note: The Data and Extended Data CRC fields
 will always be present in frames specified by this document.) The
 Extended Data CRC generation and check procedures are specified in
 the BACnet [Addendum_an] change proposal.

Lynn, et al. Expires April 12, 2012 [Page 5]

Internet-Draft IPv6 over MS/TP October 2011

1.4. Goals and Non-goals

 The primary goal of this specification is to enable IPv6 directly to
 wired end devices in building automation and control networks, while
 leveraging existing standards to the greatest extent possible. A
 secondary goal is to co-exist with legacy MS/TP implementations.
 Only the minimum changes necessary to support IPv6 over MS/TP are
 proposed in BACnet [Addendum_an] (see note in Section 1.3).

 Non-goals include making changes to the MS/TP frame header format,
 control frames, Master Node state machine, or addressing modes.
 Also, while the techniques described here may be applicable to other
 data links, no attempt is made to define a general design pattern.

2. MS/TP Mode for IPv6

 The BACnet [Addendum_an] change proposal allocates a new MS/TP Frame
 Type from the ASHRAE reserved range to indicate IPv6 encapsulation.
 The new Frame Type for IPv6 over MS/TP Encapsulation is 10 (0x0A).

 All MS/TP master nodes (including those that support IPv6) must
 understand Token, Poll For Master, and Reply to Poll For Master
 control frames and support the Master Node state machine as specified
 in [BACnet]. MS/TP master nodes that support IPv6 must also support
 the Receive Frame state machine as specified in [BACnet] and extended
 by [Addendum_an].

3. Addressing Modes

 MS/TP node (link-layer) addresses are one octet in length. The
 method of assigning node addresses is outside the scope of this
 document. However, each MS/TP node on the link MUST have a unique
 address or a misconfiguration condition exists.

 [BACnet] specifies that addresses 0 through 127 are valid for master
 nodes. The method specified in Section 6 for creating the Interface
 Identifier (IID) ensures that an IID of all zeros can never result.

 A Destination Address of 255 (0xFF) denotes a link-level broadcast
 (all nodes). A Source Address of 255 MUST NOT be used. MS/TP does
 not support multicast, therefore all IPv6 multicast packets MUST be
 sent as link-level broadcasts and filtered at the IPv6 layer.

 This document assumes that each MS/TP link maps to a unique IPv6
 subnet prefix. Hosts learn IPv6 prefixes via router advertisements
 according to [RFC4861].

Lynn, et al. Expires April 12, 2012 [Page 6]

Internet-Draft IPv6 over MS/TP October 2011

4. Maximum Transmission Unit (MTU)

 The BACnet [Addendum_an] change proposal specifies that the MSDU be
 increased to 1500 octets and covered by a 32-bit CRC. This is
 sufficient to convey an MTU of at least 1280 octets as required by
 IPv6 without the need for link-layer fragmentation and reassembly.

 However, the relatively low data rates of MS/TP still make a
 compelling case for header compression. An adaptation layer to
 indicate compressed or uncompressed IPv6 headers is specified below
 in Section 5 and the compression scheme is specified in Section 10.

5. LoBAC Adaptation Layer

 The encapsulation formats defined in this section (subsequently
 referred to as the "LoBAC" encapsulation) comprise the payload (MSDU)
 of an MS/TP frame. The LoBAC payload (e.g., an IPv6 packet) follows
 an encapsulation header stack. LoBAC is a subset of the LoWPAN
 encapsulation defined in [RFC4944], therefore the use of "LOWPAN" in
 literals below is intentional. The primary differences between LoBAC
 and LoWPAN are: a) exclusion of the Fragmentation, Mesh, and
 Broadcast headers, and b) use of LOWPAN_IPHC [RFC6282] in place of
 LOWPAN_HC1 header compression (which is deprecated by [RFC6282]).

