
Host Identity Protocol T. Heer, Ed.
Internet-Draft R. Hummen
Intended status: Experimental K. Wehrle
Expires: April 30, 2012 RWTH Aachen University,
 Communication and Distributed
 Systems Group
 M. Komu
 Aalto University
 October 28, 2011

 End-Host Authentication for HIP Middleboxes
 draft-heer-hip-middle-auth-04

Abstract

 The Host Identity Protocol [RFC5201] is a signaling protocol for
 secure communication, mobility, and multihoming that introduces a
 cryptographic namespace. This document specifies an extension for
 HIP that enables middleboxes to unambiguously verify the identities
 of hosts that communicate across them. This extension allows
 middleboxes to verify the liveness and freshness of a HIP association
 and, thus, to secure access control in middleboxes.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Notation

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute

Heer, et al. Expires April 30, 2012 [Page 1]

Internet-Draft Hip-Middle-Auth October 2011

 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Heer, et al. Expires April 30, 2012 [Page 2]

Internet-Draft Hip-Middle-Auth October 2011

Table of Contents

 1. Introduction . 4
 1.1. Authentication and Replay Attacks 5
 2. Protocol Overview . 6
 2.1. Signed Middlebox Nonces 6
 2.2. Identity Verification by Middleboxes 9
 2.3. Failure Signaling . 15
 2.4. Fragmentation . 16
 2.5. HIP Parameters . 16
 3. Security Services for the HIP Control Channel 18
 3.1. Adversary model and Security Services 18
 4. Security Services for the HIP Payload Channel 19
 4.1. Access Control . 20
 4.2. Resource allocation 21
 5. Security Considerations 21
 6. IANA Considerations . 22
 7. Acknowledgments . 22
 8. Changelog . 22
 8.1. Version 4 . 22
 8.2. Version 3 . 22
 9. Normative References . 22
 Authors’ Addresses . 23

Heer, et al. Expires April 30, 2012 [Page 3]

Internet-Draft Hip-Middle-Auth October 2011

1. Introduction

 The Host Identity Protocol (HIP) introduces a new cryptographic
 namespace, based on public keys, in order to secure Internet
 communication. This namespace allows hosts to securely address and
 authenticate their peers. HIP was designed to be middlebox-friendly
 and to allow middleboxes to inspect HIP control traffic. Examples of
 such middleboxes are firewalls and Network Address Translators
 (NATs).

 In this context, one can distinguish HIP-aware middleboxes, which are
 designed to process HIP packets, and other middleboxes, which are
 unaware of HIP. This document addresses only HIP-aware middleboxes
 while the behavior of HIP in combination with HIP-unaware middleboxes
 is specified in [RFC5770]. Moreover, the scope of this document is
 restricted to middleboxes that use HIP in order to provide
 Authentication, Authorization, and Accounting (AAA)-related services
 and, thus, need to authenticate the communicating peers that send
 traffic over the middlebox. The class of middleboxes this document
 focuses on does not require the end-host to explicitly register to
 the middlebox. HIP behavior for interacting and registering to such
 middleboxes is specified in [RFC5203]. Thus, we focus on middleboxes
 that build their state based on packets they forward (path-coupled
 signaling).

 An example of such a middlebox is a firewall that only allows traffic
 from certain hosts to traverse. We assume that access control is
 performed based on Host Identities (HIs). Such an authenticating
 middlebox needs to observe the HIP Base EXchange (BEX) or a HIP
 mobility update [RFC5206] and check the Host Identifiers (HIs) in the
 packets.

 Along the lines of [RFC5207], an authentication solution for
 middleboxes must have some vital properties. For one, the middlebox
 must be able to unambiguously identify one or both of the
 communicating peers. Additionally, the solution must not allow for
 new attacks against the middlebox. This document specifies a HIP
 extension that allows middleboxes to participate in the HIP handshake
 and the HIP update process in order to allow these middleboxes to
 reliably verify the identities of the communicating peers. To this
 end, this HIP extension defines how middleboxes can interact with
 end-hosts in order to verify their identities.

 Verifying public-key (PK) signatures is costly in terms of CPU
 cycles. Thus, in addition to authentication capabilities, it is also
 necessary to provide middleboxes with a way of defending against
 resource-exhaustion attacks that target PK signature verification.
 This document defines how middleboxes can utilize the HIP puzzle

Heer, et al. Expires April 30, 2012 [Page 4]

Internet-Draft Hip-Middle-Auth October 2011

 mechanism defined in [RFC5201] to slow down resource-exhaustion
 attacks.

 The presented authentication extension only targets the HIP control
 channel. Additional security considerations and possible security
 services for the HIP payload channel are discussed in Section 4.

1.1. Authentication and Replay Attacks

 Middleboxes may need to verify the HIs in the HIP base exchange
 messages to perform access control based on Host Identities.
 However, passive verification of HIs in the messages is not
 sufficient to ensure the identity of an end-host because of a
 possible replay attack against which the basic HIP protocol as
 specified in [RFC5201] does not provide adequate protection.

 To illustrate the need for additional security measures for HIP-aware
 middleboxes, we briefly outline the replay attack: Assume that the
 legitimate owner of Host Identity Tag (HIT) X establishes a HIP
 association with the legitimate owner of HIT Y at some point in time
 and an attacker A overhears the base exchange and records it.

