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Abstract

   IPv6 Neighbor Discovery (RFC 4861) protocol has been designed for
   neighbor’s address resolution, unreachability detection, address
   autoconfiguration, router advertisement and solicitation.  With the
   progress of Internet adoption on various industries including home,
   wireless and machine-to-machine communications, there is a desire for
   optimizing legacy IPv6 Neighbor Discovery protocol for energy-
   efficient networks and nodes.  Research indicates that often
   networked- nodes require more energy than stand-alone nodes because a
   node’s energy usage depends on network messages it receives and
   responds.  While reducing energy consumption is essential for battery
   operated nodes in some machines, saving energy actually a cost factor
   in business in general as the explosion of more device usage is
   leading to usage of more servers and network infrastructure in all
   sectors of the society and business.  This document describes a
   method of optimizations by reducing periodic multicast messages,
   frequent Neighbor Solicitation messages and discusses
   interoperability with legacy IPv6 nodes.  This document also
   addresses the ND denial of service issues by introducing node
   Registration procedure.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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   This Internet-Draft will expire on May 3, 2012.

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   IPv6 ND [ND] is based on multicast signaling messages on the local
   link in order to avoid broadcast messages.  Following power-on and
   initialization of the network in IPv6 Ethernet networks, a node joins
   the solicited-node multicast address on the interface and then
   performs duplicate address detection (DAD) for the acquired link-
   local address by sending a solicited-node multicast message to the
   link.  After that it sends multicast router solicitation (RS)
   messages to the all-router address to solicit router advertisements.
   Once the host receives a valid router advertisement (RA) with the "A"
   flag, it autoconfigures the IPv6 address with the advertised prefix
   in the router advertisement (RA).  Besides this, the IPv6 routers
   usually send router advertisements periodically on the network.  RAs
   are sent to the all-node multicast address.  Nodes send Neighbor
   Solicitation (NS) and Neighbor Advertisement (NA) messages to resolve
   the IPv6 address of the destination on the link.  These NS/NA
   messages are also often multicast messages and it is assumed that the
   node is on the same link and relies on the fact that the destination
   node is always powered and generally available.

   The periodic RA messages in IPv6 ND [ND], and NS/NA messages require
   all IPv6 nodes in the link to be in listening mode even when they are
   in idle cycle.  It requires energy for the sleepy nodes which may
   otherwise be sleeping during the idle period.  Non-sleepy nodes also
   save energy if instead of continuous listening, they actually pro-
   actively synchronize their states with one or two entities in the
   network.  With the explosion of Internet-of-things and machine to
   machine communication, more and more devices would be using IPv6
   addresses in the near future.  Today, most electricity usage in
   United States and in developing countries are in the home buildings
   and commercial buildings; the electronic Internet appliances/tablets
   etc. are gaining popularities in the modern home networks.  These
   network of nodes must be conscious about saving energy in order to
   reduce user-cost.  This will eventually reduce stress on electrical
   grids and carbon foot-print.

   IPv6 Neighbor Discovery Optimization for 6LoWPAN [6LOWPAN-ND]
   addresses many of the concerns described above by optimizing the
   Router advertisement, minimizing periodic multicast packets in the
   network and introducing two new options - one for node registration
   and another for prefix dissemination in a network where all nodes in
   the network are uniquely identified by their 64-bit Interface
   Identifier.  EUI-64 identifiers are recommended as unique Interface
   Identifiers, however if the network is isolated from the Internet,
   uniqueness of the identifiers may be obtained by other mechanisms
   such as a random number generator with lowest collision rate.
   Although, the ND optimization [6LOWPAN-ND] applies to 6LoWPAN
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   [LOWPAN] network, the concept is mostly applicable to a power-aware
   IPv6 network.  Therefore, this document generalizes the address
   registration and multicast reduction in [6LOWPAN-ND] to all IPv6
   links.

   Thus optimizing the regular IPv6 Neighbor Discovery [ND] to minimize
   total number of related signaling messages without losing generality
   of Neighbor Discovery and autoconfiguration and making host and
   router communication reliable, is desirable in any IPv6 energy-aware
   networks such as Home or Enterprise building networks and as well as
   Data Centers.

   The goal of this document is to provide energy-aware and optimized
   Neighbor Discovery Protocols in the IPv6 subnets and links.  Thus
   this document does not provide a solution of router advertisements
   and registration for ’multi-level subnets’ as indicated in 6LoWPAN
   [LOWPAN].  In the process, the node registration method is also
   useful for preventing Neighbor Discovery denial of service (DOS)
   attacks.

   The proposed changes can be used in two different ways.  In one case
   all the hosts and routers on a link implement the new mechanisms,
   which gives the maximum benefits.  In another case the link has a
   mixture of new hosts and/or routers and legacy [RFC4861] hosts and
   routers, operating in a mixed-mode providing some of the benefits.

   In the following sections the document describes the basic operations
   of registration methods, optimization of Neighbor Discovery messages,
   interoperability with legacy IPv6 implementations and provides a
   section on use-case scenarios where it can be typically applicable.

2.  Definition Of Terms

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   multi-level Subnets:
      It is a wireless link determined by one IPv6 off-link prefix in a
      network where in order to reach a destination with same prefix a
      packet may have to travel throguh one more ’intermediate’ routers
      which relays the packet to the next ’intermediate’ router or the
      host in its own.
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   Border Rotuer(BR):
      A border router is typically located at the junction Internet and
      Home Network.  An IPv6 router with one interface connected to IPv6
      subnet and other interface connecting to a non-classic IPv6
      interface such as 6LoWPAN interface.  Border router is usually the
      gateway to the IPv6 network or Internet.
   IPv6 ND-energy-aware Rotuer(NEAR):
      It is the default Router of the single hop IPv6 subnet.  This
      router implements the optimizations specified in this document.
      This router should be able to handle both legacy IPv6 nodes and
      nodes that sends registration request.
   Enery-Aware Host(EAH):
      A host in a IPv6 network is considered a IPv6 node without routing
      and forwarding capability.  The EAH is the host which implements
      the host functionality for optimized Neighbor Discovery mentioned
      in this document.
   Legacy IPv6 Host:
      A host in a IPv6 network is considered a IPv6 node without routing
      and forwarding capability and implements RFC 4861 host functions.
   Legacy IPv6 Router:
      An IPv6 Router which implements RFC 4861 Neighbor Discovery
      protocols.
   EUI-64:
      It is the IEEE defined 64-bit extended unique identifier formed by
      concatenation of 24-bit or 36-bit company id value by IEEE
      Registration Authority and the extension identifier within that
      company-id assignment.  The extension identifiers are 40-bit (for
      24-bit company-id) or 28-bit (for the 36-bit company-id)
      respectively.

3.  Assumptions for energy-aware Neighbor Discovery

   o  The energy-aware nodes in the network carry unique interface ID in
      the network in order to form the auto-configured IPv6 address
      uniquely.  An EUI-64 interface ID required for global
      communication.
   o  All nodes are single IPv6-hop away from their default router in
      the subnet.
   o  /64-bit IPv6 prefix is used for Stateless Auto-address
      configuration (SLAAC).  The IPv6 Prefix may be distributed with
      Router Advertisement (RA) from the default router to all the nodes
      in that link.

4.  The set of Requirements for Energy-awareness and optimization

   In future homes, machine-to-machine networks and Data-center Virtual
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   networks, it is essential to reduce unnecessary number of IPv6
   Neighbor Discovery signalings for saving energy and saving bits in
   the network.

   In the cloud computing environment, the concept of IPv6-subnet of
   link-local nodes is often extended across different networks over a
   Virtual LAN.  Thus reducing Neighbor Discovery signaling messages is
   a key for enhanced services.

   o  Node Registration: Node initiated Registration and address
      allocation is done in order to avoid periodic multicast Router
      Advertisement messages and often Neighbor Address resolution can
      be skipped as all packets go via the default router which now
      knows about all the registered nodes.  Node Registration enables
      reduction of all-node and solicited-node multicast messages in the
      subnet.
   o  Address allocation of registered nodes [ND] are performed using
      IPv6 Autoconfiguration [AUTOCONF].
   o  Host initiated Registration and Refresh is done by sending a
      Router Solicitation and then a Neighbor Solicitation Messge using
      Address Registration Option (described below).
   o  The node registration may replace the requirement of doing
      Duplicate Address Detection.
   o  Sleepy hosts are supported by this Neighbor Discovery procedures
      as they are not woken up periodically by Router Advertisement
      multicast messages or Neighbor Solicitation multicast messages.
      Sleepy nodes may wake up in its own schedule and send unicast
      registration refresh messages when needed.
   o  Since this document requires formation of an IPv6 address with an
      unique 64-bit Interface ID(EUI-64) is required for global IPv6
      addresses.  If the network is an isolated one and uses ULA [ULA]
      as its IPv6 address then the deployment should make sure that each
      MAC address in that network has unique address and can provide a
      unique 64-bit ID for each node in the network.
   o  /64-bit Prefix is required to form the IPv6 address.
   o  MTU requirement is same as IPv6 network.

5.  Basic Operations

   In the energy-aware IPv6 Network, the NEAR routers are the default
   routers for the energy-aware hosts (EAH).  During the startup or
   joining the network the host does not wait for the Router
   Advertisements as the NEAR routers do not perform periodic multicast
   RA as per RFC 4861.  Instead, the EAH sends a multicast RS to find
   out a NEAR router in the network.  The RS message is the same as in
   RFC 4861.  The advertising routers in the link responds to the RS
   message with RA with Prefix Information Option and any other options
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   configured in the network.  If EAH hosts will look for a RA from a
   NEAR (E-flag) and choose a NEAR as its default router and
   consequently sends a unicast Neighbor Solicitation Message with ARO
   option in order to register itself with the default router.  The EAH
   does not do Duplicate Address Detection or NS Resolution of
   addresses.  NEAR maintains a binding of registered nodes and
   registration life-time information along with the neighbor Cache
   information.  The NEAR is responsible for forwarding all the messages
   from its EAH including on-link messages from one EAH to another.  For
   details of protocol operations please see the sections below.

   When a IPv6 network consists of both legacy hosts and EAH, and if the
   NEAR is configured for ’mixed mode’ operation, it should be able to
   handle ARO requests and send periodic RA.  Thus it should be able to
   serve both energy-aware hosts and legacy hosts.  Similarly, a legacy
   host compatible EAH falls back to RFC 4861 host behavior if a NEAR is
   not present in the link.  See the section on ’Mixed Mode Operations’
   for details below.

6.  Applicability Statement

   This document aims to guide the implementors to choose an appropriate
   IPv6 neighbor discovery and Address configuration procedures suitable
   for any IPv6 energy-aware network.  These optimization is useful for
   the classical IPv6 subnet and as well as future home networks, Data-
   Centers where saving Neighbor Discovery messages will reduce cost of
   control signaling and network bandwidth and as well as energy of the
   connected nodes.  See use cases towards the end of the document.

   Note that the specification allows ’Mixed-mode’ operation in the
   energy-aware nodes for backward compatibility and transitioning to a
   complete energy-aware network of hosts and routers.  Though the
   energy-aware only nodes will minimize the ND signalling and DOS
   attacks in the LAN.

7.  New Neighbor Discovery Options and Messages

   This section will discuss the registration and de-registration
   procedure of the hosts in the network.

7.1.  Address Registration Option

   The Address Registration Option(ARO) is useful for avoiding Duplicate
   Address Detection messages since it requires a unique ID for
   registration.  The address registration is used for maintaining
   reachability of the node or host by the router.  This option is
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   exactly the same as in [6LOWPAN-ND] which is reproduced here for the
   benefits of the readers.

   The routers keep track of host IP addresses that are directly
   reachable and their corresponding link-layer addresses.  This is
   useful for lossy and lowpower networks and as well as wired networks.
   An Address Registration Option (ARO) can be included in unicast
   Neighbor Solicitation (NS) messages sent by hosts.  Thus it can be
   included in the unicast NS messages that a host sends as part of
   Neighbor Unreachability Detection to determine that it can still
   reach a default router.  The ARO is used by the receiving router to
   reliably maintain its Neighbor Cache.  The same option is included in
   corresponding Neighbor Advertisement (NA) messages with a Status
   field indicating the success or failure of the registration.  This
   option is always host initiated.

   The ARO is required for reliability and power saving.  The lifetime
   field provides flexibility to the host to register an address which
   should be usable (the reachability information may be propagated to
   the routing protocols) during its intended sleep schedule of nodes
   that switches to frequent sleep mode.

   The sender of the NS also includes the EUI-64 of the interface it is
   registering an address from.  This is used as a unique ID for the
   detection of duplicate addresses.  It is used to tell the difference
   between the same node re-registering its address and a different node
   (with a different EUI-64) registering an address that is already in
   use by someone else.  The EUI-64 is also used to deliver an NA
   carrying an error Status code to the EUI-64 based link-local IPv6
   address of the host.

   When the ARO is used by hosts an SLLA option MUST be included and the
   address that is to be registered MUST be the IPv6 source address of
   the Neighbor Solicitation message.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |   Length = 2  |    Status     |   Reserved    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Reserved            |     Registration Lifetime     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +               EUI-64 or equivalent                            +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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   Fields:
   Type:          TBD1 ( See [6LOWPAN-ND] )
   Length:        8-bit unsigned integer.  The length of the option in
                  units of 8 bytes.  Always 2.
   Status:        8-bit unsigned integer.  Indicates the status of a
                  registration in the NA response.  MUST be set to 0 in
                  NS messages.  See below.
   Reserved:      This field is unused.  It MUST be initialized to zero
                  by the sender and MUST be ignored by the receiver.
   Registration Lifetime:  16-bit unsigned integer.  The amount of time
                  in a unit of 10 seconds that the router should retain
                  the Neighbor Cache entry for the sender of the NS that
                  includes this option.
   EUI-64:        64 bits.  This field is used to uniquely identify the
                  interface of the registered address by including the
                  EUI-64 identifier assigned to it unmodified.

   The Status values used in Neighbor Advertisements are:

          +--------+--------------------------------------------+
          | Status |                 Description                |
          +--------+--------------------------------------------+
          |    0   |                   Success                  |
          |    1   |              Duplicate Address             |
          |    2   |             Neighbor Cache Full            |
          |  3-255 | Allocated using Standards Action [RFC2434] |
          +--------+--------------------------------------------+

                                  Table 1

7.2.  Refresh and De-registration

   A host SHOULD send a Registration messge in order to renew its
   registration before its registration lifetime expires in order to
   continue its connectivity with the network.  If anytime, the node
   decides that it does not need the default router’s service anymore,
   it MUST send a de-registration message - i,e, a registration message
   with lifetime being set to zero.  A mobile host SHOULD first de-
   register with the default router before it moves away from the
   subnet.

7.3.  A New Router Advertisement Flag

   A new Router Advertisment flag [RF] is needed in order to distnguish
   a router advertisement from a energy-aware default router or a legacy
   IPv6 router.  This flag is ignored by the legacy IPv6 hosts.  EAH
   hosts use this flag in oder to discover a NEAR router if it receives
   multiple RA from both legacy and NEAR routers.
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             0 1 2 3 4 5 6 7
            +-+-+-+-+-+-+-+-+
            |M|O|H|Prf|P|E|R|
            +-+-+-+-+-+-+-+-+

   The ’E’ bit above MUST be 1 when a IPv6 router implements and
   configures the Energy-aware Router behavior for Neighbor Discovery as
   per this document.  All other cases E bit is 0.

   The legacy IPv6 hosts will ignore the E bit in RA advertisement.  All
   EAH MUST look for E bit in RA in order to determine the Energy-aware
   support in the default router in the link.

   This document assumes that an implementation will have configuration
   knobs to determine whether it is running in classical IPv6 ND [ND] or
   Optimized Energy Aware ND (this document) mode or both(Mixed mode).

8.  Energy-aware Neighbor Discovery Messages

   Router Advertisement(RA):   Periodic RAs SHOULD be avoided.  Only
                           solicited RAs are RECOMMENDED.  An RA MUST
                           contain the Source Link-layer Address option
                           containing Router’s link-layer address (this
                           is optional in [ND].  An RA MUST carry Prefix
                           information option with L bit being unset, so
                           that hosts do not multicast any NS messages
                           as part of address resolution.  A new flag
                           (E-flag) is introduced in the RA in order to
                           characterize the energy-aware mode support.
                           Unlike RFC4861 which suggests multicast
                           Router Advertisements, this specification
                           optimizes the exchange by always unicasting
                           RAs in response to RS.  This is possible
                           since the RS always includes a SLLA option,
                           which is used by the router to unicast the
                           RA.
   Router Solicitation(RS):   Upon system startup, the node sends a
                           multicast or link broadcast (when multicast
                           is not supported at the link-layer) RS to
                           find out the available routers in the link.
                           An RS may be sent at other times as described
                           in section 6.3.7 of RFC 4861.  A Router
                           Solicitation MUST carry Source Link-layer
                           Address option.  Since no periodic RAs are
                           allowed in the energy-aware IPv6 network, the
                           host may send periodic unicast RS to the
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                           routers.  The time-periods for the RS varies
                           on the deployment scenarios and the Default
                           Router Lifetime advertised in the RAs.
   Default Router Selection:   Same as in section 6.3.6 of RFC 4861[ND].
   Neighbor Solicitation (NS):   Neighbor solicitation is used between
                           the hosts and the default-router as part of
                           NUD and registering the host’s address(es).
                           An NS message MUST use the Address
                           Registration option in order to accomplish
                           the registration.
   Neighbor Advertisement (NA):   As defined in [ND] and ARO option.
   Redirect Messages:      A router SHOULD NOT send a Redirect message
                           to a host since the link has non-transitive
                           reachability.  The host behavior is same as
                           described in section 8.3 of RFC 4861[ND],
                           i,e. a host MUST NOT send or accept redirect
                           messages when in energy-aware mode.
                           Same as in RFC 4861[ND]
   MTU option:             As per the RFC 4861.
   Address Resolution:     No NS/NA are sent as the prefixes are treated
                           as off-link.  Thus no address resolution is
                           performed at the hosts.  The routers keep
                           track of Neighbor Solicitations with Address
                           Registration options(ARO) and create an
                           extended neighbor cache of reachable
                           addresses.  The router also knows the nexthop
                           link-local address and corresponding link-
                           layer address when it wants to route a
                           packet.
   Neighbor Unreachability Detection(NUD):   NUD is performed in
                           "forward-progress" fashion as described in
                           section 7.3.1 of RFC 4861[ND].  However, if
                           Address Registration Option is used, the NUD
                           SHOULD be combined with the Re-registration
                           of the node.  This way no extra message for
                           NUD is required.