 All LoBAC encapsulated datagrams transmitted over MS/TP are prefixed
 by an encapsulation header stack. Each header in the stack consists
 of a header type followed by zero or more header fields. Whereas in
 an IPv6 header the stack would contain, in the following order,
 addressing, hop-by-hop options, routing, fragmentation, destination
 options, and finally payload [RFC2460]; in a LoBAC encapsulation the
 analogous sequence is (optional) header compression and payload. The
 header stacks that are valid in a LoBAC network are shown below.

 A LoBAC encapsulated IPv6 datagram:

 +---------------+-------------+---------+
 | IPv6 Dispatch | IPv6 Header | Payload |
 +---------------+-------------+---------+

 A LoBAC encapsulated LOWPAN_IPHC compressed IPv6 datagram:

 +---------------+-------------+---------+
 | IPHC Dispatch | IPHC Header | Payload |
 +---------------+-------------+---------+

 All protocol datagrams (e.g., IPv6 or compressed IPv6 headers) SHALL
 be preceded by one of the valid LoBAC encapsulation headers. This

Lynn, et al. Expires April 12, 2012 [Page 7]

Internet-Draft IPv6 over MS/TP October 2011

 permits uniform software treatment of datagrams without regard to
 their mode of transmission.

 The definition of LoBAC headers consists of the dispatch value, the
 definition of the header fields that follow, and their ordering
 constraints relative to all other headers. Although the header stack
 structure provides a mechanism to address future demands on the LoBAC
 (LoWPAN) adaptation layer, it is not intended to provided general
 purpose extensibility. This format document specifies a small set of
 header types using the header stack for clarity, compactness, and
 orthogonality.

5.1. Dispatch Type and Header

 A LoBAC Dispatch type begins with a "0" bit followed by a "1" bit.
 The Dispatch type and header are shown here:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|1| Dispatch | Type-specific header
 +-+

 Dispatch 6-bit selector. Identifies the type of header
 immediately following the Dispatch Header.

 Type-specific header A header determined by the Dispatch Header.

 Figure 2: Dispatch Type and Header

 The Dispatch value may be treated as an unstructured namespace. Only
 a few symbols are required to represent current LoBAC functionality.
 Although some additional savings could be achieved by encoding
 additional functionality into the dispatch octet, these measures
 would tend to constrain the ability to address future alternatives.

 Pattern Header Type
 +------------+---+
 | 00 xxxxxx | NALP - Not a LoWPAN (LoBAC) frame |
 | 01 000000 | ESC - Additional Dispatch octet follows |
 | 01 000001 | IPv6 - Uncompressed IPv6 Addresses |
 | ... | reserved - Defined or reserved by [RFC4944] |
 | 01 1xxxxx | LOWPAN_IPHC - LOWPAN_IPHC compressed IPv6 [RFC6282] |
 | 1x xxxxxx | reserved - Defined or reserved by [RFC4944] |
 +------------+---+

 Figure 3: Dispatch Value Bit Patterns

Lynn, et al. Expires April 12, 2012 [Page 8]

Internet-Draft IPv6 over MS/TP October 2011

 NALP: Specifies that the following bits are not a part of the LoBAC
 encapsulation, and any LoBAC node that encounters a Dispatch
 value of 00xxxxxx shall discard the packet. Non-LoBAC protocols
 that wish to coexist with LoBAC nodes should include an octet
 matching this pattern immediately following the MS/TP header.

 ESC: Specifies that the following header is a single 8-bit field for
 the Dispatch value. It allows support for Dispatch values larger
 than 127 (see [RFC6282] section 5).

 IPv6: Specifies that the following header is an uncompressed IPv6
 header [RFC2460].

 LOWPAN_IPHC: A value of 011xxxxx specifies a LOWPAN_IPHC compression
 header (see Section 10.)

 Reserved: A LoBAC node that encounters a Dispatch value in the range
 01000010 through 01011111 or 1xxxxxxx SHALL discard the packet.

6. Stateless Address Autoconfiguration

 This section defines how to obtain an IPv6 Interface Identifier. The
 general procedure is described in Appendix A of [RFC4291], "Creating
 Modified EUI-64 Format Interface Identifiers".