 Assume that a middlebox M checks HIP HIs in order to restrict traffic
 passing through the box. At some later point in time, Attacker A
 collaborates with another attacker B. They replay the very same BEX
 packets to the middlebox M on the communication path. Note that it
 is not required that the middlebox M was on the communication path
 between X and Y when the BEX was recorded.

 The middlebox has no way to distinguish legitimate hosts X and Y from
 the attackers A and B as it can only overhear the BEX passively and
 it cannot can distinguish the replayed BEX from a the genuine
 handshake. As the attackers overheard the SPI numbers, they can
 traverse the middlebox with "fake" ESP packets with valid SPI
 numbers, and hence, send data across M without proper authentication.
 Since the middleboxes do not know the integrity and encryption keys
 for ESP, they cannot distinguish valid ESP packets from forged ones.
 Hence, collaborating attackers can use any replayed BEX to falsely
 authenticate to the middlebox and thus impersonate any host. This is
 problematic in cases in which the middlebox needs to know the
 identity of the peers that communicate across it. Examples for such
 cases are AAA-related services, such as access control, logging of
 activities, and accounting for traffic volume or connection duration.

 This attack scenario is not addressed by the current HIP
 specifications. Therefore, this document specifies a HIP extension
 that allows middleboxes to defend against this attack.

Heer, et al. Expires April 30, 2012 [Page 5]

Internet-Draft Hip-Middle-Auth October 2011

2. Protocol Overview

 This section gives an overview of the interaction between hosts and
 authenticating middleboxes. This document describes a framework that
 middleboxes can use to implement authentication of end-hosts and
 leaves its further use to other documents and to middlebox
 implementors.

2.1. Signed Middlebox Nonces

 The described attack scenario shows the necessity for unambiguous
 end-host identity verification by middleboxes. However, this
 authentication cannot be purely end-to end: a) Relying on nonces
 generated by the end-hosts is not possible because middleboxes cannot
 verify the freshness of these nonces. b) Introducing time-stamps
 restricts the attack to a certain time frame but requires global time
 synchronization and therefore should be avoided.

 The following sections specify how HIP hosts can prove their identity
 by performing a challenge-response protocol between the middlebox and
 the end-hosts. As a challenge, the middlebox adds information (e.g.
 self-generated nonces) to HIP control packets which the end-hosts
 sign with public-key (PK) signatures and echo back.

 The challenge-response mechanism is similar to the ECHO_REQUEST/
 ECHO_RESPONSE mechanism employed already by HIP end-hosts (see
 [RFC5201]). It assumes that the end-hosts exchange at least two HIP
 packets with each other. The middlebox adds a CHALLENGE_REQUEST
 parameter to the first HIP control packet. Similar to the
 ECHO_REQUEST parameter in the original HIP protocol, this parameter
 contains an opaque data field that must be echoed by its receiver.
 The receiver echoes the opaque data field in a CHALLENGE_RESPONSE
 parameter. The CHALLENGE_RESPONSE parameter must be covered by the
 packet signature, thereby proving that the receiver is in possession
 of the private key that corresponds to the HI.

 The middlebox can either verify the identity of the initiator, the
 responder, or both peers, depending on the purpose of the middlebox.
 The choice of which authentication is required left to middlebox
 implementers.

2.1.1. CHALLENGE_REQUEST

 Middleboxes MAY add CHALLENGE_REQUEST parameters to the R1 and I2
 packets and to any UPDATE packet. This parameter contains an opaque
 data block of variable size, which the middlebox uses to carry
 arbitrary data (e.g., a nonce). The HIP packets that carry middlebox
 challenges may contain multiple CHALLENGE_REQUEST parameters, since

Heer, et al. Expires April 30, 2012 [Page 6]

Internet-Draft Hip-Middle-Auth October 2011

 all middleboxes on the path may add these parameters. A middlebox
 MUST append its own CHALLENGE_REQUEST parameter behind already
 existing CHALLENGE_REQUEST parameters in the HIP packet. In order to
 avoid packet fragmentation, the MBs should restrict the size of the
 variable data field in the CHALLENGE_REQUEST parameter. The total
 length of the packets SHOULD not exceed 1280 bytes to avoid IPv6
 fragmentation [RFC2460].

 The middleboxes add the CHALLENGE_REQUEST parameter to the
 unprotected part of a HIP message. Thus, it does not corrupt any
 HMAC or public-key signatures that protect the HIP packet. However,
 the middlebox MUST recompute the IP and HIP header checksums as
 defined in [RFC5201] and the UDP headers of UDP encapsulated HIP
 packets as defined in [RFC5770].

 A HIP end-host that receives a HIP control packet containing one or
 more CHALLENGE_REQUEST parameters must copy the contents of each
 parameter without modification to a single CHALLENGE_RESPONSE
 parameter. This end-host MUST send the CHALLENGE_RESPONSE parameter
 within the signed part of its reply. Note that middleboxes MAY also
 add ECHO_REQUEST_UNSIGNED parameters as specified in [RFC5201] if the
 receiver of the parameter is not required to sign the contents of the
 ECHO_REQUEST.