9.  Energy-Aware Host Behavior

   A host sends Router Solicitation at the system startup and also when
   it suspects that one of its default routers have become
   unreachable(after NUD fails).  The EAH MUST process the E-bit in RA
   as described in this document.  The EAH MUST use ARO option to
   register with the neighboring NEAR router.

   A host SHOULD be able to autoconfigure its IPv6 addresses using the
   IPv6 prefix obtained from Router Advertisement.  The host SHOULD form
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   its link-local address from the EUI-64 as specified by IEEE
   Registration Authority and RFC 2373.  If this draft feature is
   implemented and configured, the host MUST NOT re-direct Neighbor
   Discovery messages.  The host does not require to join solicited-node
   multicast address but it MUST join the all-node multicast address.

   A host always sends packets to (one of) its default router(s).  This
   is accomplished by the routers never setting the ’L’ flag in the
   Prefix options.

   The host is unable to forward routes or participate in a routing
   protocol.  A legacy IPv6 Host compliant EAH SHOULD be able to fall
   back to RFC 4861 host behavior if there is no energy-aware router
   (NEAR) in the link.

   The energy-aware host MUST NOT send or accept re-direct messages.  It
   does not join solicited node multicast address.

10.  The Energy Aware Default Router (NEAR) Behavior

   The main purpose of the default router in the context of this
   document is to receive and process the registration request, forward
   packets from one neighbor to the other, informs the routing protocol
   about the un-availability of the registered nodes if the routing
   protocol requires this information for the purpose of mobility or
   fast convergence.  A default router (NEAR) behavior may be observed
   in one or more interfaces of a Border Router(BR).

   A Border Router normally may have multiple interfaces and connects
   the nodes in a link like a regular IPv6 subnet(s) or acts as a
   gateway between separate networks such as Internet and home networks
   .  The Border Router is responsible for distributing one or more /64
   prefixes to the nodes to identify a packet belonging to the
   particular network.  One or more of the interfaces of the Border
   Router may be connected with the energy-aware hosts or a energy-aware
   router(NEAR).

   The Energy-Aware default router MUST not send periodic RA unless it
   is configured to support both legacy IPv6 and energy-aware hosts.  If
   the Router is configured for Energy-Aware hosts support, it MUST send
   Router Advertisments with E-bit flag ON and MUST NOT set ’L’ bit in
   the advertisements.

   The router SHOULD NOT garbage collect Registered Neighbor Cache
   entries since they need to retain them until the Registration
   Lifetime expires.  If a NEAR receives a NS message from the same host
   one with ARO and another without ARO then the NS message with ARO
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   gets the precedence and the NS without ARO is ignored.  This behavior
   protects the router from Denial Of Service attacks.  Similarly, if
   Neighbor Unreachability Detection on the router determines that the
   host is UNREACHABLE (based on the logic in [ND]), the Neighbor Cache
   entry SHOULD NOT be deleted but be retained until the Registration
   Lifetime expires.  If an ARO arrives for an NCE that is in
   UNCREACHABLE state, that NCE should be marked as STALE.

   A default router keeps a cache for all the nodes’ IP addresses,
   created from the Address Registration processing.

10.1.  Router Configuration Modes

   An energy-aware Router(NEAR) MUST be able to configure in energy-
   aware-only mode where it will expect all hosts register with the
   router following RS; thus will not support legacy hosts.  However, it
   will create legacy NCE for NS messages for other routers in the
   network.  This mode is able to prevent ND flooding on the link.

   An energy-aware Router(NEAR) SHOULD be able to have configuration
   knob to configure itself in Mixed-Mode where it will support both
   energy-aware hosts and legacy hosts.  However even in mixed-mode the
   router should check for duplicate entries in the NCE before creating
   a new ones and it should rate-limit creating new NCE based on
   requests from the same host MAC address.

   The RECOMMENDED default mode of operation for the energy-aware router
   is Mixed-mode.

11.  NCE Management in Energy-Aware Routers

   The use of explicit registrations with lifetimes plus the desire to
   not multicast Neighbor Solicitation messages for hosts imply that we
   manage the Neighbor Cache entries slightly differently than in [ND].
   This results in two different types of NCEs and the types specify how
   those entries can be removed:

   Legacy:               Entries that are subject to the normal rules in
                         [ND] that allow for garbage collection when low
                         on memory.  Legacy entries are created only
                         when there is no duplicate NCE.  In mixed-mode
                         and energy-aware mode the legacy entries are
                         converted to the registered entries upon
                         successful processing of ARO.  Legacy type can
                         be considered as union of garbage-collectible
                         and Tentative Type NCEs described in
                         [6LOWPAN-ND].
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   Registered:           Entries that have an explicit registered
                         lifetime and are kept until this lifetime
                         expires or they are explicitly unregistered.

   Note that the type of the NCE is orthogonal to the states specified
   in [ND].

   When a host interacts with a router by sending Router Solicitations
   that does not match with the existing NCE entry of any type, a Legacy
   NCE is first created.  Once a node successfully registers with a
   Router the result is a Registered NCE.  As Routers send RAs to legacy
   hosts, or receive multicast NS messages from other Routers the result
   is Legacy NCEs.  There can only be one kind of NCE for an IP address
   at a time.

   A Router Solicitation might be received from a host that has not yet
   registered its address with the router or from a legacy[ND] host in
   the Mixed-mode of operation.

   In the ’Enrgy-aware’ only mode the router MUST NOT modify an existing
   Neighbor Cache entry based on the SLLA option from the Router
   Solicitation.  Thus, a router SHOULD create a tentative Legacy
   Neighbor Cache entry based on SLLA option when there is no match with
   the existing NCE.  Such a legacy Neighbor Cache entry SHOULD be timed
   out in TENTATIVE_LEGACY_NCE_LIFETIME seconds unless a registration
   converts it into a Registered NCE.

   However, in ’Mixed-mode’ operation, the router does not require to
   keep track of TENTATIVE_LEGACY_NCE_LIFETIME as it does not know if
   the RS request is from a legacy host or the energy-aware hosts.
   However, it creates the legacy type of NCE and updates it to a
   registered NCE if the ARO NS request arrives corresponding to the
   legacy NCE.  Successful processing of ARO will complete the NCE
   creation phase.

   If ARO did not result in a duplicate address being detected, and the
   registration life-time is non-zero, the router creates and updates
   the registered NCE for the IPv6 address. if the Neighbor Cache is
   full and new entries need to be created, then the router SHOULD
   respond with a NA with status field set to 2.  For successful
   creation of NCE, the router SHOULD include a copy of ARO and send NA
   to the requestor with the status field 0.  A TLLA(Target Link Layer)
   Option is not required with this NA.

   Typically for energy-aware routers (NEAR), the registration life-time
   and EUI-64 are recorded in the Neighbor Cache Entry along with the
   existing information described in [ND].  The registered NCE are meant
   to be ready and reachable for communication and no address resolution
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   is required in the link.  The energy-aware hosts will renew their
   registration to keep maintain the state of reachability of the NCE at
   the router.  However the router may do NUD to the idle or unreachable
   hosts as per [ND].

11.1.  Handling ND DOS Attack

   IETF community has discussed possible issues with /64 DOS attacks on
   the ND networks when a attacker host can send thousands of packets to
   the router with a on-link destination address or sending RS messages
   to initiate a Neighbor Solicitation from the neighboring router which
   will create a number of INCOMPLETE NCE entries for non-existent nodes
   in the network resulting in table overflow and denial of service of
   the existing communications.

   The energy-aware behavior documented in this specification avoids the
   ND DOS attacks by:

   o  Having the hosts register with the default router
   o  Having the hosts send their packets via the default router
   o  Not resolving addresses for the Routing Solicitor by mandating
      SLLA option along with RS
   o  Checking for duplicates in NCE before the registration
   o  Checking against the MAC-address and EUI-64 id is possible now for
      NCE matches
   o  On-link IPv6-destinations on a particular link must be registered
      else these packets are not resolved and extra NCEs are not created

   It is recomended that Mixed-mode operation and legacy hosts SHOULD
   NOT be used in the IPv6 link in order to avoid the ND DOS attacks.
   For the general case of Mixed-mode the router does not create
   INCOMPLETE NCEs for the registered hosts, but it follows the [ND]
   steps of NCE states for legacy hosts.

12.  Mixed-Mode Operations

   Mixed-Mode operation discusses the protocol behavior where the IPv6
   subnet is composed with legacy IPv6 Neighbor Discovery compliant
   nodes and energy-aware IPv6 nodes implementing this specification.

   The mixed-mode model SHOULD support the following configurations in
   the IPv6 link:
   o  The legacy IPv6 hosts and energy-aware-hosts in the network and a
      NEAR router
   o  legacy IPv6 default-router and energy-aware hosts(EAH) in the link
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   o  one router is in mixed mode and the link contains both legacy IPv6
      hosts and EAH
   o  A link contains both energy-aware IPv6 router and hosts and legacy
      IPv6 routers and hosts and each host should be able to communicate
      with each other.

   In mixed-mode operation, a NEAR MUST be configured for mixed-mode in
   order to support the legacy IPv6 hosts in the network.  In mixed-
   mode, the NEAR MUST act as proxy for Neighbor Solicitation for DAD
   and Address Resolution on behalf of its registered hosts on that
   link.  It should follow the NCE management for the EAH as described
   in this document and follow RFC 4861 NCE management for the legacy
   IPv6 hosts.  Both in mixed-mode and energy-aware mode, the NEAR sets
   E-bit flag in the RA and does not set ’L’ on-link bit.

   If a NEAR receives NS message from the same host one with ARO and
   another without ARO then the NS message with ARO gets the precedence.

   An Energy-Aware Host implementation SHOULD support falling back to
   legacy IPv6 node behavior when no energy-aware routers are available
   in the network during the startup.  If the EAH was operational in
   energy-aware mode and it determines that the NEAR is no longer
   available, then it should send a RS and find an alternate default
   router in the link.  If no energy-aware router is indicated from the
   RA, then the EAH SHOULD fall back into RFC 4861 behavior.  On the
   otherhand, in the energy-aware mode EAH SHOULD ignore multicast
   Router Advertisements(RA) sent by the legacy and Mixed-mode routers
   in the link.

   The routers that are running on energy-aware mode or legacy mode
   SHOULD NOT dynamically switch the mode without flushing the Neighbor
   Cache Entries.

13.  Bootstrapping

   If the network is a energy-aware IPv6 subnet, and the energy-aware
   Neighbor Discovery mechansim is used by the hosts and routers as
   described in this document.  At the start, the node uses its link-
   local address to send Router Solicitation and then it sends the Node
   Registration message as described in this document in order to form
   the address.  The Duplicate address detection process should be
   skipped if the network is guaranteed to have unique interface
   identifiers which is used to form the IPv6 address.
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      Node                                                  Router

       |                                                      |

   1.  |       ---------- Router Solicitation -------->       |

       |                     [SLLAO]                          |

   2.  |       <-------- Router Advertisement ---------       |

       |                     [PIO + SLLAO]                    |
       |                                                      |

   3.  |       ----- Address Registration (NS) -------->      |

       |                     [ARO + SLLAO]                    |

   4.  |       <-------- Neighbor Advertisement -------       |

       |                    [ARO with Status code]            |

   5. ====> Address Assignment Complete

    Figure 1: Neighbor Discovery Address Registration and bootstrapping

   In the mixed mode operation, it is expected that logically there will
   be at least one legacy IPv6 router and another NEAR router present in
   the link.  The legacy IPv6 router will follow RFC 4861 behavior and
   NEAR router will follow the energy-aware behavior for registration,
   NCE maintenance, forwarding packets from a EAH and it will also act
   as a ND proxy for the legacy IPv6 hosts querying to resolve a EAH
   node.

   A legacy IPv6 host and EAH are not expected to see a difference in
   their bootstrapping if both legacy and energy-aware functionalities
   of rotuers are available in the network.  It is RECOMMEDED that the
   EAH implementation SHOULD be able to behave like a legacy IPv6 host
   if it discovers that no energy-aware routing support is present in
   the link.

14.  Handling Sleepy Nodes

   The solution allows the sleepy nodes to complete its sleep schedule
   without waking up due to periodic Router Advertisement messages or
   due to Multicast Neighbor Solicitation for address resolution.  The
   node registration lifetime SHOULD be synchronized with its sleep
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   interval period in order to avoid waking up in the middle of sleep
   for registration refresh.  Depending on the application, the
   registration lifetime SHOULD be equal to or integral multiple of a
   node’s sleep interval period.

15.  Use Case Analysis

   This section provides applicability scenarios where the energy-aware
   Neighbor Discovery will be most beneficial.

15.1.  Data Center Routers on the link

   Energy-aware Routers and hosts are useful in IPv6 networks in the
   Data Center as they produce less signaling and also provides ways to
   minimize the ND flood of messages.  Moreover, this mechanism will
   work with data-center nodes which are deliberately in sleep mode for
   saving energy.

   This solution will work well in Data Center Virtual network and VM
   scenarios where number of VLANs are very high and ND signalings are
   undesirably high due the multicast messaging and periodic Router
   Advertisments and Neighbor Unreachability detections.

15.2.  Edge Routers and Home Networks

   An Edge Router in the network will also benefit implementing the
   energy-aware Neighbor Discovery behavior in order to save the
   signaling and keeping track of the registered nodes in its domain.  A
   BNG sits at the operator’s edge network and often the BNG has to
   handle a large number of home CPEs.  If a BNG runs Neighbor Discovery
   protocol and acts as the default router for the CPE at home, this
   solution will be helpful for reducing the control messages and
   improving network performances.

   The same solution can be run on CPE or Home Residential Gateways to
   assign IPv6 addresses to the wired and wireless home devices without
   the problem of ND flooding issues and consuming less power.  It
   provides mechanism for the sleepy nodes to adjust their registration
   lifetime according to their sleep schedules.

15.3.  M2M Networks

   Any Machine-to-machine(M2M) networks such as IPv6 surveilance
   networks, wireless monitoring networks and other m2m networks desire
   for energy-aware control protocols and dynamic address allocation.
   The in-built address allocation and autoconfiguration mechanism in
   IPv6 along with the default router capability will be useful for the

Chakrabarti, et al.        Expires May 3, 2012                 [Page 19]



Internet-Draft               Energy-aware-nd                October 2011

   simple small-scale networks without having the burden of DHCPv6
   service and Routing Protocols.

16.  Mobility Considerations

   If the hosts move from one subnet to another, they MUST first de-
   register and then register themselves in the new subnet or network.
   Otherwise, the regular IPv6 Mobility [IPV6M]behavior applies.

17.  Updated Neighbor Discovery Constants

   This section discusses the updated default values of ND constants
   based on [ND] section 10.  New and changed constants are listed only
   for energy-aware-nd implementation.

   Router Constants:
   MAX_RTR_ADVERTISEMENTS(NEW)             3 transmissions
   MIN_DELAY_BETWEEN_RAS(CHANGED)          1 second
   TENTATIVE_LEGACY_NCE_LIFETIME(NEW)      30 seconds

   Host Constants:
   MAX_RTR_SOLICITATION_INTERVAL(NEW)      60 seconds

18.  Security Considerations

   These optimizations are not known to introduce any new threats
   against Neighbor Discovery beyond what is already documented for IPv6
   [RFC 3756].

   Section 11.2 of [ND] applies to this document as well.

   This mechanism minimizes the possibility of ND /64 DOS attacks in
   energy-aware mode.  See Section 11.1.

19.  IANA Considerations

   A new flag (E-bit) in RA has been introduced.  IANA assignment of the
   E-bit flag is required upon approval of this document.

20.  Changelog

   Changes from 00 to 01:
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      o Removed ABRO options and Multi-level subnet concept
      o Removed intermediate-router concept, behavior and definition
      o Added use-cases, Support for Mixed-mode operations and a diagram
      for bootstrapping scenario.
      o Added updates to ND constant values
      o A new co-author has beed added
      o Text for NCE Management and ND-DOS handling has been added
      o A new Router Advertisement flag has been added

21.  Acknowledgements

   The primary idea of this document are from 6LoWPAN Neighbor Discovery
   document [6LOWPAN-ND] and the discussions from the 6lowpan working
   group members, chairs Carsten Bormann and Geoff Mulligan and through
   our discussions with Zach Shelby, editor of the [6LOWPAN-ND].

   The inspiration of such a IPv6 generic document came from Margaret
   Wasserman who saw a need for such a document at the IOT workshop at
   Prague IETF.

22.  References

22.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2434]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 2434,
              October 1998.

   [6LOWPAN-ND]
              Shelby, Z., Chakrabarti, S., and E. Nordmark, "ND
              Optimizations for 6LoWPAN", draft-ietf-6lowpan-nd-17.txt
              (work in progress), June 2011.

   [ND]       Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
              "Neighbor Discovery for IP version 6", RFC 4861,
              September 2007.

   [LOWPAN]   Montenegro, G. and N. Kushalnagar, "Transmission of IPv6
              Packets over IEEE 802.15.4 networks", RFC 4944,
              September 2007.

   [LOWPANG]  Kushalnagar, N. and G. Montenegro, "6LoWPAN: Overview,
              Assumptions, Problem Statement and Goals", RFC 4919,

Chakrabarti, et al.        Expires May 3, 2012                 [Page 21]



Internet-Draft               Energy-aware-nd                October 2011

              August 2007.

22.2.  Informative References

   [IPV6]     Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6), Specification", RFC 2460, December 1998.

   [AUTOCONF]
              Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
              Autoconfiguration", RFC 4862, September 2007.

   [SEND]     Arkko, J., Kempf, J., Zill, B., and P. Nikander, "Secure
              Neighbor Discovery", RFC 3971, March 2005.

   [AUTOADHOC]
              Baccelli, E. and M. Townsley, "IP Addressing Model in
              Adhoc Networks",
              draft-ietf-autoconf-adhoc-addr-model-02.txt (work in
              progress), December 2009.

   [IEEE]     IEEE Computer Society, "IEEE Std. 802.15.4-2003",  ,
              October 2003.

   [PD]       Miwakawya, S., "Requirements for Prefix Delegation",
              RFC 3769, June 2004.

   [RF]       Haberman, B. and B. Hinden, "IPv6 Router Advertisement
              Flags option", RFC 5175, March 2008.

   [ULA]      "Unique Local IPv6 Addresses", RFC 4193.

   [IPV6M]    Johnson, D., Perkins, C., and J. Arkko, "Mobility Support
              in IPv6", RFC 6275, July 2011.

