
ATOCA R. Barnes
Internet-Draft BBN Technologies
Intended status: Informational October 31, 2011
Expires: May 3, 2012

 Lightweight Emergency Alerting Protocol (LEAP)
 draft-barnes-atoca-delivery-01.txt

Abstract

 Emergency alerts need to be delivered reliably from one source to
 many recipients at once. TCP is unsuitable for this style of
 delivery, because the large number of acknowledgements would likely
 cause network congestion. This document defines a UDP-based protocol
 for delivering alerts that supports fragmentation and retransmission
 for reliability, and allows the sender of a datagram to control
 whether acknowledgements are sent.

 Please send feedback to the atoca@ietf.org mailing list.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Barnes Expires May 3, 2012 [Page 1]

Internet-Draft ESCAPE October 2011

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Open Questions . 3
 2. Definitions . 3
 3. Packet Format . 3
 4. URI Format . 4
 5. Server Processing . 5
 6. Client Processing . 6
 7. IANA Considerations . 7
 8. Security Considerations . 8
 9. Acknowledgements . 8
 10. References . 9
 10.1. Normative References 9
 10.2. Informative References 9
 Author’s Address . 9

Barnes Expires May 3, 2012 [Page 2]

Internet-Draft ESCAPE October 2011

1. Introduction

 Servers that provide emergency alerts to end hosts have two
 conflicting requirements. They need to deliver alerts reliably to a
 large number of hosts, but in a scalable fashion that does not cause
 undue network congestion. In particular, TCP is unsuitable for
 delivering alerts because of the overhead imposed by connection
 establishment and acknowledgement messages [RFC0793]. Sending alerts
 directly in a UDP datagram is not appropriate either, because of the
 size limits imposed by link maximum transmission units (MTUs)
 [RFC0768].

 This document defines the Light-weight Emergency Alerting Protocol
 (LEAP) as a simple, UDP-based way to deliver emergency alerts. This
 protocol defines a simple fragmentation layer over UDP, and
 retransmission and reassembly algorithms that allow for reliable
 transmission of alerts without a need for acknowledgements. We also
 define a URI format for specifying alert sources, so that alert
 servers can inform alert recipients about what sorts of alerts they
 should accept over this protocol.

1.1. Open Questions

 Should we randomize the order in which fragments are transmitted in
 order to deal with correlated loss?

 How should we manage UDP ports? Require that destination==source?
 Require that destination==default? If there is any flexibility in
 port selection, should the URI format allow these to be indicated?

2. Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Packet Format

 LEAP transmits ESCAPE-encoded CAP alerts as a collection of fragments
 [I-D.barnes-atoca-escape]. Alert servers divide alerts into
 fragments that are small enough to fit into an MTU, and clients
 reassmeble these fragments to obtain the complete alert. (See
 Section 5 and Section 6 for details on the fragmentation and
 reassembly processes.

 LEAP payloads are encapsulated in UDP datagrams with source and

Barnes Expires May 3, 2012 [Page 3]

Internet-Draft ESCAPE October 2011

 destination ports equal to XXX. Each datagram comprises a 4-octet
 LEAP header, followed by alert data:

 [[Note to RFC Editor: Please replace the XXX above with the port
 number assigned by IANA]]
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | alert-id | frag-count | frag-no |
 +-+
 | .
 . Fragment Body .
 . |
 +-+

 The LEAP header has the following fields:

 o alert-id: A 16-bit unsigned integer uniquely identifying this
 alert among alerts sent from the server IP address and port for
 this packet

 o frag-count: An 8-bit unsigned integer describing the total number
 of fragments in an alert

 o frag-no: An 8-bit unsigned integer describing the position of this
 payload in the sequence of alert fragments

 The remainder of the UDP payload contains the body of the alert
 fragment itself. The reassembled fragments of a LEAP-transmitted
 alert MUST comprise a valid ESCAPE-formatted alert. Note that
 because each alert can be split into at most 256 fragments, the total
 size of the alert is still limited to a multiple of the MTU. If the
 available payload size after IP, UDP, and LEAP headers is 1KB, then
 the maximum alert that can be transmitted is 256KB.