 Middleboxes can delay state creation by utilizing the
 CHALLENGE_REQUEST and CHALLENGE_RESPONSE parameters by hiding
 encrypted or otherwise protected information about previous
 authentication steps in the opaque data field.

2.1.2. CHALLENGE_RESPONSE

 When a middlebox injects an opaque blob of data with a
 CHALLENGE_REQUEST parameter, it expects to receive the same data
 without modification as part of a CHALLENGE_RESPONSE parameter in a
 subsequent packet. Hence, the opaque data MUST be copied as it is
 from the corresponding CHALLENGE_REQUEST parameter. In the case of
 multiple CHALLENGE_REQUEST parameters, their order MUST be preserved
 within the corresponding CHALLENGE_RESPONSE parameter.

 The CHALLENGE_REQUEST and CHALLENGE_RESPONSE parameters MAY be used
 for any purpose, in particular when a middlebox has to carry state
 information in a HIP packet to receive it in the next response
 packet. The CHALLENGE_RESPONSE MUST be covered by the HIP_SIGNATURE.

 The CHALLENGE_RESPONSE parameter is non-critical. Depending on its
 local policy, a middlebox can react differently on a missing
 CHALLENGE_RESPONSE parameter. Possible actions range from degraded
 or restricted service, such as bandwidth limitation, up to refusing

Heer, et al. Expires April 30, 2012 [Page 7]

Internet-Draft Hip-Middle-Auth October 2011

 connections and reporting access violations.

 When sending a HIP control packet, an end-host may face the problem
 that not all opaque values of the received CHALLENGE_REQUEST
 parameters fit into the CHALLENGE_RESPONSE parameter due to HIP
 control packet size restrictions. In this case, the host should send
 several packets. The first packet contains a CHALLENGE_RESPONSE
 parameter that includes the received opaque values of the
 CHALLENGE_REQUEST parameters starting from the last occurrence in the
 packet. Further packets contain the remaining values in the reverse
 order of the inclusion in the received packet. This way, the
 middleboxes closest to the sender will already have authenticated the
 identity of the peers and can let further control packets pass
 through.

2.1.3. Middlebox Puzzles

 Since PK operations are costly in terms of CPU cycles, a middlebox
 has to defend itself against resource-exhaustion attacks when
 verifying signatures in HIP packets. The HIP base protocol [RFC5201]
 specifies a puzzle mechanism to protect the Responder from I2 floods
 that require numerous public-key operations. However, middleboxes
 cannot utilize this mechanism because they cannot verify the
 freshness of the puzzle solution in the BEX packets. This section
 specifies how middleboxes can utilize the puzzle mechanism to add
 their own puzzles to R1, I2, and any UPDATE packets. This allows
 middleboxes to shelter against Denial of Service (DoS) attacks on PK
 verification.

 The puzzle mechanism for middleboxes utilizes the CHALLENGE_REQUEST
 and CHALLENGE_RESPONSE parameters. The CHALLENGE_REQUEST parameter
 contains fields for setting the difficulty and the expiration date of
 the puzzle. In contrast to the PUZZLE parameter in the HIP base
 specifications, there is no dedicated puzzle seed field. Instead,
 the hash of the opaque data field in the CHALLENGE_REQUEST parameter
 serves as puzzle seed. The hash is generated by applying the SHA-1
 algorithm to the opaque data field. The destination end-host of the
 HIP control packet MUST solve the puzzle and provide the solution in
 the CHALLENGE_RESPONSE parameter. The middlebox can set the puzzle
 difficulty by adjusting the K value in the CHALLENGE_REQUEST packet.
 The semantics of this field equal the semantics of the PUZZLE
 parameter. Setting K to 0 signifies that no puzzle solution is
 required.

 In case of multiple CHALLENGE_RESPONSE parameters, the responder
 derives the puzzle seed from the concatenation of the opaque data of
 all CHALLENGE_REQUEST parameters in the received control packet in
 the reverse order of their inclusion. Furthermore, he MUST compute

Heer, et al. Expires April 30, 2012 [Page 8]

Internet-Draft Hip-Middle-Auth October 2011

 the solution based on the highest difficulty value K in the received
 CHALLENGE_REQUEST parameters. This selection of K satisfies the
 security requirements of each middlebox while preventing the the
 receiver from computing multiple puzzle solutions. The responder
 MUST meet the lowest time boundaries of the received
 CHALLENGE_REQUEST parameters. Otherwise, there exists one on-path
 middlebox that will not approve the solution.

 When approaching the IPv6 packet fragmentation threshold, end-hosts
 should split the CHALLENGE_RESPONSE parameter in case of multiple
 CHALLENGE_REQUEST parameters. Hence, end-hosts SHOULD compute the
 puzzle solution after the overall packet size of the response packet
 has been determined. Hence, only the opaque values of the
 CHALLENGE_REQUEST parameters that are included in the respective
 CHALLENGE_RESPONSE parameter MUST be used during the puzzle seed
 generation.

 Since a puzzle increases the delay and computational cost for
 establishing or updating a HIP association, a middlebox SHOULD only
 increase K when it is under attack. Moreover, middleboxes SHOULD
 distinguish attack directions. If the majority of the CPU load is
 caused by verifying HIP control messages that arrive from a certain
 interface, middleboxes MAY increase K for HIP control packets that
 leave the interface. The middlebox chooses the difficultly of the
 puzzle according to its load and local policies.