Authors’ Addresses

   Samita Chakrabarti
   Ericsson
   San Jose, CA
   USA

   Email: samita.chakrabarti@ericsson.com

Chakrabarti, et al.        Expires May 3, 2012                 [Page 22]



Internet-Draft               Energy-aware-nd                October 2011

   Erik Nordmark
   Cisco Systems
   San Jose, CA
   USA

   Email: nordmark@cisco.com

   Margaret Wasserman
   Painless Security

   Email: mrw@lilacglade.org

Chakrabarti, et al.        Expires May 3, 2012                 [Page 23]





Network Working Group                                           R. Asati
Internet-Draft                                                  H. Singh
Updates: 4862 (if approved)                                    W. Beebee
Intended status: Standards Track                     Cisco Systems, Inc.
Expires: April 30, 2012                                          E. Dart
                                              Lawrence Berkeley National
                                                              Laboratory
                                                               W. George
                                                       Time Warner Cable
                                                             C. Pignatro
                                                     Cisco Systems, Inc.
                                                        October 28, 2011

                  Enhanced Duplicate Address Detection
                 draft-hsingh-6man-enhanced-dad-02.txt

Abstract

   Appendix A of the IPv6 Duplicate Address Detection (DAD) document in
   RFC 4862 discusses Loopback Suppression and DAD.  However, RFC 4862
   does not settle on one specific automated means to detect loopback of
   Neighbor Discovery (ND of RFC 4861) messages used by DAD.  Several
   service provider communities have expressed a need for automated
   detection of looped backed ND messages used by DAD.  This document
   includes mitigation techniques and then outlines the Enhanced DAD
   algorithm to automate detection of looped back IPv6 ND messages used
   by DAD.  For network loopback tests, the Enhanced DAD algorithm
   allows IPv6 to self-heal after a loopback is placed and removed.
   Further, for certain access networks the document automates resolving
   a specific duplicate address conflict.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 30, 2012.
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1.  Terminology

   o  DAD-failed state - Duplication Address Detection failure as
      specified in [RFC4862].  Failure also includes if the Target
      Address is optimistic.  Optimistic DAD is specified in [RFC4429].

   o  Looped back message - also referred to as a reflected message.
      The message sent by the sender is received by the sender due to
      the network or a Upper Layer Protocol on the sender looping the
      message back.

   o  Loopback - A function in which the router’s interface to the
      network is looped back, resulting in interface unavailability for
      regular data traffic forwarding.  See more details in section 9.1
      of [RFC1247].  Loopback function is commonly used to gain
      information on the quality of this interface, by employing
      mechanisms such as ICMPv6 pings, bit-error test etc.  Loopback
      function may be done locally or remotely.

   o  NS(DAD) - shorthand notation to denote an NS with unspecified IPv6
      source-address issued during DAD.

2.  Introduction

   Appendix A of [RFC4862] discusses Loopback Suppression and Duplicate
   Address Detection (DAD).  However, [RFC4862] does not settle on one
   specific automated means to detect loopback of ND messages used by
   DAD.  One specific DAD message is a Neighbor Solicitation (NS),
   specified in [RFC4861].  The NS is issued by the network interface of
   an IPv6 node for DAD.  Another message involved in DAD is a Neighbor
   Advertisement (NA).  The Enhanced DAD algorithm proposed in this
   document focuses on detecting an NS looped back to the transmitting
   interface during the DAD operation.  Detecting a looped back NA is of
   no use because no problems with DAD will occur if a node receives a
   looped back NA.  Detecting of any other looped back ND messages
   outside of the DAD operation is not critical and thus this document
   does not cover such detection.  The document also includes a
   Mitigation section that discusses means already available to mitigate
   the loopback problem.

   Recently service providers have reported a DAD loopback problem.
   Loopback testing is underway on a circuit connected to an interface
   on a router.  The interface on the router is enabled for IPv6.  The
   interface issues a NS for the IPv6 link-local address DAD.  The NS is
   reflected back to the router interface due to the loopback condition
   of the circuit, and the router interface enters a DAD-failed state.
   In contrast to IPv4, IPv6 will not return to operation on the
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   interface when the loopback condition is cleared without manual
   intervention.  In another service provider network, two broadband
   modems in a home have the Ethernet ports of each modem connected to a
   network hub.  The access concentrator serving the modems is the
   first-hop IPv6 router for the modems.  The access concentrator also
   supports proxying of DAD messages.  Each modem is IPv4 online.  The
   network interface of the access concentrator serving the two
   broadband modems is enabled for IPv6 and the interface issues a
   NS(DAD) message for the IPv6 link-local address.  The NS message
   reaches one modem first and this modem sends the message to the hub
   which sends the message to the second modem which forwards the
   message back to the access concentrator.  The looped back NS message
   causes the network interface on the access concentrator to be in a
   DAD-failed state.  Such a network interface typically serves over six
   thousand broadband modems causing all the modems (and hosts behind
   the modems) to fail to get IPv6 online on the access network.
   Additionally, it may be tedious for the access concentrator to find
   out which of the six thousand or more homes looped back the DAD
   message.  Clearly there is a need for automated detection of looped
   back NS messages during DAD operations by a node.

3.  Operational Mitigation Options

   Two mitigation options are described below.  The mechanisms do not
   require any change to existing implementations.

3.1.  Disable DAD on Interface

   One can disable DAD on an interface and then there is no NS(DAD)
   issued to be looped back.  DAD is disabled by setting the interface’s
   DupAddrDetectTransmits variable to zero.  While this mitigation may
   be the simplest the mitigation has three drawbacks.

   It would likely require careful analysis of configuration on such
   point-to-point interfaces, a one-time manual configuration on each of
   such interfaces, and more importantly, genuine duplicates in the link
   will not be detected.

   A network operator MAY use this mitigation.

3.2.  Dynamic Disable/Enable of DAD Using Layer 2 Protocol

   It is possible that one or more layer 2 protocols include provisions
   to detect the existence of a loopback on an interface circuit,
   usually by comparing protocol data sent and received.  For example,
   PPP uses magic number (section 6.4 of [RFC1661]) to detect a loopback
   on an interface.
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   When a layer 2 protocol detects that a loopback is present on an
   interface circuit, the device MUST temporarily disable DAD on the
   interface, and when the protocol detects that a loopback is no longer
   present (or the interface state has changed), the device MUST
   (re-)enable DAD on that interface.

   This solution requires no protocol changes.  This solution SHOULD be
   enabled by default, and MUST be a configurable option.

   This mitigation has several benefits.  They are

   1.  It leverages layer 2 protocol’s built-in loopback detection
       capability, if available.

   2.  It scales better (since it relies on an event-driven), requires
       no additional state, timer etc.  This may be a significant
       scaling consideration on devices with hundreds or thousands of
       interfaces that may be in loopback for long periods of time (such
       as while awaiting turn-up or during long-duration intrusive bit
       error rate tests).

3.3.  Operational Considerations

   The mitigation options discussed in the document do not require the
   devices on both ends of the circuit to support the mitigation
   functionality simultaneously, and do not propose any capability
   negotiation.  Suffice to say that the mitigation options are well
   effective for the unidirectional loopback.

   The mitigation options may not be effective for the bidirectional
   loopback (i.e. the loopback is placed in both directions of the
   circuit interface, so as to identify the faulty segment) if only one
   device followed a mitigation option specified in this document, since
   the other device would follow current behavior and disable IPv6 on
   that interface due to DAD until manual intervention restores it.

   This is nothing different from what happens today (without the
   solutions proposed by this document) in case of unidirectional
   loopback.  Hence, it is expected that an operator would resort to
   manual intervention for the devices not compliant with this document,
   as usual.

4.  The Enhanced DAD Algorithm

   The Enhanced DAD algorithm covers detection of a looped back NS(DAD)
   message.  The document proposes use of the Nonce Option specified in
   the SEND document of [RFC3971].  The nonce is a random number as
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   specified in [RFC3971].  If SEND is enabled on the router and the
   router also supports the new automated ND loopback detection
   (specified in this document), there is integration with the Enhanced
   DAD algorithm and SEND.  See more details in the Impact on SEND
   section.

   When the IPv6 network interface issues a NS(DAD) message, the
   interface includes the Nonce Option in the NS(DAD) message and saves
   the nonce in local store.  Subsequently if the interface receives an
   identical NS(DAD) message, the interface logs a system management
   message, updates any statistics counter, and drops the looped back
   NS(DAD).  If the DupAddrDetectTransmits variable for the interface is
   greater than one, subsequent NS(DAD) messages for the same Target
   Address should be suppressed.  If the interface receives a NS(DAD)
   message with a different nonce but TargetAddress matches a tentative
   or optimistic address on the interface, the interface logs a DAD-
   failed system management message, updates any statistics, and behaves
   identical to the behavior specified in [RFC4862] for DAD failure.

   Six bytes of random nonce is sufficiently large for nonce collisions.
   However if there is a collision because two nodes generated the same
   random nonce (that are using the same Target address in their
   NS(DAD)), then the algorithm will incorrectly detect a looped back
   NS(DAD) when the NS(DAD) was issued to signal a genuine duplicate.
   Since each looped back NS(DAD) event is logged to system management,
   the administrator of the network will have to intervene manually.

   The algorithm is capable of detecting any ND solicitation (NS and
   Router Solicitation) or advertisement (NA and Router Advertisement)
   that is looped back.  However, saving a nonce and nonce related data
   for all ND messages has impact on memory of the node and also adds
   the algorithm state to a substantially larger number of ND messages.
   Therefore this document does not recommend using the algorithm
   outside of the DAD operation by an interface on a node.

4.1.  General Rules

   A node MUST implement detection of looped back NS(DAD) messages
   during DAD for an interface address.

4.2.  Processing Rules for Senders

   If a node has been configured to use the Enhanced DAD algorithm, when
   sending a NS(DAD) for a tentative or optimistic interface address the
   sender MUST generate a random nonce associated with the interface
   address, MUST save the nonce, and MUST include the nonce in the Nonce
   Option included in the NS(DAD).  If a looped back NS(DAD) is detected
   by the interface, and if the DupAddrDetectTransmits variable for the
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   interface is greater than one, subsequent NS(DAD) messages for the
   same Target Address SHOULD be suppressed.

4.3.  Processing Rules for Receivers

   If the the node has been configured to use the Enhanced DAD algorithm
   and an interface on the node receives any NS(DAD) message that
   matches the interface address (in tentative or optimistic state), the
   receiver compares the nonce in the message with the saved nonce.  If
   a match is found, the node SHOULD log a system management message,
   SHOULD update any statistics counter, and MUST drop the received
   message.  If the received NS(DAD) message includes a nonce and no
   match is found with the saved nonce, the node SHOULD log a system
   management message for DAD-failed and SHOULD update any statistics
   counter.

4.4.  Impact on SEND

   The SEND document uses the Nonce Option in the context of matching an
   NA with an NS.  However, no text in SEND has an explicit mention of
   detecting looped back ND messages.  If this document updates
   [RFC4862], SEND should be updated to integrate with the Enhanced DAD
   algorithm.  A minor update to SEND would be to explicitly mention
   that the nonce in SEND is also used by SEND to detect looped back NS
   messages during DAD operations by the node.  In a mixed SEND
   environment with SEND and unsecured nodes, the lengths of the nonce
   used by SEND and unsecured nodes MUST be identical.

4.5.  Changes to RFC 4862

   The following text is added to [RFC4862] at a yet to be determined
   location in [RFC4862].

   A router that supports IPv6 DAD MUST implement the detection of
   looped back NS messages during DAD operation as specified in this
   document.  A network interface on any other IPv6 node that is not a
   router SHOULD implement the detection of looped back NS messages
   during DAD operation as specified in this document.

4.6.  Actions to Perform on Detecting a Genuine Duplicate

   As described in paragraphs above the nonce can also serve to detect
   genuine duplicates even when the network has potential for looping
   back ND messages.  When a genuine duplicate is detected, the node
   follows the manual intervention specified in section 5.4.5 of
   [RFC4862].  However, in certain networks such as an access network if
   the genuine duplicate matches the tentative or optimistic IPv6
   address of a network interface of the access concentrator, automated
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   actions are proposed.

   One access network is a cable broadband deployment where the access
   concentrator is the first-hop IPv6 router to several thousand
   broadband modems.  The router also supports proxying of DAD messages.
   The network interface on the access concentrator initiates DAD for an
   IPv6 address and detects a genuine duplicate due to receiving an
   NS(DAD) or an NA message.  On detecting such a duplicate the access
   concentrator logs a system management message, drops the received ND
   message, and blocks the modem on whose layer 2 service identifier the
   NS(DAD) or NA message was received on.

   The network described above follows a trust model where a trusted
   router serves un-trusted IPv6 host nodes.  Operators of such networks
   have a desire to take automated action if a network interface of the
   trusted router has a tentative or optimistic address duplicate with a
   host served by trusted router interface.  Any other network that
   follows the same trust model MAY use the automated actions proposed
   in this section.

5.  Security Considerations

   The nonce can be exploited by a rogue deliberately changing the nonce
   to fail the looped back detection specified by the Enhanced DAD
   algorithm.  SEND is recommended for this exploit.  For any mitigation
   suggested in the document such as disabling DAD has an obvious
   security issue before a remote node on the link can issue reflected
   NS(DAD) messages.  Again, SEND is recommended for this exploit.

6.  IANA Considerations

   None.
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Abstract

   RFC 3484 defines default address selection mechanisms for IPv6 that
   allow nodes to select appropriate address when faced with multiple
   source and/or destination addresses to choose between.  The RFC
   allowed for the future definition of methods to administratively
   configure the address selection policy information.  This document
   defines a new DHCPv6 option for such configuration, allowing a site
   administrator to distribute address selection policy, and thus
   control the address selection behavior of nodes in their site.  While
   RFC 3484 is in the process of being updated, with a revised default
   policy table, that table may not suit every scenario, and thus the
   DHCPv6 option defined in this text may be used to override that
   policy where desired.
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   provisions of BCP 78 and BCP 79.
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   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

1.  Introduction

   RFC 3484 [RFC3484] describes default algorithms for selecting an
   address when a node has multiple destination and/or source addresses
   to choose between by using an address selection policy.  In Section 2
   of RFC 3484, it is suggested that the default policy table may be
   administratively configured to suit the specific needs of a site.
   This text defines a new DHCPv6 option for such configuration.

   Some problems have been identified with the default address selection
   policy detailed in RFC 3484 [RFC5220], and as a result the RFC is in
   the process of being updated, as per [I-D.ietf-6man-rfc3484-revise].
   While this update provides a better default address selection policy,
   it is unlikely that such a default will suit all scenarios, and thus
   mechanisms to control the source address selection policy will be
   necessary.  Requirements for those mechanisms are described in
   [RFC5221], while solutions are discussed in
   [I-D.ietf-6man-addr-select-sol] and
   [I-D.ietf-6man-addr-select-considerations].  Those documents have
   helped shape the improvements in [I-D.ietf-6man-rfc3484-revise] as
   well as the DHCPv6 option defined here.
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1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

1.2.  Terminology

   This document uses the terminology defined in [RFC2460] and the
   DHCPv6 specification defined in [RFC3315]

2.  Address Selection Policy Option

   The Address Selection Policy Option provides the policy table for
   address selection rules as described in RFC 3484 and updated in
   [I-D.ietf-6man-rfc3484-revise].

   Each end node is expected to configure its policy table, as described
   in RFC 3484, using the Address Selection Policy option information as
   described in the section below on processing the option.

   The format of the Address Selection Policy option is given below:
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       0                   1                   2                   3

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          OPTION_DASP          |         option-len            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    label      |  precedence   |z|  reserved   |   prefix-len  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               zone-index (if present (z = 1))                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                   Prefix   (Variable Length)                  |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    label      |  precedence   |z|  reserved   |   prefix-len  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               zone-index (if present (z = 1))                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                   Prefix   (Variable Length)                  |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      .                                                               .
      .                                                               .
      .                                                               .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    label      |  precedence   |z|  reserved   |   prefix-len  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |               zone-index (if present (z = 1))                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                   Prefix   (Variable Length)                  |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                [Fig. 1]

   Fields:
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   option-code:  OPTION_DASP (TBD)

   option-len:  The total length of the label fields, precedence fields,
        zone-index fields, prefix-len fields, and prefix fields in
        octets.

   label:  An 8-bit unsigned integer; this value is used to make a
        combination of source address prefixes and destination address
        prefixes.

   precedence:  An 8-bit unsigned integer; this value is used for
        sorting destination addresses.

   z bit:  ’zone-index’ bit.  If z bit is set to 1, 32 bit zone-index
        value is included right after the "prefix-len" field, and
        "Prefix" value continues after the "zone-index" field.  If z bit
        is 0, "Prefix" value continues right after the "prefix-len"
        value.

   reserved:  6-bit reserved field.  Initialized to zero by sender, and
        ignored by receiver.

   zone-index:  If the z-bit is set to 1, this field is inserted between
        "prefix-len" field and "Prefix" field.  The zone-index field is
        an 32-bit unsigned integer and used to specify zones for scoped
        addresses.  This bit length is defined in RFC3493 [RFC3493] as
        ’scope ID’.

   prefix-len:  An 8-bit unsigned integer; the number of leading bits in
        the prefix that are valid.  The value ranges from 0 to 128.  The
        Prefix field is 0, 4, 8, 12, or 16 octets, depending on the
        length.

   Prefix:  A variable-length field containing an IP address or the
        prefix of an IP address.  An IPv4-mapped address [RFC4291] must
        be used to represent an IPv4 address as a prefix value.

3.  Appearance of this Option

   The Address Selection Policy option MUST NOT appear in any messages
   other than the following ones: Solicit, Advertise, Request, Renew,
   Rebind, Information-Request, and Reply.
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4.  Processing the Address Selection Policy Option

   This section describes how to process received Address Selection
   Policy Options at the DHCPv6 client.

   This option’s concept is to serve as a hint for a node about how to
   behave in the network.  So, basically, it should be up to the node’s
   administrator how to make use of or even ignore the received policy
   information.

   However, we need to define the default behavior of the receiving node
   in order to reduce operational complexity.

4.1.  Handling the local policy table

   RFC3484 defines the default policy for the policy table.  Also, a
   user is usually able to configure the policy table to satisfy his
   requirement.

   The client node SHOULD provide the following choices:

   a) It receives distributed policy table, and replaces the existing
      policy tables with that.
   b) It preserves the default policy table, or manually configured
      policy.

4.2.  Processing multiple received policy tables

   The policy table is node-global information by its nature.  So, the
   node cannot use multiple received policy tables at the same time.

   It should be noted that adopting a received policy table as the node-
   global information can cause security problems, such as DOS attack,
   and leak of privacy information.

   Moreover, it also should be noted that, when a node is single-homed
   and has only one upstream line, adopting a received policy table does
   not degrade the security level.

   Under the above assumptions, we specify how to handle multiple
   received policy tables below.

   A node MAY use OPTION_DASP in any of the following two cases:
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   1: The address selection option is delivered across a secure, trusted
      channel.
   2: The address selection option is not secured, but the node is
      single-homed.

   In other cases the node MUST NOT use OPTION_DASP unless the node is
   specifically configured to do so.