 The Interface Identifier may be based on an [EUI-64] identifier
 assigned to the device (but this is not typical for MS/TP). In this
 case, the Interface Identifier is formed from the EUI-64 by inverting
 the "u" (universal/local) bit according to [RFC4291]. This will
 result in a globally unique Interface Identifier.

 If the device does not have an EUI-64, then the Interface Identifier
 MUST be formed by concatenating its 8-bit MS/TP node address to the
 seven octets 0x00, 0x00, 0x00, 0xFF, 0xFE, 0x00, 0x00. For example,
 an MS/TP node address of hexadecimal value 0x4F results in the
 following Interface Identifier:

 |0 1|1 3|3 4|4 6|
 |0 5|6 1|2 7|8 3|
 +----------------+----------------+----------------+----------------+
 |0000000000000000|0000000011111111|1111111000000000|0000000001001111|
 +----------------+----------------+----------------+----------------+

 Note that this results in the universal/local bit set to "0" to
 indicate local scope.

 An IPv6 address prefix used for stateless autoconfiguration [RFC4862]

Lynn, et al. Expires April 12, 2012 [Page 9]

Internet-Draft IPv6 over MS/TP October 2011

 of an MS/TP interface MUST have a length of 64 bits.

7. IPv6 Link Local Address

 The IPv6 link-local address [RFC4291] for an MS/TP interface is
 formed by appending the Interface Identifier, as defined above, to
 the prefix FE80::/64.

 10 bits 54 bits 64 bits
 +----------+-----------------------+----------------------------+
 |1111111010| (zeros) | Interface Identifier |
 +----------+-----------------------+----------------------------+

8. Unicast Address Mapping

 The address resolution procedure for mapping IPv6 non-multicast
 addresses into MS/TP link-layer addresses follows the general
 description in Section 7.2 of [RFC4861], unless otherwise specified.

 The Source/Target Link-layer Address option has the following form
 when the addresses are 8-bit MS/TP node (link-layer) addresses.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Type | Length=1 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0x00 | MS/TP Address |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 +- Padding -+
 | (all zeros) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Option fields:

 Type:

 1: for Source Link-layer address.

 2: for Target Link-layer address.

 Length: This is the length of this option (including the type and
 length fields) in units of 8 octets. The value of this field is 1
 for 8-bit MS/TP node addresses.

Lynn, et al. Expires April 12, 2012 [Page 10]

Internet-Draft IPv6 over MS/TP October 2011

 MS/TP Address: The 8-bit address in canonical bit order [RFC2469].
 This is the unicast address the interface currently responds to.

9. Multicast Address Mapping

 All IPv6 multicast packets MUST be sent to MS/TP Destination Address
 255 (broadcast) and filtered at the IPv6 layer. When represented as
 a 16-bit address in a compressed header (see Section 10), it MUST be
 formed by padding on the left with a zero:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0x00 | 0xFF |
 +-+-+-+-+-+-+-+-+---------------+

10. Header Compression

 LoBAC uses LOWPAN_IPHC IPv6 compression, which is specified in
 [RFC6282] and included herein by reference. This section will simply
 identify substitutions that should be made when interpreting the text
 of [RFC6282].

 In general the following substitutions should be made:

 * Replace "6LoWPAN" with "MS/TP network"

 * Replace "IEEE 802.15.4 address" with "MS/TP address"

 When a 16-bit address is called for (i.e., an IEEE 802.15.4 "short
 address") it MUST be formed by padding the MS/TP address to the left
 with a zero:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0x00 | MS/TP address |
 +-+-+-+-+-+-+-+-+---------------+

11. IANA Considerations

 This document uses values previously reserved by [RFC4944] and
 [RFC6282] and makes no further requests of IANA.

 Note to RFC Editor: this section may be removed upon publication.