2.1.4. CHALLENGE_RESPONSE Verification

 When a middlebox has added a CHALLENGE_REQUEST parameter to a control
 packet and receives a control packet that contains a
 CHALLENGE_RESPONSE parameter, it first checks if its opaque data has
 been echoed back correctly. To this end, it traverses the Opaque
 values included in the CHALLENGE_RESPONSE parameter.

 If the opaque data has been echoed back correctly by the end-host,
 the middlebox verifies the provided puzzle solution. It, therefore,
 hashes the Opaque values as contained in the CHALLENGE_RESPONSE
 parameter and verifies the signaled solution. In case of a
 successful verification, the middlebox MAY check further security
 mechanisms such as the PK signature and process the packet according
 to its function.

2.2. Identity Verification by Middleboxes

 This section describes how middleboxes can influence the BEX and the
 HIP update process in order to verify the identity of the HIP end-
 hosts.

Heer, et al. Expires April 30, 2012 [Page 9]

Internet-Draft Hip-Middle-Auth October 2011

2.2.1. Identity Verification During BEX

 Middleboxes MAY add CHALLENGE_REQUEST parameters to R1 and I2 packets
 in order to verify the identities of the participating end-hosts.
 Middleboxes can choose either to authenticate the Initiator, the
 Responder, or both. Middleboxes MUST NOT add CHALLENGE_REQUEST
 parameters to I1 messages because this would expose the Responder to
 DoS attacks. Thus, middleboxes MUST let unauthenticated and minimal
 I1 packets traverse. Minimal means that the I1 packet MUST NOT
 contain more than the minimal set of parameters specified by HIP
 standards or internet drafts. In particular, the I1 packet MUST NOT
 contain any attached payload. Figure 1 illustrates the
 authentication process during the BEX.

 Main path:

 Initiator Middlebox Responder
 .-----------------.
 I1 | | I1
 -----------------> | |---------------------------->
 | |
 R1, + CQ1 | Add CQ | R1
 <----------------- | |<----------------------------
 | |
 I2, {CR1} | Verify CR1 | I2, {CR1} + CQ2
 -----------------> | Add CQ2 |---------------------------->
 | |
 | |
 R2, {CR2} | Verify CR2 | R2, {CR2}
 <----------------- | |<-----------------------------
 ’-----------------’

 CQ: Middlebox challenge reQuest
 CR: Middlebox challenge Response
 {}: Signature with sender’s HI as key

 Middlebox authentication of a HIP base exchange.

 Figure 1

2.2.2. Identity Verification During Mobility Updates

 HIP rekeying, mobility and multihoming UPDATE mechanisms for non-
 NATted environments are described in [RFC5206]. This section
 describes how middleboxes process UPDATE messages in non-NATted
 environments and leave NATted environments for future revisions of

Heer, et al. Expires April 30, 2012 [Page 10]

Internet-Draft Hip-Middle-Auth October 2011

 the draft.

 The middleboxes can apply middlebox challenges to mobility related
 HIP control messages in the case where both end-hosts are single-
 homed. The middlebox challenges can be applied both ways as the
 UPDATE process consists of three packets (U1, U2, U3) which all
 traverse through the same middlebox as shown in Figure 2.

 In cases, in which fewer packets are used for updating an
 association, the following rule applies.

 RESPONSE RULE:

 A HIP host, receiving a CHALLENGE_REQUEST MUST reply with a
 CHALLENGE_RESPONSE in its next UPDATE packet. If no further UPDATE
 packets are necessary to complete the update procedure, an additional
 UPDATE packet containing the CHALLENGE_RESPONSE MUST be sent.

 Initiator Middlebox Responder
 .------.
 U1 | | U1 + CQ1
 -----------------------------> | | -------------------------->
 | |
 U2, {CR1} + CQ2 | | U2, {CR1}
 <----------------------------- |OK | <--------------------------
 | |
 U3, {CR2} | | U3, {CR2}
 -----------------------------> | OK| -------------------------->
 ’------’
 CQ: Middlebox challenge reQuest
 CR: Middlebox challenge Response
 {}: Signature with sender’s HI as key

 Middlebox authentication of a HIP mobility update over a single path.

 Figure 2

 Middlebox 1 in Figure 2 can verify the identity of the Responder by
 checking its PK signature and the presence of the CHALLENGE_RESPONSE
 in the U2 packet. If necessary, the middlebox MAY add an
 CHALLENGE_REQUEST for the Initiator of the update. The middlebox can
 verify the Initiator’s identity by verifying its signature and the
 CHALLENGE_RESPONSE in the U3 packet.

Heer, et al. Expires April 30, 2012 [Page 11]

Internet-Draft Hip-Middle-Auth October 2011

2.2.3. Identity Verification for Multihomed Mobility Updates

 Multihomed hosts may use multiple communication paths during an HIP
 mobility update. Depending on whether the middlebox is located on
 the communication path between the preferred locators of the hosts or
 not, the middlebox forwards different packets and, thus, needs to
 interact differently with the updates. Figure 3 I) and II)
 illustrates an update with Middlebox 1 on the path between the
 Initiator’s and the Responder’s preferred locators and with Middlebox
 2 on an alternative path. Middlebox 2 is not located on the path
 between the preferred locators of the HIP end-hosts does not receive
 the U1 message. Therefore, it will not recognize any
 CHALLENGE_RESPONSE (CR1) in the second UPDATE packet. Thus, if a
 middlebox encounters non-matching or missing CHALLENGE_RESPONSE
 parameter in an initial update packet, the middlebox SHOULD ignore
 it.