5.  Implementation Considerations

   o  The value ’label’ is passed as an unsigned integer, but there is
      no special meaning for the value, that is whether it is a large or
      small number.  It is used to select a preferred source address
      prefix corresponding to a destination address prefix by matching
      the same label value within the DHCP message.  DHCPv6 clients need
      to convert this label to a representation specified by each
      implementation (e.g., string).

   o  Currently, the label and precedence values are defined as 8-bit
      unsigned integers.  In almost all cases, this value will be
      enough.

   o  The maximum number of address selection rules that may be conveyed
      in one DHCPv6 message depends on the prefix length of each rule
      and the maximum DHCPv6 message size defined in RFC 3315.  It is
      possible to carry over 3,000 rules in one DHCPv6 message (maximum
      UDP message size), but the usual number would be much smaller,
      e.g. the default policy table defined in RFC 3484 contains 5
      rules.

   o  Since the number of selection rules could be large, an
      administrator configuring the policy to be distributed should
      consider the resulting DHCPv6 message size.

6.  Security Considerations

   A rogue DHCPv6 server could issue bogus address selection policies to
   a client.  This might lead to incorrect address selection by the
   client, and the affected packets might be blocked at an outgoing ISP
   because of ingress filtering.  Alternatively, an IPv6 transition
   mechanism might be preferred over native IPv6, even if it is
   available.

   To guard against such attacks, both DCHP clients and servers SHOULD
   use DHCP authentication, as described in section 21 of RFC 3315,
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   "Authentication of DHCP messages."

7.  IANA Considerations

   IANA is requested to assign option codes to OPTION_DASP from the
   option-code space as defined in section "DHCPv6 Options" of RFC 3315.
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Appendix A.  Past Discussion

   o  The ’zone index’ value is used to specify a particular zone for
      scoped addresses.  This can be used effectively to control address
      selection in the site scope (e.g., to tell a node to use a
      specified source address corresponding to a site-scoped multicast
      address).  However, in some cases such as a link-local scope
      address, the value specifying one zone is only meaningful locally
      within that node.  There might be some cases where the
      administrator knows which clients are on the network and wants
      specific interfaces to be used though.  However, in general case,
      it is hard to use this value.

   o  Since we got a comment that some implementations use 32-bit
      integers for zone index value, we extended the bit length of the
      ’zone index’ field.  However, as described above, there might be
      few cases to specify ’zone index’ in policy distribution, we
      defined this field as optional, controlled by a flag.

   o  There may be some demands to control the use of special address
      types such as the temporary addresses described in RFC4941
      [RFC4941], address assigned by DHCPv6 and so on. (e.g., informing
      not to use a temporary address when it communicate within the an
      organization’s network).  It is possible to indicate the type of
      addresses using reserved field value.

Matsumoto, et al.       Expires December 30, 2011               [Page 9]



Internet-Draft     DHCPv6 Address Selection Policy Opt         June 2011

Authors’ Addresses

   Arifumi Matsumoto
   NTT SI Lab
   3-9-11 Midori-Cho
   Musashino-shi, Tokyo  180-8585
   Japan

   Phone: +81 422 59 3334
   Email: arifumi@nttv6.net

   Tomohiro Fujisaki
   NTT PF Lab
   3-9-11 Midori-Cho
   Musashino-shi, Tokyo  180-8585
   Japan

   Phone: +81 422 59 7351
   Email: fujisaki@nttv6.net

   Jun-ya Kato
   NTT SI Lab
   3-9-11 Midori-Cho
   Musashino-shi, Tokyo  180-8585
   Japan

   Phone: +81 422 59 2939
   Email: kato@syce.net

   Tim Chown
   University of Southampton
   Southampton, Hampshire  SO17 1BJ
   United Kingdom

   Email: tjc@ecs.soton.ac.uk

Matsumoto, et al.       Expires December 30, 2011              [Page 10]





Network Working Group                                         M. Eubanks
Internet-Draft                                        AmericaFree.TV LLC
Intended status: Standards Track                             P. Chimento
Expires: May 3, 2012                    Johns Hopkins University Applied
                                                      Physics Laboratory
                                                        October 31, 2011

                   UDP Checksums for Tunneled Packets
                    draft-ietf-6man-udpchecksums-01

Abstract

   This document provides an update of RFC 2460[RFC2460] in order to
   improve the performance of IPv6 in an increasingly important use
   case, the use of tunneling to carry new transport protocols.  The
   performance improvement is obtained by relaxing the IPv6 UDP checksum
   requirement for suitable tunneling protocol where header information
   is protected on the "inner" packet being carried.  This relaxation
   removes the overhead associated with the computation of UDP checksums
   on tunneled IPv6 packets and thereby improves the efficiency of the
   traversal of firewalls and other network middleware by such new
   protocols.  We describe how the IPv6 UDP checksum requirement can be
   relaxed in the situation where the encapsulated packet itself
   contains a checksum, the limitations and risks of this approach, and
   provides restrictions on the use of this relaxation to mitigate these
   risks.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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1.  Introduction

   This work constitutes the first upgrade of RFC 2460[RFC2460], in
   order to improve the performance of IPv6 with transport layer
   protocols carried encapsulated in tunnels.  With the rapid growth of
   the Internet, tunneling protocols have become increasingly important
   to enable the deployment of new transport layer protocols.  Tunneled
   protocols can be deployed rapidly, while the time to upgrade and
   deploy a critical mass of routers, switches and end hosts on the
   global Internet for a new transport protocol is now measured in
   decades.  At the same time, the increasing use of firewalls and other
   security related middleware means that truly new tunnel protocols,
   with new protocol numbers, are also unlikely to be deployable in a
   reasonable time frame, which has resulted in an increasing interest
   in and use of UDP-based tunneling protocols.  In such protocols,
   there is an encapsulated "inner" packet, and the "outer" packet
   carrying the tunneled inner packet is a UDP packet, which can pass
   through firewalls and other middleware filtering that is a fact of
   life on the current Internet.

   As tunnel endpoints may be routers or middleware aggregating traffic
   from large numbers of tunnel users, the computation of an additional
   checksum on the outer UDP packet, when protected, is seen to be an
   unwarranted burden on the nodes implementing lightweight tunneling
   protocols, especially if the inner packet(s) are already protected by
   a checksum.  In IPv4, there is a checksum on the IP packet itself,
   and the checksum on the outer UDP packet can be set to zero.  However
   in IPv6 there is not a checksum on the IP packet and RFC 2460
   [RFC2460] explicitly states that IPv6 receivers MUST discard UDP
   packets with a 0 checksum.  So, while sending a UDP packet with a 0
   checksum is permitted in IPv4 packets, it is explicitly forbidden in
   IPv6 packets.  In order to meet the needs of the deployers of IPv6
   UDP tunnels, this document modifies RFC 2460 to allow for the
   ignoring of UDP checksums under constrained situations (IPv6
   tunneling where the inner packet exists and has a checksum), based on
   the considerations set forth in [I-D.ietf-6man-udpzero].

   While the origin of this I-D is the problem raised by the draft
   titled "Automatic IP Multicast Without Explicit Tunnels", also known
   as "AMT," [I-D.ietf-mboned-auto-multicast] we expect it to have wide
   applicability, immediately to LISP [I-D.ietf-lisp], and also to other
   tunneling protocols to come out of Softwires and other IETF Working
   Groups.

   Since the first version of this document, the need for an efficient,
   lightweight UDP tunneling mechanism has increased.  Indeed, other
   workgroups, notably LISP [I-D.ietf-lisp] and Softwires [RFC5619] have
   also expressed a need to have exceptions to the RFC 2460 prohibition.
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   Other users of UDP as a tunneling protocol, for example, L2TP and
   Softwires may benefit from a relaxation of the RFC 2460 restriction.

   The third version of this document benefited from a close read by
   Magnus Westerlund and Gorry Fairhurst.

2.  Some Terminology

   For the remainder of this document, we discuss only IPv6, since this
   problem does not exist for IPv4.  So any reference to ’IP’ should be
   understood as a reference to IPv6.

   Although we will try to avoid them when possible, we may use the
   terms "tunneling" and "tunneled" as adjectives when describing
   packets.  When we refer to ’tunneling packets’ we refer to the outer
   packet header that provides the tunneling function.  When we refer to
   ’tunneled packets’ we refer to the inner packet, i.e. the packet
   being carried in the tunnel.

3.  Problem Statement

   The argument is that since in the case of AMT multicast packets
   already have a UDP header with a checksum, there is no additional
   benefit and indeed some cost to nodes to both compute and check the
   UDP checksum of the outer (encapsulating) header.  Consequently, IPv6
   should make an exception to the rule that the UDP checksum MUST not
   be 0, and allow tunneling protocols to set the checksum field of the
   outer header only to 0 and skip both the sender and receiver
   computation.

4.  Discussion

   [I-D.ietf-6man-udpzero] describes the issues related to allowing UDP
   over IPv6 to have a valid checksum of zero and is not repeated here.

   In Section 5.1 of [I-D.ietf-6man-udpzero], the authors propose nine
   (9) constraints on the usage of a zero checksum for UDP over IPv6.
   We agree with the restrictions proposed, and in fact proposed some of
   those restrictions ourselves in the previous version of the current
   draft.  These restrictions are incorporated into the proposed changes
   below.

   As has been pointed out in [I-D.ietf-6man-udpzero] and in many
   mailing lists, there is still the possibility of deep-inspection
   firewall devices or other middleboxes actually checking the UDP
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   checksum field of the outer packet and discarding the tunneling
   packets.  This is would be an issue also for legacy systems which
   have not implemented the change in the IPv6 specification.  So in any
   case, there may be packet loss of lightweight tunneling packets
   because of mixed new-rule and old-rule nodes.

   As an example, we discuss how can errors be detected and handled in a
   lightweight UDP tunneling protocol when the checksum protection is
   disabled.  Note that other (non-tunneling) protocols may have
   different approaches.  We suggest that the following could be an
   approach to this problem:

   o  Context (i.e. tunneling state) should be established via
      application PDUs that are carried in checksummed UDP packets.
      That is, any control packets flowing between the tunnel endpoints
      should be protected by UDP checksums.  The control packets can
      also contain any negotiation that is necessary to set up the
      endpoint/adapters to accept UDP packets with a zero checksum.

   o  Only UDP packets containing tunneled packets should have a UDP
      checksum equal to zero.

   o  UDP keep-alive packets with checksum zero can be sent to validate
      paths, given that paths between tunnel endpoints can change and so
      middleboxes in the path may vary during the life of the
      association.  Paths with middleboxes that are intolerant of a UDP
      checksum of zero will drop the keep-alives and the endpoints will
      discover that.  Note that this need only be done per tunnel
      endpoint pair, not per tunnel context.  Keep-alive traffic SHOULD
      include both packets with tunnel checksums and packets with
      checksums equal to zero to enable the remote end to distinguish
      between path failures and the blockage of packets with checksum
      equal to zero.

   o  Corruption of the encapsulating IPv6 source address, destination
      address and/or the UDP source port, destination port fields : If
      the 9 restrictions in [I-D.ietf-6man-udpzero] are followed, the
      inner packets (tunneled packets) should be protected and run the
      usual (presumably small) risk of having undetected corruption(s).
      If lightweight tunneling protocol contexts contain (at a minimum)
      source and destination IP addresses and source and destination
      ports, there are 16 possible corruption outcomes.  We note that
      these outcomes not equally likely, as most require multiple bit
      errors with errored bits in separate fields.  The possible
      corruption outcomes fall out this way:

      *  Half of the 16 possible corruption combinations have a
         corrupted destination address.  If the incorrect destination is
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         reached and the node doesn’t have an application for the
         destination port, the packet will be dropped.  If the
         application at the incorrect destination is the same
         lightweight tunneling protocol and if it has a matching context
         (which can be assumed to be a very low probability event) the
         inner packet will be decapsulated and forwarded.  If it is some
         other application, with very high probability, the application
         will not recognize the contents of the packet.

      *  Half of the 8 possible corruption combinations with a correct
         destination address have a corrupted source address.  If the
         tunnel contexts contain all elements of the address-port
         4-tuple, then the likelihood is that this corruption will be
         detected.

      *  Of the remaining 4 possibilities, with valid source and
         destination IPv6 addresses, 1 has all 4 fields valid, the other
         three have one or both ports corrupted.  Again, if the
         tunneling endpoint context contains sufficient information,
         these error should be detected with high probability.

   o  Corruption of source-fragmented encapsulating packets: In this
      case, a tunneling protocol may reassemble fragments associated
      with the wrong context at the right tunnel endpoint, or it may
      reassemble fragments associated with a context at the wrong tunnel
      endpoint, or corrupted fragments may be reassembled at the right
      context at the right tunnel endpoint.  In each of these cases, the
      IPv6 length of the encapsulating header may be checked (though
      [I-D.ietf-6man-udpzero] points out the weakness in this check).
      In addition, if the encapsulated packet is protected by a
      transport (or other) checksum, these errors can be detected (with
      some probability).

   While this is not a perfect solution, it can reduce the risks of
   relaxing the UDP checksum requirement for IPv6.

5.  The Zero-Checksum Solution

   The solution to the overhead associated with UDP packets carrying
   encapsulated tunnel traffic is to allow a UDP checksum of zero on the
   outer encapsulating packet of a lightweight tunneling protocol.  UDP
   endpoints that implement this solution MUST change their behavior and
   not discard UDP packets received with a 0 checksum on the outer
   packet of tunneling protocols.  If this is done constraints in
   Section 5.1 of [I-D.ietf-6man-udpzero] also MUST be adopted.

   Specifically, the text in [RFC2460] Section 8.1, 4th bullet is
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   amended.  We refer to the following text:

   "Unlike IPv4, when UDP packets are originated by an IPv6 node, the
   UDP checksum is not optional.  That is, whenever originating a UDP
   packet, an IPv6 node must compute a UDP checksum over the packet and
   the pseudo-header, and, if that computation yields a result of zero,
   it must be changed to hex FFFF for placement in the UDP header.  IPv6
   receivers must discard UDP packets containing a zero checksum, and
   should log the error."

   This item should be taken out of the bullet list and should be
   modified as follows:

      Whenever originating a UDP packet, an IPv6 node SHOULD compute a
      UDP checksum over the packet and the pseudo-header, and, if that
      computation yields a result of zero, it must be changed to hex
      FFFF for placement in the UDP header.  IPv6 receivers SHOULD
      discard UDP packets containing a zero checksum, and SHOULD log the
      error.  However, some protocols, such as lightweight tunneling
      protocols that use UDP as a tunnel encapsulation, MAY omit
      computing the UDP checksum of the encapsulating UDP header and set
      it to zero, subject to the constraints described in
      [I-D.ietf-6man-udpzero].  In cases where the encapsulating
      protocol uses a zero checksum for UDP, the receiver of packets
      sent to a port enabled to receive zero-checksum packets MUST NOT
      discard packets solely for having a UDP checksum of zero.  Note
      that these constraints apply only to encapsulating protocols that
      omit calculating the UDP checksum and set it to zero.  An
      encapsulating protocol can always choose to compute the UDP
      checksum, in which case, its behavior should be as specified
      originally.

      1.  IPv6 protocol stack implementations SHOULD NOT by default
          allow the new method.  The default node receiver behavior MUST
          discard all IPv6 packets carrying UDP packets with a zero
          checksum.

      2.  Implementations MUST provide a way to signal the set of ports
          that will be enabled to receive UDP datagrams with a zero
          checksum.  An IPv6 node that enables reception of UDP packets
          with a zero-checksum, MUST enable this only for a specific
          port or port-range.  This may be implemented via a socket API
          call, or similar mechanism.

      3.  RFC 2460 specifies that IPv6 nodes should log UDP datagrams
          with a zero-checksum.  A port for which zero-checksum has been
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          enabled MUST NOT log zero-checksum datagrams for that reason
          (of course, there might be other reasons to log such packets).

      4.  A stack may separately identify UDP datagrams that are
          discarded with a zero checksum.  It SHOULD NOT add these to
          the standard log, since the endpoint has not been verified.

      5.  UDP Tunnels that encapsulate IP may rely on the inner packet
          integrity checks provided that the tunnel will not
          significantly increase the rate of corruption of the inner IP
          packet.  If a significantly increased corruption rate can
          occur, then the tunnel MUST provide an additional integrity
          verification mechanism.  An integrity mechanism is always
          recommended at the tunnel layer to ensure that corruption
          rates of the inner most packet are not increased.

      6.  Tunnels that encapsulate Non-IP packets MUST have a CRC or
          other mechanism for checking packet integrity, unless the
          Non-IP packet specifically is designed for transmission over
          lower layers that do not provide any packet integrity
          guarantee.  In particular, the application must be designed so
          that corruption of this information does not result in
          accumulated state or incorrect processing of a tunneled
          payload.

      7.  UDP applications that support use of a zero-checksum, SHOULD
          NOT rely upon correct reception of the IP and UDP protocol
          information (including the length of the packet) when decoding
          and processing the packet payload.  In particular, the
          application must be designed so that corruption of this
          information does not result in accumulated state or incorrect
          processing of a tunneled payload.

      8.  If a method proposes recursive tunnels, it MUST provide
          guidance that is appropriate for all use-cases.  Restrictions
          may be needed to the use of a tunnel encapsulations and the
          use of recursive tunnels (e.g.  Necessary when the endpoint is
          not verified).

      9.  IPv6 nodes that receive ICMPv6 messages that refer to packets
          with a zero UDP checksum MUST provide appropriate checks
          concerning the consistency of the reported packet to verify
          that the reported packet actually originated from the node,
          before acting upon the information (e.g. validating the
          address and port numbers in the ICMPv6 message body).
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      Middleboxes MUST allow IPv6 packets with UDP checksum equal to
      zero to pass.  Implementations of middleboxes MAY allow
      configuration of specific port ranges for which a zero UDP
      checksum is valid and may drop IPv6 UDP packets outside those
      ranges.

6.  Additional Observations

   The persistence of this issue among a significant number of protocols
   being developed in the IETF requires a definitive policy.  The
   authors would like to make the following observations:

   o  An empirically-based analysis of the probabilities of packet
      corruptions (with or without checksums) has not (to our knowledge)
      been conducted since about 2000.  It is now 2011.  We strongly
      suggest that an empirical study is in order, along with an
      extensive analysis of IPv6 header corruption probabilities.

   o  A key cause of this issue generally is the lack of protocol
      support in middleboxes.  Specifically, new protocols, such as
      LISP, are being forced to use UDP tunnels just to traverse an end-
      to-end path successfully and avoid having their packets dropped by
      middleboxes.  If this were not the case, the use of UDP-lite might
      become more viable for some (but not necessarily all) lightweight
      tunneling protocols.

   o  Another cause of this issue is that the UDP checksum is overloaded
      with the task of protecting the IPv6 header for UDP flows (as it
      the TCP checksum for TCP flows).  Protocols that do not use a
      pseudo-header approach to computing a checksum or CRC have
      essentially no protection from misdelivered packets.