4. URI Format

 A LEAP URI describes an alert server that will transmit alerts using
 LEAP. Clients can use these URIs to determine which LEAP messages
 they should accept based on a list of authorized LEAP URIs.

 [[TODO: ABNF for URI format leap:[host/IP]]]

Barnes Expires May 3, 2012 [Page 4]

Internet-Draft ESCAPE October 2011

5. Server Processing

 An alert server transmits an ESCAPE-encoded alert according to the
 following steps:

 1. Choose a 16-bit pseudo-random alert ID.

 2. Divide the alert into fragments that are sufficiently small that
 they are likely to be less than the MTU on all links between the
 server and end clients. A 512-octet maximum fragment size is
 RECOMMENDED.

 3. Attach to each fragment a LEAP header with the following values:

 * alert-id: The 16-bit value chosen in step 1

 * frag-count: The number of fragments generated in step 2

 * frag-no: The index of this fragment in the sequence of
 fragments, starting at zero

 4. Transmit each fragment (with its header) in a UDP datagram to the
 client(s)

 5. Re-transmit the fragment sequence as necessary to achieve the
 desired level of reliability

 Servers increase the reliability of alert delivery by retransmitting
 the sequence of alert fragments. Servers SHOULD compute the number
 of retransmissions R based on three factors:

 o p: The estimated probability of a packet successfully reaching the
 client from the server (one minus the loss rate)

 o q: The probability that a client receives all fragments
 successfully

 o F: The number of fragments in the alert

 When clients apply the reassembly algorithm described below, the
 probability of receiving an entire alert after R retransmissions is
 given by the following formula:

 q = (1 - (1-p)^R)^F

 Solving this equation for R, the number of retransmissions required
 to achieve a resiliency q is as follows:

Barnes Expires May 3, 2012 [Page 5]

Internet-Draft ESCAPE October 2011

 R = log(1-q^(1/F)) / log(1-p)

 For example, if the server estimates that there is a 10% loss rate to
 clients (p=.9) and wishes to transmit a 10-fragment alert (F=10) with
 99% reliability (q=.99), then it should transmit the entire sequence
 of alert fragments at least 3 times (R=2.998).

6. Client Processing

 LEAP clients reassemble alert fragments from alert servers in order
 to obtain a complete alert. A LEAP client maintains a set of alert
 buffers (possibly empty) to hold fragments of incomplete alerts.
 Each buffer is identified by the IP address of the alert server and
 the 16-bit alert ID of the alert being reassmbled. Each alert buffer
 contains the following data elements:

 o IP address of the alert server

 o Alert ID for this alert

 o Number of fragments in this alert

 o List of fragment numbers that have been received

 o List of fragment bodies that have been received

 A LEAP client processes an incoming LEAP datagram according to the
 following steps:

 1. Search for an existing alert buffer that matches this datagram’s
 IP address and alert ID

 2. If there is no current alert buffer, initialize one with the
 following values:

 * IP address: The source IP address of the incoming datagram

 * Alert ID: The alert ID from the LEAP header in the incoming
 datagram

 * Number of fragments: The fragment count from the LEAP header
 in the incoming datagram

 * Received fragment number list: A one-element list containing
 the fragment number from the LEAP header in the incoming
 datagram

Barnes Expires May 3, 2012 [Page 6]

Internet-Draft ESCAPE October 2011

 * Received fragment body list: A one-element list containing the
 fragment body in the incoming datagram

 3. If there is a current alert buffer, add this datagram to the
 buffer:

 A. If the fragment count field in the datagram differs from the
 fragment count field in the buffer, discard the datagram

 B. Add the fragment number from the incoming datagram to the
 list of fragment numbers

 C. Add the fragment body from the incoming datagram to the list
 of fragment bodies

 D. If all fragments have been received, re-assemble the fragment
 bodies in order by fragment number and return the reassembled
 alert

 In order to limit the amount of state that needs to be stored,
 clients SHOULD apply access controls before accepting incoming
 datagrams and limit the time that an individual buffer is stored.
 When a client has been configured with local alert servers (e.g.,
 using the Alert Metadata Protocol [I-D.barnes-atoca-meta]), then it
 SHOULD only accept LEAP datagrams from configured servers.