 Complying to the RESPONSE RULE stated in Section Section 2.2.2, the
 RESPONDER generates an additional fourth update packet on receiving
 the CHALLENGE_REQUEST. The update process for a middlebox on the
 preferred communication path (Middlebox 1) and a middlebox off the
 preferred communication path (Middlebox 2) is depicted in Figure 3.

Heer, et al. Expires April 30, 2012 [Page 12]

Internet-Draft Hip-Middle-Auth October 2011

 I) Main path:

 Initiator Middlebox 1 Responder
 .------.
 U1 | | U1 + CQ1
 ----------------------------> | | --------------------------->
 | |
 U2, {CR1} + CQ2 | | U2, {CR1}
 <---------------------------- |OK | <---------------------------
 | |
 U3, {CR2} | | U3, {CR2}
 ----------------------------> | OK| --------------------------->
 ’------’

 II) Alternative path:

 Initiator Middlebox 2 Responder

 U1 (bypasses Middlebox 2)
 -->
 .------.
 U2, {CR1} + CQ3 | | U2, {CR1}
 <---------------------------- | wrong| <---------------------------
 | |
 U3’, {CR3} | | U3’, {CR3} + CQ4
 ----------------------------> |OK | --------------------------->
 | |
 U4, {CR4} | | U4, {CR4}
 <---------------------------- | OK| <---------------------------
 ’------’
 CQ: Middlebox challenge reQuest
 CR: Middlebox challenge Response
 {}: Signature with sender’s HI as key

 Middlebox authentication of a HIP mobility update over different
 paths.

 Figure 3

2.2.4. Identity Signaling During Updates

 As middleboxes have to verify rapidly and forward HIP packets, they
 need to be supplied with all information necessary to do so. If end-
 hosts hand over communication to a new communication path,
 middleboxes need to be able to learn their Host Identifiers (HIs)
 from the UPDATE packets. Therefore, all packets that contain a
 CHALLENGE_RESPONSE parameter MUST contain the HOST_ID parameter.

Heer, et al. Expires April 30, 2012 [Page 13]

Internet-Draft Hip-Middle-Auth October 2011

2.2.5. Closing of Connections

 The connection tear down as defined in [RFC5201] consists of two
 consecutive messages. This lack of a third message restricts
 middleboxes to authenticating the Responder of a CLOSE packet.
 However, verifying the legitimacy of the Responder suffices in most
 network scenarios, as CLOSE packets from unauthentic Initiators will
 be dropped by the Responder due to an invalid HMAC parameter. As a
 result, on-path middleboxes will not see CLOSE_ACK packets for
 rejected CLOSE packets. CLOSE_ACK packets can be authenticated by
 the middleboxes by adding a CHALLENGE_REQUEST parameter to the
 corresponding CLOSE packet as described above. Hence, middleboxes do
 not falsely tear down connections on illegitimate (forged) CLOSE
 packets.

 If local policies still require a middlebox to authenticate the CLOSE
 messages of both peers, the tear down operation needs to be extended
 following the RESPONSE RULE in Section 2.2.2. Hence, the responder
 side CLOSE_ACK packet MUST be followed by an initiator side CLOSE_ACK
 if the received CLOSE_ACK packet contains a CHALLENGE_REQUEST
 parameter.

 Middleboxes should have learned the identities of the peers during
 the BEX or an UPDATE prior to the CLOSE exchange. Hence, end-hosts
 are not required to include their identities in the CLOSE exchange.
 If a middlebox has not learned the identities of the peers when
 inspecting a CLOSE packet, it MUST forward the packet. In order to
 prevent misuse of the CLOSE exchange as a side channel for disallowed
 communication, middleboxes SHOULD rate limit unauthenticated CLOSE
 exchanges.

Heer, et al. Expires April 30, 2012 [Page 14]

Internet-Draft Hip-Middle-Auth October 2011

 I) Regular CLOSE authentication:

 Initiator Middlebox Responder
 .------.
 CLOSE | | CLOSE + CQ1
 ----------------------------> | | --------------------------->
 | |
 CLOSE_ACK, {CR1} | | CLOSE_ACK, {CR1}
 <---------------------------- |OK | <---------------------------
 | |
 ’------’

 II) Extended CLOSE authentication:

 Initiator Middlebox Responder
 .------.
 CLOSE | | CLOSE + CQ1
 ----------------------------> | | --------------------------->
 | |
 CLOSE_ACK, {CR1} + CQ2 | | CLOSE_ACK, {CR1}
 <---------------------------- |OK | <---------------------------
 | |
 CLOSE_ACK, {CR2} | | CLOSE_ACK, {CR2}
 ----------------------------> | OK| --------------------------->
 ’------’
 CQ: Middlebox challenge reQuest
 CR: Middlebox challenge Response
 {}: Signature with sender’s HI as key

 Middlebox authentication of a HIP close with authentication of (I)
 the Responder and (II) both peers.