7.  IANA Considerations

   This document makes no request of IANA.

   Note to RFC Editor: this section may be removed on publication as an
   RFC.

8.  Security Considerations

   It is of course less work to generate zero-checksum attack packets
   than ones with full UDP checksums.  However, this does not lead to
   any significant new vulnerabilities as checksums are not a security
   measure and can be easily generated by any attacker, as properly
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   configured tunnels should check the validity of the inner packet and
   perform any needed security checks, regardless of the checksum
   status, and finally as most attacks are generated from compromised
   hosts which automatically create checksummed packets (in other words,
   it would generally be more, not less, effort for most attackers to
   generate zero UDP checksums on the host).
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1.  Introduction

   The User Datagram Protocol (UDP) [RFC0768] transport is defined for
   the Internet Protocol (IPv4) [RFC0791] and is defined in Internet
   Protocol, Version 6 (IPv6) [RFC2460] for IPv6 hosts and routers.  The
   UDP transport protocol has a minimal set of features.  This limited
   set has enabled a wide range of applications to use UDP, but these
   application do need to provide many important transport functions on
   top of UDP.  The UDP Usage Guidelines [RFC5405] provides overall
   guidance for application designers, including the use of UDP to
   support tunneling.  The key difference between UDP usage with IPv4
   and IPv6 is that IPv6 mandates use of the UDP checksum, i.e. a non-
   zero value, due to the lack of an IPv6 header checksum.

   The lack of a possibility to use UDP with a zero-checksum in IPv6 has
   been observed as a real problem for certain classes of application,
   primarily tunnel applications.  This class of application has been
   deployed with a zero checksum using IPv4.  The design of IPv6 raises
   different issues when considering the safety of using a zero checksum
   for UDP with IPv6.  These issues can significantly affect
   applications, both when an endpoint is the intended user and when an
   innocent bystander (received by a different endpoint to that
   intended).  The document examines these issues and compares the
   strengths and weaknesses of a number of proposed solutions.  This
   analysis presents a set of issues that must be considered and
   mitigated to be able to safely deploy UDP with a zero checksum over
   IPv6.  The provided comparison of methods is expected to also be
   useful when considering applications that have different goals from
   the ones that initiated the writing of this document, especially the
   use of already standardized methods.

   The analysis concludes that using UDP with a zero checksum is the
   best method of the proposed alternatives to meet the goals for
   certain tunnel applications.  Unfortunately, this usage is expected
   to have some deployment issues related to middleboxes, limiting the
   usability more than desired in the currently deployed internet.
   However, this limitation will be largest initially and will reduce as
   updates for support of UDP zero checksum for IPv6 are provided to
   middleboxes.  The document therefore derives a set of constraints
   required to ensure safe deployment of zero checksum in UDP.  It also
   identifies some issues that require future consideration and possibly
   additional research.

1.1.  Document Structure

   Section 1 provides a background to key issues, and introduces the use
   of UDP as a tunnel transport protocol.

Fairhurst & Westerlund   Expires April 27, 2012                 [Page 4]



Internet-Draft      IPv6 UDP Checksum Considerations        October 2011

   Section 2 describes a set of standards-track datagram transport
   protocols that may be used to support tunnels.

   Section 3 discusses issues with a zero checksum in UDP for IPv6.  It
   considers the impact of corruption, the need for validation of the
   path and when it is suitable to use a zero checksum.

   Section 4 evaluates a set of proposals to update the UDP transport
   behaviour and other alternatives intended to improve support for
   tunnel protocols.  It focuses on a proposal to allow a zero checksum
   for this use-case with IPv6 and assess the trade-offs that would
   arise.

   Section 5.1 lists the constraints perceived for safe deployment of
   zero-checksum.

   Section 6 provides the recommendations for standardization of zero-
   checksum with a summary of the findings and notes remaining issues
   needing future work.

1.2.  Background

   This section provides a background on topics relevant to the
   following discussion.

1.2.1.  The Role of a Transport Endpoint

   An Internet transport endpoint should concern itself with the
   following issues:

   o  Protection of the endpoint transport state from unnecessary extra
      state (e.g.  Invalid state from rogue packets).

   o  Protection of the endpoint transport state from corruption of
      internal state.

   o  Pre-filtering by the endpoint of erroneous data, to protect the
      transport from unnecessary processing and from corruption that it
      can not itself reject.

   o  Pre-filtering of incorrectly addressed destination packets, before
      responding to a source address.

1.2.2.  The UDP Checksum

   UDP, as defined in [RFC0768], supports two checksum behaviours when
   used with IPv4.  The normal behaviour is for the sender to calculate
   a checksum over a block of data that includes a pseudo header and the
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   UDP datagram payload.  The UDP header includes a 16-bit one’s
   complement checksum that provides a statistical guarantee that the
   payload was not corrupted in transit.  This also allows a receiver to
   verify that the endpoint was the intended destination of the
   datagram, because the transport pseudo header covers the IP
   addresses, port numbers, transport payload length, and Next Header/
   Protocol value corresponding to the UDP transport protocol [RFC1071].
   The length field verifies that the datagram is not truncated or
   padded.  The checksum therefore protects an application against
   receiving corrupted payload data in place of, or in addition to, the
   data that was sent.  Although the IPv4 UDP [RFC0768] checksum may be
   disabled, applications are recommended to enable UDP checksums
   [RFC5405].

   The network-layer fields that are validated by a transport checksum
   are:

   o  Endpoint IP source address (always included in the pseudo header
      of the checksum)

   o  Endpoint IP destination address (always included in the pseudo
      header of the checksum)

   o  Upper layer payload type (always included in the pseudo header of
      the checksum)

   o  IP length of payload (always included in the pseudo header of the
      checksum)

   o  Length of the network layer extension headers (i.e. by correct
      position of the checksum bytes)

   The transport-layer fields that are validated by a transport checksum
   are:

   o  Transport demultiplexing, i.e. ports (always included in the
      checksum)

   o  Transport payload size (always included in the checksum)

   Transport endpoints also need to verify the correctness of reassembly
   of any fragmented datagram.  For UDP, this is normally provided as a
   part of the integrity check.  Disabling the IPv4 checksum prevents
   this check.  A lack of the UDP header and checksum in fragments can
   lead to issues in a translator or middlebox.  For example, many IPv4
   Network Address Translators, NATs, rely on port numbers to find the
   mappings, packet fragments do not carry port numbers, so fragments
   get dropped.  IP/ICMP Translation Algorithm [RFC6145] provides some
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   guidance on the processing of fragmented IPv4 UDP datagrams that do
   not carry a UDP checksum.

   IPv4 UDP checksum control is often a kernel-wide configuration
   control (e.g.  In Linux and BSD), rather than a per socket call.
   There are also Networking Interface Cards (NICs) that automatically
   calculate TCP [RFC0793] and UDP checksums on transmission when a
   checksum of zero is sent to the NIC, using a method known as checksum
   offloading.

1.2.3.  Differences between IPv6 and IPv4

   IPv6 does not provide a network-layer integrity check.  The removal
   of the header checksum from the IPv6 specification released routers
   from a need to update a network-layer checksum for each router hop as
   the IPv6 Hop Count is changed (in contrast to the checksum update
   needed when an IPv4 router modifies the Time-To-Live (TTL)).

   The IP header checksum calculation was seen as redundant for most
   traffic (with UDP or TCP checksums enabled), and people wanted to
   avoid this extra processing.  However, there was concern that the
   removal of the IP header checksum in IPv6 combined with a UDP
   checksum set to zero would lessen the protection of the source/
   destination IP addresses and result in a significant (a multiplier of
   ˜32,000) increase in the number of times that a UDP packet was
   accidentally delivered to the wrong destination address and/or
   apparently sourced from the wrong source address.  This would have
   had implications on the detectability of mis-delivery of a packet to
   an incorrect endpoint/socket, and the robustness of the Internet
   infrastructure.  The use of the UDP checksum is therefore required
   [RFC2460] when endpoint applications transmit UDP datagrams over
   IPv6.

1.3.  Use of UDP Tunnels

   One increasingly popular use of UDP is as a tunneling protocol, where
   a tunnel endpoint encapsulates the packets of another protocol inside
   UDP datagrams and transmits them to another tunnel endpoint.  Using
   UDP as a tunneling protocol is attractive when the payload protocol
   is not supported by the middleboxes that may exist along the path,
   because many middleboxes support transmission using UDP.  In this
   use, the receiving endpoint decapsulates the UDP datagrams and
   forwards the original packets contained in the payload [RFC5405].
   Tunnels establish virtual links that appear to directly connect
   locations that are distant in the physical Internet topology and can
   be used to create virtual (private) networks.
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1.3.1.  Motivation for new approaches

   A number of tunnel encapsulations deployed over IPv4 have used the
   UDP transport with a zero checksum.  Users of these protocols expect
   a similar solution for IPv6.

   A number of tunnel protocols are also currently being defined (e.g.
   Automated Multicast Tunnels, AMT [I-D.ietf-mboned-auto-multicast],
   and the Locator/Identifier Separation Protocol, LISP [LISP]).  These
   protocols have proposed an update to IPv6 UDP checksum processing.
   These tunnel protocols could benefit from simpler checksum processing
   for various reasons:

   o  Reducing forwarding costs, motivated by redundancy present in the
      encapsulated packet header, since in tunnel encapsulations,
      payload integrity and length verification may be provided by
      higher layer encapsulations (often using the IPv4, UDP, UDP-Lite,
      or TCP checksums).

   o  Eliminating a need to access the entire packet when forwarding the
      packet by a tunnel endpoint.

   o  Enhancing ability to traverse middleboxes, especially Network
      Address Translators, NATs.

   o  A desire to use the port number space to enable load-sharing.

1.3.2.  Reducing forwarding cost

   It is a common requirement to terminate a large number of tunnels on
   a single router/host.  Processing per tunnel concerns both state
   (memory requirements) and per-packet processing costs.

   Automatic IP Multicast Without Explicit Tunnels, known as AMT
   [I-D.ietf-mboned-auto-multicast] currently specifies UDP as the
   transport protocol for packets carrying tunneled IP multicast
   packets.  The current specification for AMT requires that the UDP
   checksum in the outer packet header should be 0 (see Section 6.6 of
   [I-D.ietf-mboned-auto-multicast]).  It argues that the computation of
   an additional checksum, when an inner packet is already adequately
   protected, is an unwarranted burden on nodes implementing lightweight
   tunneling protocols.  The AMT protocol needs to replicate a multicast
   packet to each gateway tunnel.  In this case, the outer IP addresses
   are different for each tunnel and therefore require a different
   pseudo header to be built for each UDP replicated encapsulation.

   The argument concerning redundant processing costs is valid regarding
   the integrity of a tunneled packet.  In some architectures (e.g.  PC-
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   based routers), other mechanisms may also significantly reduce
   checksum processing costs: There are implementations that have
   optimised checksum processing algorithms, including the use of
   checksum-offloading.  This processing is readily available for IPv4
   packets at high line rates.  Such processing may be anticipated for
   IPv6 endpoints, allowing receivers to reject corrupted packets
   without further processing.  However, there are certain classes of
   tunnel end-points where this off-loading is not available and
   unlikely to become available in the near future.

1.3.3.  Need to inspect the entire packet

   The currently-deployed hardware in many routers uses a fast-path
   processing that only provides the first n bytes of a packet to the
   forwarding engine, where typically n <= 128.  This prevents fast
   processing of a transport checksum over an entire (large) packet.
   Hence the currently defined IPv6 UDP checksum is poorly suited to use
   within a router that is unable to access the entire packet and does
   not provide checksum-offloading.  Thus enabling checksum calculation
   over the complete packet can impact router design, performance
   improvement, energy consumption and/or cost.

1.3.4.  Interactions with middleboxes

   In IPv4, UDP-encapsulation may be desirable for NAT traversal, since
   UDP support is commonly provided.  It is also necessary due to the
   almost ubiquitous deployment of IPv4 NATs.  There has also been
   discussion of NAT for IPv6, although not for the same reason as in
   IPv4.  If IPv6 NAT becomes a reality they hopefully do not present
   the same protocol issues as for IPv4.  If NAT is defined for IPv6, it
   should take UDP zero checksum into consideration.

   The requirements for IPv6 firewall traversal are likely be to be
   similar to those for IPv4.  In addition, it can be reasonably
   expected that a firewall conforming to RFC 2460 will not regard UDP
   datagrams with a zero checksum as valid packets.  If an zero-checksum
   for UDP were to be allowed for IPv6, this would need firewalls to be
   updated before full utility of the change is available.

   It can be expected that UDP with zero-checksum will initially not
   have the same middlebox traversal characteristics as regular UDP.
   However, if standardized we can expect an improvement over time of
   the traversal capabilities.  We also note that deployment of IPv6-
   capable middleboxes is still in its initial phases.  Thus, it might
   be that the number of non-updated boxes quickly become a very small
   percentage of the deployed middleboxes.
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1.3.5.  Support for load balancing

   The UDP port number fields have been used as a basis to design load-
   balancing solutions for IPv4.  This approach has also been leveraged
   for IPv6.  An alternate method would be to utilise the IPv6 Flow
   Label as basis for entropy for the load balancing.  This would have
   the desirable effect of releasing IPv6 load-balancing devices from
   the need to assume semantics for the use of the transport port field
   and also works for all type of transport protocols.  This use of the
   flow-label is consistent with the intended use, although further
   clarity may be needed to ensure the field can be consistently used
   for this purpose, (e.g.  Equal-Cost Multi-Path routing, ECMP [ECMP]).

   Router vendors could be encouraged to start using the IPv6 Flow Label
   as a part of the flow hash, providing support for ECMP without
   requiring use of UDP.  However, the method for populating the outer
   IPv6 header with a value for the flow label is not trivial: If the
   inner packet uses IPv6, then the flow label value could be copied to
   the outer packet header.  However, many current end-points set the
   flow label to a zero value (thus no entropy).  The ingress of a
   tunnel seeking to provide good entropy in the flow label field would
   therefore need to create a random flow label value and keep
   corresponding state, so that all packets that were associated with a
   flow would be consistently given the same flow label.  Although
   possible, this complexity may not be desirable in a tunnel ingress.

   The end-to-end use of flow labels for load balancing is a long-term
   solution.  Even if the usage of the flow label is clarified, there
   would be a transition time before a significant proportion of end-
   points start to assign a good quality flow label to the flows that
   they originate, with continued use of load balancing using the
   transport header fields until any widespread deployment is finally
   achieved.

2.  Standards-Track Transports

   The IETF has defined a set of transport protocols that may be
   applicable for tunnels with IPv6.  There are also a set of network
   layer encapsulation tunnels such as IP-in-IP and GRE.  These already
   standardized solutions are discussed here prior to the issues, as
   background for the issue description and some comparison of where the
   issue may already occur.

2.1.  UDP with Standard Checksum

   UDP [RFC0768] with standard checksum behaviour is defined in RFC 2460
   has already been discussed.  UDP usage guidelines are provided in
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   [RFC5405].

2.2.  UDP-Lite

   UDP-Lite [RFC3828] offers an alternate transport to UDP, specified as
   a proposed standard, RFC 3828.  A MIB is defined in RFC 5097 and
   unicast usage guidelines in [RFC5405].  There is at least one open
   source implementation as a part of the Linux kernel since version
   2.6.20.

   UDP-Lite provides a checksum with optional partial coverage.  When
   using this option, a datagram is divided into a sensitive part
   (covered by the checksum) and an insensitive part (not covered by the
   checksum).  When the checksum covers the entire packet, UDP-Lite is
   fully equivalent with UDP.  Errors/corruption in the insensitive part
   will not cause the datagram to be discarded by the transport layer at
   the receiving endpoint.  A minor side-effect of using UDP-Lite is
   that this was specified for damage-tolerant payloads, and some link-
   layers may employ different link encapsulations when forwarding UDP-
   Lite segments (e.g. radio access bearers).  Most link-layers will
   cover the insensitive part with the same strong layer 2 frame CRC
   that covers the sensitive part.

2.2.1.  Using UDP-Lite as a Tunnel Encapsulation

   Tunnel encapsulations can use UDP-Lite (e.g.  Control And
   Provisioning of Wireless Access Points, CAPWAP [RFC5415]), since UDP-
   Lite provides a transport-layer checksum, including an IP pseudo
   header checksum, in IPv6, without the need for a router/middelbox to
   traverse the entire packet payload.  This provides most of the
   delivery verifications and still keep the complexity of the
   checksumming operation low.  UDP-Lite may set the length of checksum
   coverage on a per packet basis.  This feature could be used if a
   tunnel protocol is designed to only verify delivery of the tunneled
   payload and uses full checksumming for control information.

   There is currently poor support for middlebox traversal using UDP-
   Lite, because UDP-Lite uses a different IPv6 network-layer Next
   Header value to that of UDP, and few middleboxes are able to
   interpret UDP-Lite and take appropriate actions when forwarding the
   packet.  This makes UDP-Lite less suited to protocols needing general
   Internet support, until such time that UDP-Lite has achieved better
   support in middleboxes and end-points.

2.3.  General Tunnel Encapsulations

   The IETF has defined a set of tunneling protocols or network layer
   encapsulations, like IP-in-IP and GRE.  These either do not include a
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   checksum or use a checksum that is optional, since tunnel
   encapsulations are typically layered directly over the Internet layer
   (identified by the upper layer type in the IPv6 Next Header field)
   and are also not used as endpoint transport protocols.  There is
   little chance of confusing a tunnel-encapsulated packet with other
   application data that could result in corruption of application state
   or data.

   From the end-to-end perspective, the principal difference is that the
   network-layer Next Header field identifies a separate transport,
   which reduces the probability that corruption could result in the
   packet being delivered to the wrong endpoint or application.
   Specifically, packets are only delivered to protocol modules that
   process a specific next header value.  The next header field
   therefore provides a first-level check of correct demultiplexing.  In
   contrast, the UDP port space is shared by many diverse applications
   and therefore UDP demultiplexing relies solely on the port numbers.

3.  Issues Requiring Consideration

   This section evaluates issues around the proposal to update IPv6
   [RFC2460], to provide the option of using a UDP transport checksum
   set to zero.  Some of the identified issues are shared with other
   protocols already in use.