Lynn, et al. Expires April 12, 2012 [Page 11]

Internet-Draft IPv6 over MS/TP October 2011

12. Security Considerations

 The method of deriving Interface Identifiers from MAC addresses is
 intended to preserve global uniqueness when possible. However, there
 is no protection from duplication through accident or forgery.

13. Acknowledgments

 We are grateful to the authors of [RFC4944] and members of the IETF
 6LoWPAN working group; this document borrows extensively from their
 work.

14. References

14.1. Normative References

 [BACnet] American Society of Heating, Refrigerating, and Air-
 Conditioning Engineers, "BACnet, A Data Communication
 Protocol for Building Automation and Control Networks
 (ANSI Approved)", ANSI/ASHRAE 135-2010, April 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC6282] Hui, J. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 September 2011.

14.2. Informative References

Lynn, et al. Expires April 12, 2012 [Page 12]

Internet-Draft IPv6 over MS/TP October 2011

 [Addendum_an]
 ASHRAE, "BSR/ASHRAE Addendum an to ANSI/ASHRAE Standard
 135-2010, BACnet - A Data Communication Protocol for
 Building Automation and Control Networks (Advisory Public
 Review Draft)", September 2011,
 <https://osr.ashrae.org/default.aspx>.

 [EUI-64] IEEE, "Guidelines for 64-bit Global Identifier (EUI-64)
 Registration Authority", March 1997, <http://
 standards.ieee.org/regauth/oui/tutorials/EUI64.html>.

 [RFC2469] Narten, T. and C. Burton, "A Caution On The Canonical
 Ordering Of Link-Layer Addresses", RFC 2469,
 December 1998.

 [TIA-485-A]
 Telecommunications Industry Association, "TIA-485-A,
 Electrical Characteristics of Generators and Receivers for
 Use in Balanced Digital Multipoint Systems (ANSI/TIA/
 EIA-485-A-98) (R2003)", March 2003.

Authors’ Addresses

 Kerry Lynn (editor)
 Consultant

 Phone: +1 978 460 4253
 Email: kerlyn@ieee.org

 Jerry Martocci
 Johnson Controls, Inc.
 507 E. Michigan St
 Milwaukee, WI 53202
 USA

 Phone: +1 414 524 4010
 Email: jerald.p.martocci@jci.com

 Carl Neilson
 Delta Controls, Inc.
 17850 56th Ave
 Surrey, BC V3S 1C7
 Canada

 Phone: +1 604 575 5913

Lynn, et al. Expires April 12, 2012 [Page 13]

Internet-Draft IPv6 over MS/TP October 2011

 Email: cneilson@deltacontrols.com

 Stuart Donaldson
 Honeywell Automation & Control Solutions
 6670 185th Ave NE
 Redmond, WA 98052
 USA

 Email: stuart.donaldson@honeywell.com

Lynn, et al. Expires April 12, 2012 [Page 14]

Network Working Group D. Zhang
Internet-Draft S. Jiang
Intended status: Standards Track Huawei Technologies Co., Ltd
Expires: March 19, 2012 B. Carpenter
 Univ. of Auckland
 September 16, 2011

 An Offset Indicating Option for IPv6
 draft-zhang-6man-offset-option-01

Abstract

 This document defines an Offset Indicating option (OI option)
 encapsulated within an IPv6 Options header. An OI option can provide
 offset information to locate the end of the IPv6 header chain so that
 a node receiving an IPv6 packet is able to skip over the IP header
 chain and access the transport header or other protocol data unit
 directly.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 19, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Zhang, et al. Expires March 19, 2012 [Page 1]

Internet-Draft Offset Indicating Option September 2011

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 4
 3. Format of the Offset Indicating option 4
 4. Processing Rules . 4
 5. Security Considerations . 5
 6. IANA Considerations . 6
 7. Acknowledgements . 6
 8. References . 6
 8.1. Normative References 6
 8.2. Informative References 6
 Authors’ Addresses . 7

Zhang, et al. Expires March 19, 2012 [Page 2]

Internet-Draft Offset Indicating Option September 2011

1. Introduction

 According to [RFC2460], when a node intends to access the payload of
 an IPv6 packet, it needs to parse the extension headers one by one
 until it reaches the end of the header chain. This approach may be
 inefficient for nodes which have no interest in the extension headers
 and intend to quickly access the payload of IPv6 packets.