 Figure 4

2.3. Failure Signaling

 Middleboxes SHOULD inform the sender of a BEX packet or update packet
 if it does not satisfy the requirements of the middlebox. Reasons
 for non-satisfactory packets are missing HOST_ID or
 CHALLENGE_RESPONSE parameters. Other reasons may be middlebox
 policies regarding, for example, insufficient client capabilities or
 or insufficient credentials delivered in a HIP CERT parameter
 [RFC6253]. Options for expressing such shortcomings are ICMP packets
 if no HIP association is established and HIP_NOTIFY packets in case
 of an already established HIP association. Defining this signaling
 mechanism is future work.

Heer, et al. Expires April 30, 2012 [Page 15]

Internet-Draft Hip-Middle-Auth October 2011

2.4. Fragmentation

 Analogously to the specification in [RFC5201], HIP aware middleboxes
 SHOULD support IP-level fragmentation and reassembly for IPv6 and
 MUST support IP-level fragmentation and reassembly for IPv4.
 However, when adding CHALLENGE_REQUEST parameters, a middlebox SHOULD
 keep the total packet size below 1280 bytes to avoid packet
 fragmentation in IPv6.

2.5. HIP Parameters

 This HIP extension specifies four new HIP parameters that allow
 middleboxes to authenticate HIP end-hosts and to protect against DoS
 attacks.

2.5.1. CHALLENGE_REQUEST

 A middlebox MAY append the CHALLENGE_REQUEST parameter to R1, I2, and
 UPDATE packets. The structure of the CHALLENGE_REQUEST parameter is
 depicted in the following figure. The semantics of the K and
 Lifetime fields are identical to the fields defined in the PUZZLE
 parameter in [RFC5201]. The opaque data field serves as nonce and
 puzzle seed value. To generate the seed corresponding to the 8-byte
 value I in [RFC5201], the receiver of the puzzle applies Ltrunc as
 defined in [RFC5201] to the received opaque data and truncates the
 result to 8 bytes. Note that the opaque data field must provide
 sufficient randomness to serve as puzzle seed.

Heer, et al. Expires April 30, 2012 [Page 16]

Internet-Draft Hip-Middle-Auth October 2011

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | K, 1 byte | Lifetime | /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /
 / /
 / Opaque, (variable length) /
 / +-+-+-+-+-+-+-+-+-+-|
 / | Padding |
 +-+

 Type 65334
 Length Variable
 K K is the number of verified bits
 Lifetime Challenge lifetime 2^(value-32) seconds
 Opaque Opaque data that serves as nonce and as basis for the
 puzzle. The puzzle value I is generated by hashing the
 opaque data field with the hash function SHA-1 and
 truncating it to 8-byte length.

2.5.2. CHALLENGE_RESPONSE

 The CHALLENGE_RESPONSE parameter is the response to one or more
 CHALLENGE_REQUEST parameters. The receiver of a CHALLENGE_REQUEST
 parameter SHOULD reply with a CHALLENGE_RESPONSE. Otherwise, the
 middlebox that added the CHALLENGE_REQUEST parameter MAY decide to
 degrade or deny its service. The Opaque fields of the received
 CHALLENGE_REQUEST parameters must be copied to the CHALLENGE_RESPONSE
 parameter in the reverse order of reception without any modification.
 As the number of opaque fields may be variable, it is encoded in the
 CHALLENGE_RESPONSE parameter. Furthermore, the length of each Opaque
 value is variable and is included in the parameter. The Opaque
 values are appended behind the last Opaque length field. Instead of
 copying the Opaque field of each CHALLENGE_REQUEST parameter, the
 input for the puzzle generation procedure may be reused. If the
 puzzle difficulty in the received CHALLENGE_REQUEST parameters is set
 to any other value except 0, an appropriate puzzle solution (adhering
 to the SOLUTION specifications in [RFC5201]) must be provided in the
 CHALLENGE_RESPONSE parameter. The CHALLENGE_RESPONSE parameter is
 non-critical and covered by the SIGNATURE. The structure of the
 CHALLENGE_RESPONSE parameter is depicted below:

Heer, et al. Expires April 30, 2012 [Page 17]

Internet-Draft Hip-Middle-Auth October 2011

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | K, 1 byte | Lifetime | No. opaque values |
 +-+
 / Puzzle solution #J, 8 bytes /
 / /
 / /
 +-+
 | Opaque length | Opaque length |
 +-+
 / Opaque, (variable length) /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 / | /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /
 / Opaque, (variable length) /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 / | Padding |
 +-+

 Type 322
 Length Variable
 K K is the number of verified bits
 Lifetime Challenge lifetime 2^(value-32) seconds
 No. opaque values Number of included opaque values
 Puzzle solution Random number
 Opaque length Length of an included Opaque field
 Opaque Copied unmodified from the received
 CHALLENGE_REQUEST parameters

3. Security Services for the HIP Control Channel

 In this section, we define the adversary model that the security
 analysis in the later sections will be based on.