   The decision by IPv6 to omit an integrity check at the network level
   has meant that the transport check was overloaded with many
   functions, including validating:

   o  the endpoint address was not corrupted within a router - i.e.  A
      packet was intended to be received by this destination and a wrong
      header has not been spliced to a different payload;

   o  that extension header processing is correctly delimited - i.e.
      The start of data has not been corrupted.  In this case, reception
      of a valid next header value provides some protection;

   o  reassembly processing, when used;

   o  the length of the payload;

   o  the port values - i.e.  The correct application receives the
      payload (applications should also check the expected use of source
      ports/addresses);

   o  the payload integrity.
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   In IPv4, the first four checks are performed using the IPv4 header
   checksum.

   In IPv6, these checks occur within the endpoint stack using the UDP
   checksum information.  An IPv6 node also relies on the header
   information to determine whether to send an ICMPv6 error message
   [RFC4443] and to determine the node to which this is sent.  Corrupted
   information may lead to misdelivery to an unintended application
   socket on an unexpected host.

3.1.  Effect of packet modification in the network

   IP packets may be corrupted as they traverse an Internet path.
   Evidence has been presented [Sigcomm2000] to show that this was once
   an issue with IPv4 routers, and occasional corruption could result
   from bad internal router processing in routers or hosts.  These
   errors are not detected by the strong frame checksums employed at the
   link-layer [RFC3819].  There is no current evidence that such cases
   are rare in the modern Internet, nor that they may not be applicable
   to IPv6.  It therefore seems prudent not to relax this constraint.
   The emergence of low-end IPv6 routers and the proposed use of NAT
   with IPv6 further motivate the need to protect from this type of
   error.

   Corruption in the network may result in:

   o  A datagram being mis-delivered to the wrong host/router or the
      wrong transport entity within an endpoint.  Such a datagram needs
      to be discarded;

   o  A datagram payload being corrupted, but still delivered to the
      intended host/router transport entity.  Such a datagram needs to
      be either discarded or correctly processed by an application that
      provides its own integrity checks;

   o  A datagram payload being truncated by corruption of the length
      field.  Such a datagram needs to be discarded.

   When a checksum is used, this significantly reduces the impact of
   errors, reducing the probability of undetected corruption of state
   (and data) on both the host stack and the applications using the
   transport service.

   The following sections examine the impact of modifying each of these
   header fields.
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3.1.1.  Corruption of the destination IP address

   An IP endpoint destination address could be modified in the network
   (e.g. corrupted by an error).  This is not a concern for IPv4,
   because the IP header checksum will result in this packet being
   discarded by the receiving IP stack.  Such modification in the
   network can not be detected at the network layer when using IPv6.

   There are two possible outcomes:

   o  Delivery to a destination address that is not in use (the packet
      will not be delivered, but could result in an error report);

   o  Delivery to a different destination address.  This modification
      will normally be detected by the transport checksum, resulting in
      silent discard.  Without this checksum, the packet would be passed
      to the endpoint port demultiplexing function.  If an application
      is bound to the associated ports, the packet payload will be
      passed to the application (see the subsequent section on port
      processing).

3.1.2.  Corruption of the source IP address

   This section examines what happens when the source address is
   corrupted in transit.  This is not a concern in IPv4, because the IP
   header checksum will normally result in this packet being discarded
   by the receiving IP stack.

   Corruption of an IPv6 source address does not result in the IP packet
   being delivered to a different endpoint protocol or destination
   address.  If only the source address is corrupted, the datagram will
   likely be processed in the intended context, although with erroneous
   origin information.  The result will depend on the application or
   protocol that processes the packet.  Some examples are:

   o  An application that requires a per-established context may
      disregard the datagram as invalid, or could map this to another
      context (if a context for the modified source address was already
      activated).

   o  A stateless application will process the datagram outside of any
      context, a simple example is the ECHO server, which will respond
      with a datagram directed to the modified source address.  This
      would create unwanted additional processing load, and generate
      traffic to the modified endpoint address.

   o  Some datagram applications build state using the information from
      packet headers.  A previously unused source address would result

Fairhurst & Westerlund   Expires April 27, 2012                [Page 14]



Internet-Draft      IPv6 UDP Checksum Considerations        October 2011

      in receiver processing and the creation of unnecessary transport-
      layer state at the receiver.  For example, Real Time Protocol
      (RTP) [RFC3550] sessions commonly employ a source independent
      receiver port.  State is created for each received flow.
      Reception of a datagram with a corrupted source address will
      therefore result in accumulation of unnecessary state in the RTP
      state machine, including collision detection and response (since
      the same synchronization source, SSRC, value will appear to arrive
      from multiple source IP addresses).

   In general, the effect of corrupting the source address will depend
   upon the protocol that processes the packet and its robustness to
   this error.  For the case where the packet is received by a tunnel
   endpoint, the tunnel application is expected to correctly handle a
   corrupted source address.

   The impact of source address modification is more difficult to
   quantify when the receiving application is not that originally
   intended and several fields have been modified in transit.

3.1.3.  Corruption of Port Information

   This section describes what happens if one or both of the UDP port
   values are corrupted in transit.  This can also happen with IPv4 in
   the zero checksum case, but not when UDP checksums are enabled or
   with UDP-Lite.  If the ports carried in the transport header of an
   IPv6 packet were corrupted in transit, packets may be delivered to
   the wrong process (on the intended machine) and/or responses or
   errors sent to the wrong application process (on the intended
   machine).

3.1.4.  Delivery to an unexpected port

   If one combines the corruption effects, such as destination address
   and ports, there is a number of potential outcomes when traffic
   arrives at an unexpected port.  This section discusses these
   possibilities and their outcomes for a packet that does not use the
   UDP checksum validation:

   o  Delivery to a port that is not in use.  The packet is discarded,
      but could generate an ICMPv6 message (e.g. port unreachable).

   o  It could be delivered to a different node that implements the same
      application, where the packet may be accepted, generating side-
      effects or accumulated state.

   o  It could be delivered to an application that does not implement
      the tunnel protocol, where the packet may be incorrectly parsed,
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      and may be misinterpreted, generating side-effects or accumulated
      state.

   The probability of each outcome depends on the statistical
   probability that the address or the port information for the source
   or destination becomes corrupt in the datagram such that they match
   those of an existing flow or server port.  Unfortunately, such a
   match may be more likely for UDP than for connection-oriented
   transports, because:

   1.  There is no handshake prior to communication and no sequence
       numbers (as in TCP, DCCP, or SCTP).  Together, this makes it hard
       to verify that an application is given only the data associated
       with a transport session.

   2.  Applications writers often bind to wild-card values in endpoint
       identifiers and do not always validate correctness of datagrams
       they receive (guidance on this topic is provided in [RFC5405]).

   While these rules could, in principle, be revised to declare naive
   applications as "Historic".  This remedy is not realistic: the
   transport owes it to the stack to do its best to reject bogus
   datagrams.

   If checksum coverage is suppressed, the application therefore needs
   to provide a method to detect and discard the unwanted data.  A
   tunnel protocol would need to perform its own integrity checks on any
   control information if transported in UDP with zero-checksum.  If the
   tunnel payload is another IP packet, the packets requiring checksums
   can be assumed to have their own checksums provided that the rate of
   corrupted packets is not significantly larger due to the tunnel
   encapsulation.  If a tunnel transports other inner payloads that do
   not use IP, the assumptions of corruption detection for that
   particular protocol must be fulfilled, this may require an additional
   checksum/CRC and/or integrity protection of the payload and tunnel
   headers.

   A protocol using UDP zero-checksum can never assume that it is the
   only protocol using a zero checksum.  Therefore, it needs to
   gracefully handle misdelivery.  It must be robust to reception of
   malformed packets received on a listening port and expect that these
   packets may contain corrupted data or data associated with a
   completely different protocol.

3.1.5.  Corruption of Fragmentation Information

   The fragmentation information in IPv6 employs a 32-bit identity
   field, compared to only a 16-bit filed in IPv4, a 13-bit fragment
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   offset and a 1-bit flag, indicating if there are more fragments.
   Corruption of any of these field may result in one of two outcomes:

   Reassembly failure:   An error in the "More Fragments" field for the
      last fragment will for example result in the packet never being
      considered complete and will eventually be timed out and
      discarded.  A corruption in the ID field will result in the
      fragment not being delivered to the intended context thus leaving
      the rest incomplete, unless that packet has been duplicated prior
      to corruption.  The incomplete packet will eventually be timed out
      and discarded.

   Erroneous reassembly:  The re-assemblied packet did not match the
      original packet.  This can occur when the ID field of a fragment
      is corrupted, resulting in a fragment becoming associated with
      another packet and taking the place of another fragment.
      Corruption in the offset information can cause the fragment to be
      misaligned in the reassembly buffer, resulting in incorrect
      reassembly.  Corruption can cause the packet to become shorter or
      longer, however completion of reassembly is much less probable,
      since this would requires consistent corruption of the IPv6
      headers payload length field and the offset field.  The
      possibility of mis-assembly requires the reassembling stack to
      provide strong checks that detect overlap or missing data, note
      however that this is not guaranteed and has recently been
      clarified in "Handling of Overlapping IPv6 Fragments" [RFC5722].

   The erroneous reassembly of packets is a general concern and such
   packets should be discarded instead of being passed to higher layer
   processes.  The primary detector of packet length changes is the IP
   payload length field, with a secondary check by the transport
   checksum.  The Upper-Layer Packet length field included in the pseudo
   header assists in verifying correct reassembly, since the Internet
   checksum has a low probability of detecting insertion of data or
   overlap errors (due to misplacement of data).  The checksum is also
   incapable of detecting insertion or removal of all zero-data that
   occurs in a multiple of a 16-bit chunk.

   The most significant risk of corruption results following mis-
   association of a fragment with a different packet.  This risk can be
   significant, since the size of fragments is often the same (e.g.
   fragments resulting when the path MTU results in fragmentation of a
   larger packet, common when addition of a tunnel encapsulation header
   expands the size of a packet).  Detection of this type of error
   requires a checksum or other integrity check of the headers and the
   payload.  Such protection is anyway desirable for tunnel
   encapsulations using IPv4, since the small fragmentation ID can
   easily result in wrap-around [RFC4963], this is especially the case
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   for tunnels that perform flow aggregation [I-D.ietf-intarea-tunnels].

   Tunnel fragmentation behavior matters.  There can be outer or inner
   fragmentation "Tunnels in the Internet Architecture"
   [I-D.ietf-intarea-tunnels].  If there is inner fragmentation by the
   tunnel, the outer headers will never be fragmented and thus a zero-
   checksum in the outer header will not affect the reassembly process.
   When a tunnel performs outer header fragmentation, the tunnel egress
   needs to perform reassembly of the outer fragments into an inner
   packet.  The inner packet is either a complete packet or a fragment.
   If it is a fragment, the destination endpoint of the fragment will
   perform reassembly of the received fragments.  The complete packet or
   the reassembled fragments will then be processed according to the
   packet next header field.  The receiver may only detect reassembly
   anomalies when it uses a protocol with a checksum.  The larger the
   number of reassembly processes to which a packet has been subjected,
   the greater the probability of an error.

   o  An IP-in-IP tunnel that performs inner fragmentation has similar
      properties to a UDP tunnel with a zero-checksum that also performs
      inner fragmentation.

   o  An IP-in-IP tunnel that performs outer fragmentation has similar
      properties to a UDP tunnel with a zero checksum that performs
      outer fragmentation.

   o  A tunnel that performs outer fragmentation can result in a higher
      level of corruption due to both inner and outer fragmentation,
      enabling more chances for reassembly errors to occur.

   o  Recursive tunneling can result in fragmentation at more than one
      header level, even for inner fragmentation unless it goes to the
      inner most IP header.

   o  Unless there is verification at each reassembly the probability
      for undetected error will increase with the number of times
      fragmentation is recursively applied.  Making IP-in-IP and UDP
      with zero checksum equal subject to this effect.

   In conclusion fragmentation of packets with a zero-checksum does not
   worsen the situation compared to some other commonly used tunnel
   encapsulations.  However, caution is needed for recursive tunneling
   without any additional verification at the different tunnel layers.

3.2.  Validating the network path

   IP transports designed for use in the general Internet should not
   assume specific path characteristics.  Network protocols may reroute
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   packets that change the set of routers and middleboxes along a path.
   Therefore transports such as TCP, SCTP and DCCP have been designed to
   negotiate protocol parameters, adapt to different network path
   characteristics, and receive feedback to verify that the current path
   is suited to the intended application.  Applications using UDP and
   UDP-Lite need to provide their own mechanisms to confirm the validity
   of the current network path.

   The zero-checksum in UDP is explicitly disallowed in RFC2460.  Thus
   it may be expected that any device on the path that has a reason to
   look beyond the IP header will consider such a packet as erroneous or
   illegal and may likely discard it, unless the device is updated to
   support a new behavior.  A pair of end-points intending to use a new
   behavior will therefore not only need to ensure support at each end-
   point, but also that the path between them will deliver packets with
   the new behavior.  This may require negotiation or an explicit
   mandate to use the new behavior by all nodes intended to use a new
   protocol.

   Support along the path between end points may be guaranteed in
   limited deployments by appropriate configuration.  In general, it can
   be expected to take time for deployment of any updated behaviour to
   become ubiquitous.  A sender will need to probe the path to verify
   the expected behavior.  Path characteristics may change, and usage
   therefore should be robust and able to detect a failure of the path
   under normal usage and re-negotiate.  This will require periodic
   validation of the path, adding complexity to any solution using the
   new behavior.

3.3.  Applicability of method

   The expectation of the present proposal defined in
   [I-D.ietf-6man-udpchecksums] is that this change would only apply to
   IPv6 router nodes that implement specific protocols that permit
   omission of UDP checksums.  However, the distinction between a router
   and a host is not always clear, especially at the transport level.
   Systems (such as unix-based operating systems) routinely provide both
   functions.  There is also no way to identify the role of a receiver
   from a received packet.

   Any new method would therefore need a specific applicability
   statement indicating when the mechanism can (and can not) be used.
   Enabling this, and ensuring correct interactions with the stack,
   implies much more than simply disabling the checksum algorithm for
   specific packets at the transport interface.

   The IETF should carefully consider constraints on sanctioning the use
   of any new transport mode.  If this is specified and widely
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   available, it may be expected to be used by applications that are
   perceived to gain benefit.  Any solution that uses an end-to-end
   transport protocol, rather than an IP-in-IP encapsulation, needs to
   minimise the possibility that end-hosts could confuse a corrupted or
   wrongly delivered packet with that of data addressed to an
   application running on their endpoint unless they accept that
   behavior.

3.4.  Impact on non-supporting devices or applications

   It is important to consider what potential impact the zero-checksum
   behavior may have on end-points, devices or applications that are not
   modified to support the new behavior or by default or preference, use
   the regular behavior.  These applications must not be significantly
   impacted by the changes.

   To illustrate a potential issue, consider the implications of a node
   that were to enable use of a zero-checksum at the interface level:
   This would result in all applications that listen to a UDP socket
   receiving datagram where the checksum was not verified.  This could
   have a significant impact on an application that was not designed
   with the additional robustness needed to handle received packets with
   corruption, creating state or destroying existing state in the
   application.

   In contrast, the use of a zero-checksum could be enabled only for
   individual ports using an explicit request by the application.  In
   this case, applications using other ports would maintain the current
   IPv6 behavior, discarding incoming UDP datagrams with a zero-
   checksum.  These other applications would not be effected by this
   changed behavior.  An application that allows the changed behavior
   should be aware of the risk for corruption and the increased level of
   misdirected traffic, and can be designed robustly to handle this
   risk.

4.  Evaluation of proposal to update RFC 2460 to support zero checksum

   This section evaluates the proposal to update IPv6 [RFC2460], to
   provide the option that some nodes may suppress generation and
   checking of the UDP transport checksum.  It also compares the
   proposal with other alternatives.

4.1.  Alternatives to the Standard Checksum

   There are several alternatives to the normal method for calculating
   the UDP Checksum that do not require a tunnel endpoint to inspect the
   entire packet when computing a checksum.  These include (in
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   decreasing order of complexity):

   o  Delta computation of the checksum from an encapsulated checksum
      field.  Since the checksum is a cumulative sum [RFC1624], an
      encapsulating header checksum can be derived from the new pseudo
      header, the inner checksum and the sum of the other network-layer
      fields not included in the pseudo header of the encapsulated
      packet, in a manner resembling incremental checksum update
      [RFC1141].  This would not require access to the whole packet, but
      does require fields to be collected across the header, and
      arithmetic operations on each packet.  The method would only work
      for packets that contain a 2’s complement transport checksum (i.e.
      it would not be appropriate for SCTP or when IP fragmentation is
      used).

   o  UDP-Lite with the checksum coverage set to only the header portion
      of a packet.  This requires a pseudo header checksum calculation
      only on the encapsulating packet header.  The computed checksum
      value may be cached (before adding the Length field) for each
      flow/destination and subsequently combined with the Length of each
      packet to minimise per-packet processing.  This value is combined
      with the UDP payload length for the pseudo header, however this
      length is expected to be known when performing packet forwarding.

   o  The proposed UDP Tunnel Transport, UDPTT [UDPTT] suggested a
      method where UDP would be modified to derive the checksum only
      from the encapsulating packet protocol header.  This value does
      not change between packets in a single flow.  The value may be
      cached per flow/destination to minimise per-packet processing.

   o  There has been a proposal to simply ignore the UDP checksum value
      on reception at the tunnel egress, allowing a tunnel ingress to
      insert any value correct or false.  For tunnel usage, a non
      standard checksum value may be used, forcing an RFC 2460 receiver
      to drop the packet.  The main downside is that it would be
      impossible to identify a UDP packet (in the network or an
      endpoint) that is treated in this way compared to a packet that
      has actually been corrupted.

   o  A method has been proposed that uses a new (to be defined) IPv6
      Destination Options Header to provide an end-to-end validation
      check at the network layer.  This would allow an endpoint to
      verify delivery to an appropriate end point, but would also
      require IPv6 nodes to correctly handle the additional header, and
      would require changes to middlebox behavior (e.g. when used with a
      NAT that always adjusts the checksum value).

Fairhurst & Westerlund   Expires April 27, 2012                [Page 21]



Internet-Draft      IPv6 UDP Checksum Considerations        October 2011

   o  UDP modified to disable checksum processing
      [I-D.ietf-6man-udpchecksums].  This requires no checksum
      calculation, but would require constraints on appropriate usage
      and updates to end-points and middleboxes.

   o  IP-in-IP tunneling.  As this method completely dispenses with a
      transport protocol in the outer-layer it has reduced overhead and
      complexity, but also reduced functionality.  There is no outer
      checksum over the packet and also no ports to perform
      demultiplexing between different tunnel types.  This reduces the
      information available upon which a load balancer may act.

   These options are compared and discussed further in the following
   sections.

4.2.  Comparison

   This section compares the above listed methods to support datagram
   tunneling.  It includes proposals for updating the behaviour of UDP.