 A common case is any form of flow classification requiring access to
 the basic IP header 5-tuple {destination address, source address,
 protocol, destination port, source port}. The last three elements
 are only available by following the extension header chain to its
 end. This could be required for various forms of quality of service
 support or for flow logging purposes. Another case would be any form
 of deep packet inspection requiring rapid access to the payload,
 which also requires skipping over the header chain. If packets must
 be processed at line speed, this can be a significant performance
 issue. A method is needed to short-circuit this process.

 A brief discussion of this issue from a security standpoint is
 provided in Section 2.1.9.2 of [RFC4942]. In addition, most existing
 firewall implementations have the capability to verify the
 correctness of IP headers. Therefore, in some cases, it may be more
 efficient for the equipment behind a firewall, such as a host or a
 deep packet inspection device, to skip over the extension headers of
 the IP packets it receives and access the payload directly.

 This document addresses this issue by introducing an Offset
 Indicating option (OI option for short) which indicates the end of
 the header chain. The option is transferred in an IPv6 Options
 header. If there is an existing Hop-by-Hop Options header, the OI
 option will be in it. Otherwise, it will be in a Destination Options
 header. According to the recommendations in [RFC2460], this will
 always place the OI option at the beginning of the header chain.
 Therefore, if necessary, a node receiving an IPv6 packet can jump
 over the whole header chain in a single step to directly access the
 transport header or other protocol data unit.

 This option is an optimization option for certain forwarding nodes.
 It may be safely ignored by nodes that have no interest in the header
 chain. Hence, it does not create any performance degradation. In
 particular, unless there is a Hop-by-Hop Options header for some
 other reason, it does not create any overhead for simple forwarding
 nodes.

Zhang, et al. Expires March 19, 2012 [Page 3]

Internet-Draft Offset Indicating Option September 2011

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Format of the Offset Indicating option

 The format of the Offset Indicating option (OI) option is described
 in Figure 1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Option Type | Opt Data Len | Offset |
 +-+
 | NH after Jump |
 +-+-+-+-+-+-+-+-+
 Figure 1. Option Format

 Option Type: 8 bits. The value is TBD1.

 Note to RFC Editor: please replace TBD1 with the value assigned by
 IANA and delete this note.

 Opt Data Len: as defined in [RFC2460].

 Offset: 16 bits. Indicates the distance (in octets) from the end of
 the option to the end of the header chain.

 NH (Next Header) after Jump: 8 bits. Indicates the type of the
 transport header or other protocol data unit after the header chain.
 This MUST equal the Next Header value in the last Extension Header in
 the packet.

4. Processing Rules

 IPv6 source nodes SHOULD insert this option in every packet that
 contains at least one extension header of any kind, in order to
 maximise its usefulness. However, it MUST NOT be inserted in packets
 that include a Fragment Header, to avoid the case where the offset
 points beyond the end of the first fragment. In any case,
 performance optimisation is impossible in the case of fragmented
 packets.

 Because the options within a header must be processed strictly in the

Zhang, et al. Expires March 19, 2012 [Page 4]

Internet-Draft Offset Indicating Option September 2011

 order that they appear, the OI option is RECOMMENDED to be the first
 option within an Options header. This arrangement will maximize the
 effect of optimization for those routers that use it.

 A Hop-by-Hop Options header MUST NOT be created solely for the
 purpose of carrying the OI option. If and only if the packet
 contains a Hop-by-Hop Options header for some other reason, the OI
 option is placed in it. Otherwise it is placed in a Destination
 Options header.