3.1. Adversary model and Security Services

 For discussing the security properties of the proposed HIP extension
 we first define an attacker model. We assume a Dolev-Yao threat
 model in which an adversary can eavesdrop on all traffic regardless
 of its source and destination. The adversary can inject arbitrary
 packets with any source and destination addresses. Consequently, an

Heer, et al. Expires April 30, 2012 [Page 18]

Internet-Draft Hip-Middle-Auth October 2011

 adversary can also replay previously eavesdropped messages. However,
 the adversary cannot subvert the cryptographic ciphers and hash
 function, nor can it compromise one of the communicating nodes.

 Even in the face of this strong attacker, the proposed HIP extension
 enables middleboxes to verify the identity of the communicating HIP
 peers. It ensures that both peers are involved in the communication
 and that the HIP BEX or update packets are fresh, i.e. not replayed.
 It enables the middlebox to verify the source and destination (in
 terms of HIs) of the HIP association and the integrity of RSA and DSA
 signed HIP packets.

4. Security Services for the HIP Payload Channel

 The presented extension for HIP authentication by middleboxes only
 covers the HIP control channel, i.e., the HIP control messages.
 Depending on the binding between the HIP control and payload channel,
 certain security properties for the payload channel can be derived
 from the strong cryptographic authentication of the end-hosts.
 Assuming that there is a secure binding between packets belonging to
 a payload stream and the control stream, the same security properties
 as in Section 3 apply to the payload stream.

 ESP [RFC5202] is currently the default payload encapsulation format
 for HIP. A limitation of ESP is that it does not provide a secure
 binding between the HIP control channel and the ESP traffic on a per-
 packet basis. Hence, the achievable level of security for the
 payload channel is lower compared to the HIP control channel.

 This section discusses security properties of an ESP payload channel
 bound to a HIP control channel. Depending on the assumed adversary
 model, certain security services are possible. We briefly describe
 two application scenarios and how they benefit from the resulting
 security services. For the payload channel, HIP in combination with
 the middlebox authentication scheme offers the following security
 services:

 Attribute binding: Middleboxes can extract certain payload channel
 attributes (e.g. locators and SPIs) from the control channel.
 These attributes can be used to enforce certain restrictions on
 the payload channel, e.g., to exhibit the same attributes as the
 control channel. The attributes can either be stated explicitly
 in the HIP control packets or can be derived from the IP or UDP
 packets carrying the HIP control messages.

Heer, et al. Expires April 30, 2012 [Page 19]

Internet-Draft Hip-Middle-Auth October 2011

 Host involvement: Middleboxes can verify whether a certain host is
 involved in the establishment of a HIP association and, thus,
 involved in the establishment of the payload channel.

 Based on these security services we construct two use cases that
 illustrate the use of HIP authentication by middleboxes: access
 control and resource allocation as described in the following
 sections.

4.1. Access Control

 Middleboxes can manage resources based on HIs. As an example, let us
 assume that a middlebox only forwards HIP payload packets after a
 successful HIP BEX or HIP update. The middlebox uses the parameters
 in the control channel (specifically IP addresses and SPIs) to filter
 the payload traffic. The middlebox only forwards traffic from and to
 specific authenticated hosts and drops other traffic.

 The feasibility of subverting the function of the middlebox depends
 on the assumed adversary model.

4.1.1. Adversary model and Security Services

 If we assume a Dolev-Yao threat model, attribute binding is not
 helpful to aid packet filtering for access control. An attacker can
 send packets from any IP address and can read packets destined to any
 IP address. Without per packet verification by the middlebox, such
 an attacker can inject arbitrary forged packets into the HIP payload
 channel and make them traverse the middlebox. The attacker can also
 read the packets from the HIP payload channel, and hence, communicate
 across the middlebox. However, the forged packets are disclosed by
 inconsistencies in the ESP sequence numbers, which makes the attack
 visible to the middlebox as well as the HIP end hosts. Moreover,
 attackers can only inject packets into an already established HIP
 payload channel. Opening a new payload channel and replaying a
 closing of the channel are not possible.

 An attacker that is not able to send IP packets from an arbitrary
 source address and receive IP packets addressed to any destination,
 cannot use the ESP channel to send fake ESP packets when the
 middleboxes bind HIs and SPI numbers to addresses. By fixing the set
 of source and destination IP addresses, the opportunity to
 successfully inject packets into the payload channel is limited to
 hosts that can send packets from the same source address as the
 legitimate HIP hosts. Moreover, an attacker can only receive
 injected packets if it is on the communication path towards the
 legitimate HIP peer. Attackers cannot open new HIP payload channels
 and thus have no influence on the bound payload stream parameters.

Heer, et al. Expires April 30, 2012 [Page 20]

Internet-Draft Hip-Middle-Auth October 2011

 Finally, attackers cannot close HIP associations of legitimate peers.

4.2. Resource allocation

 When using HIs to limit the resources (e.g. bandwidth) allocated for
 a certain host, the HIs can be used to authenticate the hosts in a
 similar fashion to the access control illustrated above. Regarding
 authentication, both use cases share the same strengths and
 weaknesses. However, the implications for the targeted scenarios
 differ. Therefore, we restrict the following discussion to these
 differences.

4.2.1. Adversary Model and Security Services

 When assuming an Dolev-Yao threat model, an attacker is able to use
 resources allocated for the payload channel of another host by
 injecting packets into this channel. Also, the attacker cannot open
 a new payload channel with another host nor can it close an existing
 one.