4.2.1.  Middlebox Traversal

   Regular UDP with a standard checksum or the delta encoded
   optimization for creating correct checksums have the best
   possibilities for successful traversal of a middlebox.  No new
   support is required.

   A method that ignores the UDP checksum on reception is expected to
   have a good probability of traversal, because most middleboxes
   perform an incremental checksum update.  UDPTT may also traverse a
   middlebox with this behaviour.  However, a middlebox on the path that
   attempts to verify a standard checksum will not forward packets using
   either of these methods, preventing traversal.  The methods that
   ignores the checksum has an additional downside in that middlebox
   traversal can not be improved, because there is no way to identify
   which packets use the modified checksum behaviour.

   IP-in-IP or GRE tunnels offer good traversal of middleboxes that have
   not been designed for security, e.g. firewalls.  However, firewalls
   may be expected to be configured to block general tunnels as they
   present a large attack surface.

   A new IPv6 Destination Options header will suffer traversal issues
   with middleboxes, especially Firewalls and NATs, and will likely
   require them to be updated before the extension header is passed.

   Packets using UDP with a zero checksum will not be passed by any
   middlebox that validates the checksum using RFC 2460 or updates the
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   checksum field, such as NAT or firewalls.  This would require an
   update to correctly handle the zero checksum packets.

   UDP-Lite will require an update of almost all type of middleboxes,
   because it requires support for a separate network-layer protocol
   number.  Once enabled, the method to support incremental checksum
   update would be identical to that for UDP, but different for checksum
   validation.

4.2.2.  Load Balancing

   The usefulness of solutions for load balancers depends on the
   difference in entropy in the headers for different flows that can be
   included in a hash function.  All the proposals that use the UDP
   protocol number have equal behavior.  UDP-Lite has the potential for
   equally good behavior as for UDP.  However, UDP-Lite is currently
   likely to not be supported by deployed hashing mechanisms, which may
   cause a load balancer to not use the transport header in the computed
   hash.  A load balancer that only uses the IP header will have low
   entropy, but could be improved by including the IPv6 the flow label,
   providing that the tunnel ingress ensures that different flow labels
   are assigned to different flows.  However, a transition to the common
   use of good quality flow labels is likely to take time to deploy.

4.2.3.  Ingress and Egress Performance Implications

   IP-in-IP tunnels are often considered efficient, because they
   introduce very little processing and low data overhead.  The other
   proposals introduce a UDP-like header incurring associated data
   overhead.  Processing is minimised for the zero-checksum method,
   ignoring the checksum on reception, and only slightly higher for
   UDPTT, the extension header and UDP-Lite.  The delta-calculation
   scheme operates on a few more fields, but also introduces serious
   failure modes that can result in a need to calculate a checksum over
   the complete packet.  Regular UDP is clearly the most costly to
   process, always requiring checksum calculation over the entire
   packet.

   It is important to note that the zero-checksum method, ignoring
   checksum on reception, the Option Header, UDPTT and UDP-Lite will
   likely incur additional complexities in the application to
   incorporate a negotiation and validation mechanism.

4.2.4.  Deployability

   The major factors influencing deployability of these solutions are a
   need to update both end-points, a need for negotiation and the need
   to update middleboxes.  These are summarised below:
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   o  The solution with the best deployability is regular UDP.  This
      requires no changes and has good middlebox traversal
      characteristics.

   o  The next easiest to deploy is the delta checksum solution.  This
      does not modify the protocol on the wire and only needs changes in
      tunnel ingress.

   o  IP-in-IP tunnels should not require changes to the end-points, but
      raise issues when traversing firewalls and other security-type
      devices, which are expected to require updates.

   o  Ignoring the checksum on reception will require changes at both
      end-points.  The never ceasing risk of path failure requires
      additional checks to ensure this solution is robust and will
      require changes or additions to the tunneling control protocol to
      negotiate support and validate the path.

   o  The remaining solutions offer similar deployability.  UDP-Lite
      requires support at both end-points and in middleboxes.  UDPTT and
      Zero-checksum with or without an Extension header require support
      at both end-points and in middleboxes.  UDP-Lite, UDPTT, and Zero-
      checksum and Extension header may additionally require changes or
      additions to the tunneling control protocol to negotiate support
      and path validation.

4.2.5.  Corruption Detection Strength

   The standard UDP checksum and the delta checksum can both provide
   some verification at the tunnel egress.  This can significantly
   reduce the probability that a corrupted inner packet is forwarded.
   UDP-Lite, UDPTT and the extension header all provide some
   verification against corruption, but do not verify the inner packet.
   They only provide a strong indication that the delivered packet was
   intended for the tunnel egress and was correctly delimited.  The
   Zero-checksum, ignoring the checksum on reception and IP-and-IP
   encapsulation provide no verification that a received packet was
   intended to be processed by a specific tunnel egress or that the
   inner packet was correct.

4.2.6.  Comparison Summary

   The comparisons above may be summarised as "there is no silver bullet
   that will slay all the issues".  One has to select which down side(s)
   can best be lived with.  Focusing on the existing solutions, this can
   be summarized as:
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   Regular UDP:  Good middlebox traversal and load balancing and
      multiplexing, requiring a checksum in the outer headers covering
      the whole packet.

   IP in IP:  A low complexity encapsulation, with limited middlebox
      traversal, no multiplexing support, and currently poor load
      balancing support that could improve over time.

   UDP-Lite:  A medium complexity encapsulation, with good multiplexing
      support, limited middlebox traversal, but possible to improve over
      time, currently poor load balancing support that could improve
      over time, in most cases requiring application level negotiation
      and validation.

   The delta-checksum is an optimization in the processing of UDP, as
   such it exhibits some of the drawbacks of using regular UDP.

   The remaining proposals may be described in similar terms:

   Zero-Checksum:  A low complexity encapsulation, with good
      multiplexing support, limited middlebox traversal that could
      improve over time, good load balancing support, in most cases
      requiring application level negotiation and validation.

   UDPTT:  A medium complexity encapsulation, with good multiplexing
      support, limited middlebox traversal, but possible to improve over
      time, good load balancing support, in most cases requiring
      application level negotiation and validation.

   IPv6 Destination Option IP in IP tunneling:  A medium complexity,
      with no multiplexing support, limited middlebox traversal,
      currently poor load balancing support that could improve over
      time, in most cases requiring application level negotiation and
      validation.

   IPv6 Destination Option combined with UDP Zero-checksuming:  A medium
      complexity encapsulation, with good multiplexing support, limited
      load balancing support that could improve over time, in most cases
      requiring application level negotiation and validation.

   Ignore the checksum on reception:  A low complexity encapsulation,
      with good multiplexing support, medium middlebox traversal that
      never can improve, good load balancing support, in most cases
      requiring application level negotiation and validation.

   There is no clear single optimum solution.  If the most important
   need is to traverse middleboxes, then the best choice is to stay with
   regular UDP and consider the optimizations that may be required to
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   perform the checksumming.  If one can live with limited middlebox
   traversal, low complexity is necessary and one does not require load
   balancing, then IP-in-IP tunneling is the simplest.  If one wants
   strengthened error detection, but with currently limited middlebox
   traversal and load-balancing.  UDP-Lite is appropriate.  UDP Zero-
   checksum addresses another set of constraints, low complexity and a
   need for load balancing from the current Internet, providing it can
   live with currently limited middlebox traversal.

   Techniques for load balancing and middlebox traversal do continue to
   evolve.  Over a long time, developments in load balancing have good
   potential to improve.  This time horizon is long since it requires
   both load balancer and end-point updates to get full benefit.  The
   challenges of middlebox traversal are also expected to change with
   time, as device capabilities evolve.  Middleboxes are very prolific
   with a larger proportion of end-user ownership, and therefore may be
   expected to take long time cycles to evolve.  One potential advantage
   is that the deployment of IPv6 capable middleboxes are still in its
   initial phase and the quicker zero-checksum becomes standardized the
   fewer boxes will be non-compliant.

   Thus, the question of whether to allow UDP with a zero-checksum for
   IPv6 under reasonable constraints, is therefore best viewed as a
   trade-off between a number of more subjective questions:

   o  Is there sufficient interest in zero-checksum with the given
      constraints (summarised below)?

   o  Are there other avenues of change that will resolve the issue in a
      better way and sufficiently quickly ?

   o  Do we accept the complexity cost of having one more solution in
      the future?

   The authors do think the answer to the above questions are such that
   zero-checksum should be standardized for use by tunnel
   encapsulations.

5.  Requirements on the specification of transported protocols

5.1.  Constraints required on usage of a zero checksum

   If a zero checksum approach were to be adopted by the IETF, the
   specification should consider adding the following constraints on
   usage:
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   1.  IPv6 protocol stack implementations should not by default allow
       the new method.  The default node receiver behaviour must discard
       all IPv6 packets carrying UDP packets with a zero checksum.

   2.  Implementations must provide a way to signal the set of ports
       that will be enabled to receive UDP datagrams with a zero
       checksum.  An IPv6 node that enables reception of UDP packets
       with a zero-checksum, must enable this only for a specific port
       or port-range.  This may be implemented via a socket API call, or
       similar mechanism.

   3.  RFC 2460 specifies that IPv6 nodes should log UDP datagrams with
       a zero-checksum.  This should remain the case for any datagram
       received on a port that does not explicitly enable zero-checksum
       processing.  A port for which zero-checksum has been enabled must
       not log the datagram.

   4.  A stack may separately identify UDP datagrams that are discarded
       with a zero checksum.  It should not add these to the standard
       log, since the endpoint has not been verified.

   5.  Tunnels that encapsulate IP may rely on the inner packet
       integrity checks provided that the tunnel will not significantly
       increase the rate of corruption of the inner IP packet.  If a
       significantly increased corruption rate can occur, then the
       tunnel must provide an additional integrity verification
       mechanism.  An integrity mechanisms is always recommended at the
       tunnel layer to ensure that corruption rates of the inner most
       packet are not increased.

   6.  Tunnels that encapsulate Non-IP packets must have a CRC or other
       mechanism for checking packet integrity, unless the Non-IP packet
       specifically is designed for transmission over lower layers that
       do not provide any packet integrity guarantee.  In particular,
       the application must be designed so that corruption of this
       information does not result in accumulated state or incorrect
       processing of a tunneled payload.

   7.  UDP applications that support use of a zero-checksum, should not
       rely upon correct reception of the IP and UDP protocol
       information (including the length of the packet) when decoding
       and processing the packet payload.  In particular, the
       application must be designed so that corruption of this
       information does not result in accumulated state or incorrect
       processing of a tunneled payload.

   8.  If a method proposes recursive tunnels, it needs to provide
       guidance that is appropriate for all use-cases.  Restrictions may
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       be needed to the use of a tunnel encapsulations and the use of
       recursive tunnels (e.g.  Necessary when the endpoint is not
       verified).

   9.  IPv6 nodes that receive ICMPv6 messages that refer to packets
       with a zero UDP checksum must provide appropriate checks
       concerning the consistency of the reported packet to verify that
       the reported packet actually originated from the node, before
       acting upon the information (e.g. validating the address and port
       numbers in the ICMPv6 message body).

   Deployment of the new method needs to remain restricted to endpoints
   that explicitly enable this mode and adopt the above procedures.  Any
   middlebox that examines or interact with the UDP header over IPv6
   should support the new method.

6.  Summary

   This document examines the role of the transport checksum when used
   with IPv6, as defined in RFC2460.

   It presents a summary of the trade-offs for evaluating the safety of
   updating RFC 2460 to permit an IPv6 UDP endpoint to use a zero value
   in the checksum field to indicate that no checksum is present.  A
   decision not to include a UDP checksum in received IPv6 datagrams
   could impact a tunnel application that receives these packets.
   However, a well-designed tunnel application should include
   consistency checks to validate any header information encapsulated
   with a packet.  In most cases tunnels encapsulating IP packets can
   rely on the inner packets own integrity protection.  When correctly
   implemented, such a tunnel endpoint will not be negatively impacted
   by omission of the transport-layer checksum.  Recursive tunneling and
   fragmentation is a potential issues that can raise corruption rates
   significantly, and requires careful consideration.

   Other applications at the intended destination node or another IPv6
   node can be impacted if they are allowed to receive datagrams without
   a transport-layer checksum.  It is particularly important that
   already deployed applications are not impacted by any change at the
   transport layer.  If these applications execute on nodes that
   implement RFC 2460, they will reject all datagrams with a zero UDP
   checksum, thus this is not an issue.  For nodes that implement
   support for zero-checksum it is important to ensure that only UDP
   applications that desire zero-checksum can receive and originate
   zero-checksum packets.  Thus, the enabling of zero-checksum needs to
   be at a port level, not for the entire host or for all use of an
   interface.
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   The implications on firewalls, NATs and other middleboxes need to be
   considered.  It is not expected that IPv6 NATs handle IPv6 UDP
   datagrams in the same way that they handle IPv4 UDP datagrams.  This
   possibly reduces the need to update the checksum.  Firewalls are
   intended to be configured, and therefore may need to be explicitly
   updated to allow new services or protocols.  IPv6 middlebox
   deployment is not yet as prolific as it is in IPv4.  Thus, relatively
   few current middleboxes may actually block IPv6 UDP with a zero
   checksum.

   In general, UDP-based applications need to employ a mechanism that
   allows a large percentage of the corrupted packets to be removed
   before they reach an application, both to protect the applications
   data stream and the control plane of higher layer protocols.  These
   checks are currently performed by the UDP checksum for IPv6, or the
   reduced checksum for UDP-Lite when used with IPv6.

   The use of UDP with no checksum has merits for some applications,
   such as tunnel encapsulation, and is widely used in IPv4.  However,
   there are dangers for IPv6: There is a bigger risk of corruption and
   miss-delivery when using zero-checksum in IPv6 compared to IPv4 due
   to the removed IP header checksum.  Thus, applications needs to make
   a new evaluation of the risks of enabling a zero-checksum.  Some
   applications will need to re-consider their usage of zero-checksum,
   and possibly consider a solution that at least provides the same
   delivery protection as for IPv4, for example by utilizing UDP-Lite,
   or by enabling the UDP checksum.  Tunnel applications using UDP for
   encapsulation can in many case use zero-checksum without significant
   impact on the corruption rate.  In some cases, the use of checksum
   off-loading may help alleviate the checksum processing cost.

   Recursive tunneling and fragmentation is a difficult issue relating
   to tunnels in general.  There is an increased risk of an error in the
   inner-most packet when fragmentation when several layers of tunneling
   and several different reassembly processes are run without any
   verification of correctness.  This issue requires future thought and
   consideration.

   The conclusion is that UDP zero checksum in IPv6 should be
   standardized, as it satisfies usage requirements that are currently
   difficult to address.  We do note that a safe deployment of zero-
   checksum will need to follow a set of constraints listed in
   Section 5.1.
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8.  IANA Considerations

   This document does not require any actions by IANA.

9.  Security Considerations

   Transport checksums provide the first stage of protection for the
   stack, although they can not be considered authentication mechanisms.
   These checks are also desirable to ensure packet counters correctly
   log actual activity, and can be used to detect unusual behaviours.
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1.  Introduction

   MS/TP (Master-Slave/Token-Passing) is a contention-free access method
   for the [TIA-485-A] physical layer that is used extensively in
   building automation networks.  This document describes the frame
   format for transmission of IPv6 [RFC2460] packets and the method of
   forming link-local and statelessly autoconfigured IPv6 addresses on
   MS/TP networks.  The general approach is to adapt elements of the
   6LoWPAN [RFC4944] specification to constrained wired networks.

   An MS/TP device is typically based on a low-cost microcontroller with
   limited processing power and memory.  Together with low data rates
   and a small address space, these constraints are similar to those
   faced in 6LoWPAN networks and suggest some elements of that solution
   might be applied.  MS/TP differs significantly from 6LoWPAN in at
   least three respects: a) MS/TP devices typically have a continuous
   source of power, b) all MS/TP devices on a segment can communicate
   directly so there are no hidden node or mesh routing issues, and c)
   proposed changes to MS/TP will support payloads of up to 1500 octets,
   eliminating the need for link-layer fragmentation and reassembly.

   The following sections provide a brief overview of MS/TP, then
   describe how to form IPv6 addresses and encapsulate IPv6 packets in
   MS/TP frames.  This document also specifies a header compression
   mechanism, based on [RFC6282], that is recommended in order to make
   IPv6 practical on low speed MS/TP networks.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

1.2.  Abbreviations Used

   ASHRAE:  American Society of Heating, Refrigerating, and Air-
            Conditioning Engineers (http://www.ashrae.org)

   BACnet:  An ISO/ANSI/ASHRAE Standard Data Communication Protocol
            for Building Automation and Control Networks

   CRC:     Cyclic Redundancy Check

   MAC:     Medium Access Control

   MSDU:    MAC Service Data Unit (MAC client data)

   UART:    Universal Asynchronous Transmitter/Receiver
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1.3.  MS/TP Overview

   This section provides a brief overview of MS/TP, which is specified
   in Clause 9 of ANSI/ASHRAE 135-2010 [BACnet] and included herein by
   reference.  [BACnet] also covers physical layer deployment options.

   MS/TP is designed to enable multidrop networks over shielded twisted
   pair wiring.  It can support segments up to 1200 meters in length or
   data rates up to 115,200 baud (at this highest data rate the segment
   length is limited to 1000 meters).  An MS/TP link requires only a
   UART, a 5ms resolution timer, and a [TIA-485-A] transceiver with a
   driver that can be disabled.  These features combine to make MS/TP a
   cost-effective field bus for the most numerous and least expensive
   devices in a building automation network.

   The differential signaling used by [TIA-485-A] requires a contention-
   free MAC.  MS/TP uses a token to control access to a multidrop bus.
   A master node may initiate the transmission of a data frame when it
   holds the token.  After sending at most a configured maximum number
   of data frames, a master node passes the token to the next master
   node (as determined by node address).  Slave nodes transmit only when
   polled and are not considered part of this specification.