 This option has an alignment requirement of 4n + 2. (See Section 4.2
 of [RFC2460] for discussion of option alignment.) If this option is
 located first within the Options header, the alignment reqirement is
 met naturally; otherwise the host stack that assembles the IPv6
 header needs to meet the alignment requirement according to the
 context by inserting padding options.

 The OI option is defined on the basis that the size of extension
 headers does not change en-route. However, if a future extension
 header type allows an intermediate device to add additional
 information in the IP extension header chain, this device MUST also
 update the value of the Offset field to point to the new position of
 the payload header.

 If an intermediate device detects that the OI option does not point
 to a valid transport header, the IPv6 packet MUST be discarded.

5. Security Considerations

 The OI option provides a method for nodes which have no interest in
 parsing the header chain to quickly process IP packets. Because
 transport layer security protocols do not cover extension headers,
 and the information in the IPv6 header is sufficient to generate the
 pseudo-header for upper layer protocols, the skipping of extension
 headers will not impact the security verification performed by
 transport layer security protocols. However, in IPsec the situation
 is a little different. Because the ESP header [RFC4303] or the AH
 header [RFC4302] consist of critical information to process the IPsec
 packet and the extension headers after the ESP or AH header may have
 to be authenticated or encrypted, these extension headers cannot be
 skipped over. Therefore, a IPsec implementation MUST NOT skip to the
 end of the header chain under the instruction of the OI option.

 This specification disallows use of the OI option in fragmented
 packets. In addition to efficiency considerations, this prevents the
 option from becoming a vector for a buffer overflow attack.

Zhang, et al. Expires March 19, 2012 [Page 5]

Internet-Draft Offset Indicating Option September 2011

 Attackers cannot use the OI option to hide any undesired information
 in the IPv6 header, because this option is only an optional
 indication for intermediate devices that do not in any case wish to
 inspect such information. Security devices may simply ignore this
 indication and verify every extension header in the chain.

6. IANA Considerations

 IANA is requested to assign the IPv6 Option Type TBD1 for the Offset
 Indicating Option and record it in the IPv6 Destination Options and
 Hop-by-Hop Options registry.

 In accordance with Section 4.2 of [RFC2460], this option type has the
 two most significant bits set to 00 (skip if unrecognized) and the
 third-highest-order bit set to 1 (option data may change en-route).
 This is in case a future IPv6 extension header type may be defined
 whose size may change en-route, requiring the Offset value to be
 updated.

 Note to RFC Editor: please replace TBD1 with the value assigned by
 IANA and delete this note.

7. Acknowledgements

 Valuable comments on this draft were made by Thomas Narten.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

8.2. Informative References

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, December 2005.

 [RFC4942] Davies, E., Krishnan, S., and P. Savola, "IPv6 Transition/

Zhang, et al. Expires March 19, 2012 [Page 6]

Internet-Draft Offset Indicating Option September 2011

 Co-existence Security Considerations", RFC 4942,
 September 2007.

Authors’ Addresses

 Dacheng Zhang
 Huawei Technologies Co., Ltd
 Huawei Building, No.3 Xinxi Rd.,
 Shang-Di Information Industry Base, Hai-Dian District, Beijing
 P.R. China

 Email: zhangdacheng@huawei.com

 Sheng Jiang
 Huawei Technologies Co., Ltd
 Huawei Building, No.3 Xinxi Rd.,
 Shang-Di Information Industry Base, Hai-Dian District, Beijing
 P.R. China

 Email: jiangsheng@huawei.com

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland, 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

Zhang, et al. Expires March 19, 2012 [Page 7]

	draft-chakrabarti-nordmark-energy-aware-nd-01
	draft-hsingh-6man-enhanced-dad-02
	draft-ietf-6man-addr-select-considerations-04
	draft-ietf-6man-addr-select-opt-01
	draft-ietf-6man-udpchecksums-01
	draft-ietf-6man-udpzero-04
	draft-lynn-6man-6lobac-02
	draft-zhang-6man-offset-option-01