 When binding the IP addresses of the HIP payload channel to the IP
 addresses used in the HIP control channel and assuming an attacker is
 unable to receive IP packets addressed to the IP address of an
 authenticated host, the attacker cannot utilize the resources
 allocated to authenticated host. However, the attacker can still
 inject packets and waste resources, yet without having any benefit
 other than causing disturbance to the other host. Specifically, it
 cannot increase the share of resources allocated to itself. Hence,
 this measure takes incentive from selfish users that try to benefit
 by mounting a DoS attack. Defense against purely malicious attackers
 that aim at creating disturbance without immediate benefit is
 difficult to achieve and out of scope of this document.

5. Security Considerations

 This HIP extension specifies how HIP-aware middleboxes interact with
 the handshake and mobility-signaling of the Host Identity Protocol.
 The scope is restricted to the authentication of end-hosts and
 excludes the issue of stronger authentication of ESP traffic at the
 middlebox.

 Providing middleboxes with a way of adding puzzles to the HIP control
 packets may cause both HIP peers, including the Responder, to spend
 CPU time on solving these puzzles. Thus, it is advised that HIP
 implementations for servers employ mechanisms to prevent middlebox
 puzzles from being used as DoS attacks. Under high CPU load, servers
 can rate limit or assign lower priority to packets containing

Heer, et al. Expires April 30, 2012 [Page 21]

Internet-Draft Hip-Middle-Auth October 2011

 middlebox puzzles.

6. IANA Considerations

 This document specifies two new HIP parameter types. The preliminary
 parameter type numbers are 322 and 65334.

7. Acknowledgments

 Thanks to Thomas Jansen, Shaohui Li, and Janne Lindqvist for the
 fruitful discussions on this topic. Many thanks to Julien Laganier,
 Stefan Goetz, Ari Keranen, Samu Varjonen, and Kate Harrison for
 commenting and helping to improve the quality of this document.

8. Changelog

8.1. Version 4

 - Some clarifications.

 - Add new way to compute single solution for multiple
 CHALLENGE_REQUEST parameters.

 - Modify parameter layout for CHALLENGE_RESPONSE parameter.

 - Add middlebox authentication for the CLOSE exchange.

 - Updated outdated references.

8.2. Version 3

 - Some editorial changes.

 - Added text about space issues in response packets with too many
 CHALLENGE_RESPONSE parameters in Section Section 2.1.2

9. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

Heer, et al. Expires April 30, 2012 [Page 22]

Internet-Draft Hip-Middle-Auth October 2011

 [RFC5201] Moskowitz, R., Nikander, P., Jokela, P., and T. Henderson,
 "Host Identity Protocol", RFC 5201, April 2008.

 [RFC5202] Jokela, P., Moskowitz, R., and P. Nikander, "Using the
 Encapsulating Security Payload (ESP) Transport Format with
 the Host Identity Protocol (HIP)", RFC 5202, April 2008.

 [RFC5203] Laganier, J., Koponen, T., and L. Eggert, "Host Identity
 Protocol (HIP) Registration Extension", RFC 5203,
 April 2008.

 [RFC5206] Nikander, P., Henderson, T., Vogt, C., and J. Arkko, "End-
 Host Mobility and Multihoming with the Host Identity
 Protocol", RFC 5206, April 2008.

 [RFC5207] Stiemerling, M., Quittek, J., and L. Eggert, "NAT and
 Firewall Traversal Issues of Host Identity Protocol (HIP)
 Communication", RFC 5207, April 2008.

 [RFC5770] Komu, M., Henderson, T., Tschofenig, H., Melen, J., and A.
 Keranen, "Basic Host Identity Protocol (HIP) Extensions
 for Traversal of Network Address Translators", RFC 5770,
 April 2010.

 [RFC6253] Heer, T. and S. Varjonen, "Host Identity Protocol
 Certificates", RFC 6253, May 2011.

Authors’ Addresses

 Tobias Heer (editor)
 RWTH Aachen University, Communication and Distributed Systems Group
 Ahornstrasse 55
 Aachen 52062
 Germany

 Email: heer@cs.rwth-aachen.de
 URI: http://www.comsys.rwth-aachen.de/team/tobias-heer/

Heer, et al. Expires April 30, 2012 [Page 23]

Internet-Draft Hip-Middle-Auth October 2011

 Rene Hummen
 RWTH Aachen University, Communication and Distributed Systems Group
 Ahornstrasse 55
 Aachen 52062
 Germany

 Email: hummen@cs.rwth-aachen.de
 URI: http://www.comsys.rwth-aachen.de/team/rene-hummen/

 Klaus Wehrle
 RWTH Aachen University, Communication and Distributed Systems Group
 Ahornstrasse 55
 Aachen 52062
 Germany

 Email: heer@cs.rwth-aachen.de
 URI: http://www.comsys.rwth-aachen.de/team/klaus/

 Miika Komu
 Aalto University, Department of Computer Science and Engineering
 Konemiehentie 2
 Espoo
 Finland

 Phone: +358947027117
 Fax: +358947025014
 Email: miika@iki.fi
 URI: http://www.hiit.fi/

Heer, et al. Expires April 30, 2012 [Page 24]