   MS/TP frames have the following format*:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      0x55     |      0xFF     |  Frame Type*  |      DA       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      SA       |    Length (MS octet first)    |   Header CRC  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     /
     / Data*
     /
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Extended Data CRC* (LS octet first)              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | optional 0xFF |
     +-+-+-+-+-+-+-+-+

                       Figure 1: MS/TP Frame Format

   *Note: BACnet [Addendum_an], now in public review, assigns a new
    Frame Type for IPv6, extends the maximum length of the Data field to
    1500 octets, and specifies a 32-bit Extended Data CRC.  The Data and
    Extended Data CRC fields are present only if Length is non-zero.
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   The MS/TP frame fields have the following descriptions**:

    Preamble             two octet preamble: 0x55, 0xFF
    Frame Type           one octet
    Destination Address  one octet address
    Source Address       one octet address
    Length               two octets, most significant octet first
    Header CRC           one octet
    Data                 0 - 1500 octets**
                         (present only if Length is non-zero)
    Extended Data CRC    four octets**, least significant octet first
                         (present only if Length is non-zero)
    (pad)                (optional) at most one octet of trailer: 0xFF

  The Frame Type is used to distinguish between different types of MAC
  frames.  Currently defined types (in decimal) are:

    00  Token
    01  Poll For Master
    02  Reply To Poll For Master
        ...
    10  IPv6 over MS/TP Encapsulation**

  **See previous note regarding the BACnet [Addendum_an] change proposal
    to support IPv6 over MS/TP Encapsulation.

   Frame Types 11 through 127 are reserved for assignment by ASHRAE.
   All master nodes MUST understand Token, Poll For Master, and Reply to
   Poll For Master frames.  See Section 2 for additional details.

   The Destination and Source Addresses are each one octet in length.
   See Section 3 for additional details.

   The Length field specifies the length of the Data field in octets and
   is transmitted most significant octet first.  See Section 4 for
   additional details.

   The Header CRC field covers the Frame Type, Destination Address,
   Source Address, and Length fields.  The Header CRC generation and
   check procedures are specified in [BACnet].

   The Data and Extended Data CRC fields are conditional on the Frame
   Type and the Length.  (Note: The Data and Extended Data CRC fields
   will always be present in frames specified by this document.)  The
   Extended Data CRC generation and check procedures are specified in
   the BACnet [Addendum_an] change proposal.
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1.4.  Goals and Non-goals

   The primary goal of this specification is to enable IPv6 directly to
   wired end devices in building automation and control networks, while
   leveraging existing standards to the greatest extent possible.  A
   secondary goal is to co-exist with legacy MS/TP implementations.
   Only the minimum changes necessary to support IPv6 over MS/TP are
   proposed in BACnet [Addendum_an] (see note in Section 1.3).

   Non-goals include making changes to the MS/TP frame header format,
   control frames, Master Node state machine, or addressing modes.
   Also, while the techniques described here may be applicable to other
   data links, no attempt is made to define a general design pattern.

2.  MS/TP Mode for IPv6

   The BACnet [Addendum_an] change proposal allocates a new MS/TP Frame
   Type from the ASHRAE reserved range to indicate IPv6 encapsulation.
   The new Frame Type for IPv6 over MS/TP Encapsulation is 10 (0x0A).

   All MS/TP master nodes (including those that support IPv6) must
   understand Token, Poll For Master, and Reply to Poll For Master
   control frames and support the Master Node state machine as specified
   in [BACnet].  MS/TP master nodes that support IPv6 must also support
   the Receive Frame state machine as specified in [BACnet] and extended
   by [Addendum_an].

3.  Addressing Modes

   MS/TP node (link-layer) addresses are one octet in length.  The
   method of assigning node addresses is outside the scope of this
   document.  However, each MS/TP node on the link MUST have a unique
   address or a misconfiguration condition exists.

   [BACnet] specifies that addresses 0 through 127 are valid for master
   nodes.  The method specified in Section 6 for creating the Interface
   Identifier (IID) ensures that an IID of all zeros can never result.

   A Destination Address of 255 (0xFF) denotes a link-level broadcast
   (all nodes).  A Source Address of 255 MUST NOT be used.  MS/TP does
   not support multicast, therefore all IPv6 multicast packets MUST be
   sent as link-level broadcasts and filtered at the IPv6 layer.

   This document assumes that each MS/TP link maps to a unique IPv6
   subnet prefix.  Hosts learn IPv6 prefixes via router advertisements
   according to [RFC4861].
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4.  Maximum Transmission Unit (MTU)

   The BACnet [Addendum_an] change proposal specifies that the MSDU be
   increased to 1500 octets and covered by a 32-bit CRC.  This is
   sufficient to convey an MTU of at least 1280 octets as required by
   IPv6 without the need for link-layer fragmentation and reassembly.

   However, the relatively low data rates of MS/TP still make a
   compelling case for header compression.  An adaptation layer to
   indicate compressed or uncompressed IPv6 headers is specified below
   in Section 5 and the compression scheme is specified in Section 10.

5.  LoBAC Adaptation Layer

   The encapsulation formats defined in this section (subsequently
   referred to as the "LoBAC" encapsulation) comprise the payload (MSDU)
   of an MS/TP frame.  The LoBAC payload (e.g., an IPv6 packet) follows
   an encapsulation header stack.  LoBAC is a subset of the LoWPAN
   encapsulation defined in [RFC4944], therefore the use of "LOWPAN" in
   literals below is intentional.  The primary differences between LoBAC
   and LoWPAN are: a) exclusion of the Fragmentation, Mesh, and
   Broadcast headers, and b) use of LOWPAN_IPHC [RFC6282] in place of
   LOWPAN_HC1 header compression (which is deprecated by [RFC6282]).

   All LoBAC encapsulated datagrams transmitted over MS/TP are prefixed
   by an encapsulation header stack.  Each header in the stack consists
   of a header type followed by zero or more header fields.  Whereas in
   an IPv6 header the stack would contain, in the following order,
   addressing, hop-by-hop options, routing, fragmentation, destination
   options, and finally payload [RFC2460]; in a LoBAC encapsulation the
   analogous sequence is (optional) header compression and payload.  The
   header stacks that are valid in a LoBAC network are shown below.

      A LoBAC encapsulated IPv6 datagram:

        +---------------+-------------+---------+
        | IPv6 Dispatch | IPv6 Header | Payload |
        +---------------+-------------+---------+

      A LoBAC encapsulated LOWPAN_IPHC compressed IPv6 datagram:

        +---------------+-------------+---------+
        | IPHC Dispatch | IPHC Header | Payload |
        +---------------+-------------+---------+

   All protocol datagrams (e.g., IPv6 or compressed IPv6 headers) SHALL
   be preceded by one of the valid LoBAC encapsulation headers.  This
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   permits uniform software treatment of datagrams without regard to
   their mode of transmission.

   The definition of LoBAC headers consists of the dispatch value, the
   definition of the header fields that follow, and their ordering
   constraints relative to all other headers.  Although the header stack
   structure provides a mechanism to address future demands on the LoBAC
   (LoWPAN) adaptation layer, it is not intended to provided general
   purpose extensibility.  This format document specifies a small set of
   header types using the header stack for clarity, compactness, and
   orthogonality.

5.1.  Dispatch Type and Header

   A LoBAC Dispatch type begins with a "0" bit followed by a "1" bit.
   The Dispatch type and header are shown here:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|1| Dispatch  |  Type-specific header
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Dispatch               6-bit selector.  Identifies the type of header
                          immediately following the Dispatch Header.

   Type-specific header   A header determined by the Dispatch Header.

                    Figure 2: Dispatch Type and Header

   The Dispatch value may be treated as an unstructured namespace.  Only
   a few symbols are required to represent current LoBAC functionality.
   Although some additional savings could be achieved by encoding
   additional functionality into the dispatch octet, these measures
   would tend to constrain the ability to address future alternatives.

      Pattern      Header Type
    +------------+-----------------------------------------------------+
    | 00  xxxxxx | NALP        - Not a LoWPAN (LoBAC) frame            |
    | 01  000000 | ESC         - Additional Dispatch octet follows     |
    | 01  000001 | IPv6        - Uncompressed IPv6 Addresses           |
    |   ...      | reserved    - Defined or reserved by [RFC4944]      |
    | 01  1xxxxx | LOWPAN_IPHC - LOWPAN_IPHC compressed IPv6 [RFC6282] |
    | 1x  xxxxxx | reserved    - Defined or reserved by [RFC4944]      |
    +------------+-----------------------------------------------------+

                   Figure 3: Dispatch Value Bit Patterns
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   NALP:  Specifies that the following bits are not a part of the LoBAC
      encapsulation, and any LoBAC node that encounters a Dispatch
      value of 00xxxxxx shall discard the packet.  Non-LoBAC protocols
      that wish to coexist with LoBAC nodes should include an octet
      matching this pattern immediately following the MS/TP header.

   ESC:  Specifies that the following header is a single 8-bit field for
      the Dispatch value.  It allows support for Dispatch values larger
      than 127 (see [RFC6282] section 5).

   IPv6:  Specifies that the following header is an uncompressed IPv6
      header [RFC2460].

   LOWPAN_IPHC:  A value of 011xxxxx specifies a LOWPAN_IPHC compression
      header (see Section 10.)

   Reserved: A LoBAC node that encounters a Dispatch value in the range
      01000010 through 01011111 or 1xxxxxxx SHALL discard the packet.

6.  Stateless Address Autoconfiguration

   This section defines how to obtain an IPv6 Interface Identifier.  The
   general procedure is described in Appendix A of [RFC4291], "Creating
   Modified EUI-64 Format Interface Identifiers".

   The Interface Identifier may be based on an [EUI-64] identifier
   assigned to the device (but this is not typical for MS/TP).  In this
   case, the Interface Identifier is formed from the EUI-64 by inverting
   the "u" (universal/local) bit according to [RFC4291].  This will
   result in a globally unique Interface Identifier.

   If the device does not have an EUI-64, then the Interface Identifier
   MUST be formed by concatenating its 8-bit MS/TP node address to the
   seven octets 0x00, 0x00, 0x00, 0xFF, 0xFE, 0x00, 0x00.  For example,
   an MS/TP node address of hexadecimal value 0x4F results in the
   following Interface Identifier:

   |0              1|1              3|3              4|4              6|
   |0              5|6              1|2              7|8              3|
   +----------------+----------------+----------------+----------------+
   |0000000000000000|0000000011111111|1111111000000000|0000000001001111|
   +----------------+----------------+----------------+----------------+

   Note that this results in the universal/local bit set to "0" to
   indicate local scope.

   An IPv6 address prefix used for stateless autoconfiguration [RFC4862]

Lynn, et al.             Expires April 12, 2012                 [Page 9]



Internet-Draft               IPv6 over MS/TP                October 2011

   of an MS/TP interface MUST have a length of 64 bits.

7.  IPv6 Link Local Address

   The IPv6 link-local address [RFC4291] for an MS/TP interface is
   formed by appending the Interface Identifier, as defined above, to
   the prefix FE80::/64.

       10 bits            54 bits                  64 bits
     +----------+-----------------------+----------------------------+
     |1111111010|         (zeros)       |    Interface Identifier    |
     +----------+-----------------------+----------------------------+

8.  Unicast Address Mapping

   The address resolution procedure for mapping IPv6 non-multicast
   addresses into MS/TP link-layer addresses follows the general
   description in Section 7.2 of [RFC4861], unless otherwise specified.

   The Source/Target Link-layer Address option has the following form
   when the addresses are 8-bit MS/TP node (link-layer) addresses.

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |     Type      |    Length=1   |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |     0x00      | MS/TP Address |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |                               |
                     +-         Padding             -+
                     |         (all zeros)           |
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Option fields:

   Type:

     1: for Source Link-layer address.

     2: for Target Link-layer address.

   Length:  This is the length of this option (including the type and
     length fields) in units of 8 octets.  The value of this field is 1
     for 8-bit MS/TP node addresses.
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   MS/TP Address:  The 8-bit address in canonical bit order [RFC2469].
     This is the unicast address the interface currently responds to.

9.  Multicast Address Mapping

   All IPv6 multicast packets MUST be sent to MS/TP Destination Address
   255 (broadcast) and filtered at the IPv6 layer.  When represented as
   a 16-bit address in a compressed header (see Section 10), it MUST be
   formed by padding on the left with a zero:

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |     0x00      |     0xFF      |
                     +-+-+-+-+-+-+-+-+---------------+

10.  Header Compression

   LoBAC uses LOWPAN_IPHC IPv6 compression, which is specified in
   [RFC6282] and included herein by reference.  This section will simply
   identify substitutions that should be made when interpreting the text
   of [RFC6282].

   In general the following substitutions should be made:

   *  Replace "6LoWPAN" with "MS/TP network"

   *  Replace "IEEE 802.15.4 address" with "MS/TP address"

   When a 16-bit address is called for (i.e., an IEEE 802.15.4 "short
   address") it MUST be formed by padding the MS/TP address to the left
   with a zero:

                      0                   1
                      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     |     0x00      | MS/TP address |
                     +-+-+-+-+-+-+-+-+---------------+

11.  IANA Considerations

   This document uses values previously reserved by [RFC4944] and
   [RFC6282] and makes no further requests of IANA.

   Note to RFC Editor: this section may be removed upon publication.
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12.  Security Considerations

   The method of deriving Interface Identifiers from MAC addresses is
   intended to preserve global uniqueness when possible.  However, there
   is no protection from duplication through accident or forgery.
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   encapsulated within an IPv6 Options header.  An OI option can provide
   offset information to locate the end of the IPv6 header chain so that
   a node receiving an IPv6 packet is able to skip over the IP header
   chain and access the transport header or other protocol data unit
   directly.
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1.  Introduction

   According to [RFC2460], when a node intends to access the payload of
   an IPv6 packet, it needs to parse the extension headers one by one
   until it reaches the end of the header chain.  This approach may be
   inefficient for nodes which have no interest in the extension headers
   and intend to quickly access the payload of IPv6 packets.

   A common case is any form of flow classification requiring access to
   the basic IP header 5-tuple {destination address, source address,
   protocol, destination port, source port}.  The last three elements
   are only available by following the extension header chain to its
   end.  This could be required for various forms of quality of service
   support or for flow logging purposes.  Another case would be any form
   of deep packet inspection requiring rapid access to the payload,
   which also requires skipping over the header chain.  If packets must
   be processed at line speed, this can be a significant performance
   issue.  A method is needed to short-circuit this process.

   A brief discussion of this issue from a security standpoint is
   provided in Section 2.1.9.2 of [RFC4942].  In addition, most existing
   firewall implementations have the capability to verify the
   correctness of IP headers.  Therefore, in some cases, it may be more
   efficient for the equipment behind a firewall, such as a host or a
   deep packet inspection device, to skip over the extension headers of
   the IP packets it receives and access the payload directly.

   This document addresses this issue by introducing an Offset
   Indicating option (OI option for short) which indicates the end of
   the header chain.  The option is transferred in an IPv6 Options
   header.  If there is an existing Hop-by-Hop Options header, the OI
   option will be in it.  Otherwise, it will be in a Destination Options
   header.  According to the recommendations in [RFC2460], this will
   always place the OI option at the beginning of the header chain.
   Therefore, if necessary, a node receiving an IPv6 packet can jump
   over the whole header chain in a single step to directly access the
   transport header or other protocol data unit.

   This option is an optimization option for certain forwarding nodes.
   It may be safely ignored by nodes that have no interest in the header
   chain.  Hence, it does not create any performance degradation.  In
   particular, unless there is a Hop-by-Hop Options header for some
   other reason, it does not create any overhead for simple forwarding
   nodes.
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2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Format of the Offset Indicating option

   The format of the Offset Indicating option (OI) option is described
   in Figure 1.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Option Type  |  Opt Data Len |   Offset                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | NH after Jump |
   +-+-+-+-+-+-+-+-+
   Figure 1.  Option Format

   Option Type: 8 bits.  The value is TBD1.

   Note to RFC Editor: please replace TBD1 with the value assigned by
   IANA and delete this note.

   Opt Data Len: as defined in [RFC2460].

   Offset: 16 bits.  Indicates the distance (in octets) from the end of
   the option to the end of the header chain.

   NH (Next Header) after Jump: 8 bits.  Indicates the type of the
   transport header or other protocol data unit after the header chain.
   This MUST equal the Next Header value in the last Extension Header in
   the packet.

4.  Processing Rules

   IPv6 source nodes SHOULD insert this option in every packet that
   contains at least one extension header of any kind, in order to
   maximise its usefulness.  However, it MUST NOT be inserted in packets
   that include a Fragment Header, to avoid the case where the offset
   points beyond the end of the first fragment.  In any case,
   performance optimisation is impossible in the case of fragmented
   packets.

   Because the options within a header must be processed strictly in the
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   order that they appear, the OI option is RECOMMENDED to be the first
   option within an Options header.  This arrangement will maximize the
   effect of optimization for those routers that use it.

   A Hop-by-Hop Options header MUST NOT be created solely for the
   purpose of carrying the OI option.  If and only if the packet
   contains a Hop-by-Hop Options header for some other reason, the OI
   option is placed in it.  Otherwise it is placed in a Destination
   Options header.

   This option has an alignment requirement of 4n + 2.  (See Section 4.2
   of [RFC2460] for discussion of option alignment.)  If this option is
   located first within the Options header, the alignment reqirement is
   met naturally; otherwise the host stack that assembles the IPv6
   header needs to meet the alignment requirement according to the
   context by inserting padding options.

   The OI option is defined on the basis that the size of extension
   headers does not change en-route.  However, if a future extension
   header type allows an intermediate device to add additional
   information in the IP extension header chain, this device MUST also
   update the value of the Offset field to point to the new position of
   the payload header.

   If an intermediate device detects that the OI option does not point
   to a valid transport header, the IPv6 packet MUST be discarded.

5.  Security Considerations

   The OI option provides a method for nodes which have no interest in
   parsing the header chain to quickly process IP packets.  Because
   transport layer security protocols do not cover extension headers,
   and the information in the IPv6 header is sufficient to generate the
   pseudo-header for upper layer protocols, the skipping of extension
   headers will not impact the security verification performed by
   transport layer security protocols.  However, in IPsec the situation
   is a little different.  Because the ESP header [RFC4303] or the AH
   header [RFC4302] consist of critical information to process the IPsec
   packet and the extension headers after the ESP or AH header may have
   to be authenticated or encrypted, these extension headers cannot be
   skipped over.  Therefore, a IPsec implementation MUST NOT skip to the
   end of the header chain under the instruction of the OI option.

   This specification disallows use of the OI option in fragmented
   packets.  In addition to efficiency considerations, this prevents the
   option from becoming a vector for a buffer overflow attack.
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   Attackers cannot use the OI option to hide any undesired information
   in the IPv6 header, because this option is only an optional
   indication for intermediate devices that do not in any case wish to
   inspect such information.  Security devices may simply ignore this
   indication and verify every extension header in the chain.

6.  IANA Considerations

   IANA is requested to assign the IPv6 Option Type TBD1 for the Offset
   Indicating Option and record it in the IPv6 Destination Options and
   Hop-by-Hop Options registry.

   In accordance with Section 4.2 of [RFC2460], this option type has the
   two most significant bits set to 00 (skip if unrecognized) and the
   third-highest-order bit set to 1 (option data may change en-route).
   This is in case a future IPv6 extension header type may be defined
   whose size may change en-route, requiring the Offset value to be
   updated.

   Note to RFC Editor: please replace TBD1 with the value assigned by
   IANA and delete this note.
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