 Clients MUST apply a buffer timeout T1 to incoming alerts. If all
 fragments for a buffer do not arrive within T1 milliseconds, then the
 buffer is discarded. The RECOMMENDED default value for T1 is 5000
 milliseconds.

 Clients MAY also impose an absolute limit on the number of buffers
 they will store at one time, although this may cause them to miss a
 legitimate alert if an attacker sends many false alerts. If a client
 wishes to limit the number of buffers stored, it SHOULD place limits
 on a per-IP-address basis, rather than on a global basis. This will
 prevent attackers from creating many buffers, but still allow a
 legitimate alert server to transmit the few alerts that it needs to
 get through.

7. IANA Considerations

 [TODO: Request a default port number]

 [TODO: Register URI scheme]

Barnes Expires May 3, 2012 [Page 7]

Internet-Draft ESCAPE October 2011

8. Security Considerations

 The primary risk for alerting systems is the introduction of false
 alert information, either by injecting false alerts or by modifying
 valid alerts. This protocol addresses these risks by using the
 authentication and integrity features of the ESCAPE alert format
 [I-D.barnes-atoca-escape].

 The main security concern for this protocol is denial of service on
 the client, both in the sense of resource exhaustion and in the sense
 of preventing legitimate alerts from arriving. Clients are required
 to maintain state, so there is a risk that this state will be
 exhausted. Rejecting LEAP datagrams based on resource limits,
 however, can lead to legitimate alert datagrams being dropped.

 Several DOS mitigations are described in Section 6 above. The LEAP
 protocol itself also imposes an absolute upper bound on the amount of
 data stored per source IP address. Due to the limited set of alert
 IDs and fragment numbers available, the worst-case amount of buffer
 is 2^24 times the link MTU, for example 4GB for a 1KB MTU. An
 attacker can only force a client to accept more data than this by
 spoofing IP addresses or sending alerts from multiple hosts.

 As discussed above, clients SHOULD apply resource constraints to
 limit the amount of state that an attacker can require a client to
 store. These resource contraints must be constructed so that
 legitimate alerts are still likely to get through. Since there is no
 authentication in LEAP, it is not possible to apply access controls
 based on cryptographic credentials. But if alert server IP addresses
 can be pre-provisioned, then the client can choose to accept
 datagrams only from those IP addresses. Limiting resources on a per-
 IP-address basis also increases the likelihood that legitimate alerts
 will be received. While attackers may try to send many alerts
 simultaneously in order to exhaust resources, real alert servers are
 much more likely to only send a few alerts at any given time.

9. Acknowledgements

 Thanks to Martin Thomson, Brian Rosen, Hannes Tshofenig for help in
 developing and refining the ideas in this document.

10. References

Barnes Expires May 3, 2012 [Page 8]

Internet-Draft ESCAPE October 2011

10.1. Normative References

 [I-D.barnes-atoca-escape]
 Barnes, R., "Encoding of Secure Common Alert Protocol
 Entities (ESCAPE)", draft-barnes-atoca-escape-00 (work in
 progress), October 2011.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [I-D.barnes-atoca-meta]
 Barnes, R., "Alert Metadata Protocol (AMP)",
 draft-barnes-atoca-meta-00 (work in progress),
 October 2011.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, September 1981.

Author’s Address

 Richard Barnes
 BBN Technologies
 9861 Broken Land Parkway
 Columbia, MD 21046
 US

 Phone: +1 410 290 6169
 Email: rbarnes@bbn.com

Barnes Expires May 3, 2012 [Page 9]

