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Abstract

   The Host Identity Protocol [RFC5201] is a signaling protocol for
   secure communication, mobility, and multihoming that introduces a
   cryptographic namespace.  This document specifies an extension for
   HIP that enables middleboxes to unambiguously verify the identities
   of hosts that communicate across them.  This extension allows
   middleboxes to verify the liveness and freshness of a HIP association
   and, thus, to secure access control in middleboxes.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

Notation

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
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   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 30, 2012.

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The Host Identity Protocol (HIP) introduces a new cryptographic
   namespace, based on public keys, in order to secure Internet
   communication.  This namespace allows hosts to securely address and
   authenticate their peers.  HIP was designed to be middlebox-friendly
   and to allow middleboxes to inspect HIP control traffic.  Examples of
   such middleboxes are firewalls and Network Address Translators
   (NATs).

   In this context, one can distinguish HIP-aware middleboxes, which are
   designed to process HIP packets, and other middleboxes, which are
   unaware of HIP.  This document addresses only HIP-aware middleboxes
   while the behavior of HIP in combination with HIP-unaware middleboxes
   is specified in [RFC5770].  Moreover, the scope of this document is
   restricted to middleboxes that use HIP in order to provide
   Authentication, Authorization, and Accounting (AAA)-related services
   and, thus, need to authenticate the communicating peers that send
   traffic over the middlebox.  The class of middleboxes this document
   focuses on does not require the end-host to explicitly register to
   the middlebox.  HIP behavior for interacting and registering to such
   middleboxes is specified in [RFC5203].  Thus, we focus on middleboxes
   that build their state based on packets they forward (path-coupled
   signaling).

   An example of such a middlebox is a firewall that only allows traffic
   from certain hosts to traverse.  We assume that access control is
   performed based on Host Identities (HIs).  Such an authenticating
   middlebox needs to observe the HIP Base EXchange (BEX) or a HIP
   mobility update [RFC5206] and check the Host Identifiers (HIs) in the
   packets.

   Along the lines of [RFC5207], an authentication solution for
   middleboxes must have some vital properties.  For one, the middlebox
   must be able to unambiguously identify one or both of the
   communicating peers.  Additionally, the solution must not allow for
   new attacks against the middlebox.  This document specifies a HIP
   extension that allows middleboxes to participate in the HIP handshake
   and the HIP update process in order to allow these middleboxes to
   reliably verify the identities of the communicating peers.  To this
   end, this HIP extension defines how middleboxes can interact with
   end-hosts in order to verify their identities.

   Verifying public-key (PK) signatures is costly in terms of CPU
   cycles.  Thus, in addition to authentication capabilities, it is also
   necessary to provide middleboxes with a way of defending against
   resource-exhaustion attacks that target PK signature verification.
   This document defines how middleboxes can utilize the HIP puzzle
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   mechanism defined in [RFC5201] to slow down resource-exhaustion
   attacks.

   The presented authentication extension only targets the HIP control
   channel.  Additional security considerations and possible security
   services for the HIP payload channel are discussed in Section 4.

1.1.  Authentication and Replay Attacks

   Middleboxes may need to verify the HIs in the HIP base exchange
   messages to perform access control based on Host Identities.
   However, passive verification of HIs in the messages is not
   sufficient to ensure the identity of an end-host because of a
   possible replay attack against which the basic HIP protocol as
   specified in [RFC5201] does not provide adequate protection.

   To illustrate the need for additional security measures for HIP-aware
   middleboxes, we briefly outline the replay attack: Assume that the
   legitimate owner of Host Identity Tag (HIT) X establishes a HIP
   association with the legitimate owner of HIT Y at some point in time
   and an attacker A overhears the base exchange and records it.

   Assume that a middlebox M checks HIP HIs in order to restrict traffic
   passing through the box.  At some later point in time, Attacker A
   collaborates with another attacker B. They replay the very same BEX
   packets to the middlebox M on the communication path.  Note that it
   is not required that the middlebox M was on the communication path
   between X and Y when the BEX was recorded.

   The middlebox has no way to distinguish legitimate hosts X and Y from
   the attackers A and B as it can only overhear the BEX passively and
   it cannot can distinguish the replayed BEX from a the genuine
   handshake.  As the attackers overheard the SPI numbers, they can
   traverse the middlebox with "fake" ESP packets with valid SPI
   numbers, and hence, send data across M without proper authentication.
   Since the middleboxes do not know the integrity and encryption keys
   for ESP, they cannot distinguish valid ESP packets from forged ones.
   Hence, collaborating attackers can use any replayed BEX to falsely
   authenticate to the middlebox and thus impersonate any host.  This is
   problematic in cases in which the middlebox needs to know the
   identity of the peers that communicate across it.  Examples for such
   cases are AAA-related services, such as access control, logging of
   activities, and accounting for traffic volume or connection duration.

   This attack scenario is not addressed by the current HIP
   specifications.  Therefore, this document specifies a HIP extension
   that allows middleboxes to defend against this attack.
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2.  Protocol Overview

   This section gives an overview of the interaction between hosts and
   authenticating middleboxes.  This document describes a framework that
   middleboxes can use to implement authentication of end-hosts and
   leaves its further use to other documents and to middlebox
   implementors.

2.1.  Signed Middlebox Nonces

   The described attack scenario shows the necessity for unambiguous
   end-host identity verification by middleboxes.  However, this
   authentication cannot be purely end-to end: a) Relying on nonces
   generated by the end-hosts is not possible because middleboxes cannot
   verify the freshness of these nonces. b) Introducing time-stamps
   restricts the attack to a certain time frame but requires global time
   synchronization and therefore should be avoided.

   The following sections specify how HIP hosts can prove their identity
   by performing a challenge-response protocol between the middlebox and
   the end-hosts.  As a challenge, the middlebox adds information (e.g.
   self-generated nonces) to HIP control packets which the end-hosts
   sign with public-key (PK) signatures and echo back.

   The challenge-response mechanism is similar to the ECHO_REQUEST/
   ECHO_RESPONSE mechanism employed already by HIP end-hosts (see
   [RFC5201] ).  It assumes that the end-hosts exchange at least two HIP
   packets with each other.  The middlebox adds a CHALLENGE_REQUEST
   parameter to the first HIP control packet.  Similar to the
   ECHO_REQUEST parameter in the original HIP protocol, this parameter
   contains an opaque data field that must be echoed by its receiver.
   The receiver echoes the opaque data field in a CHALLENGE_RESPONSE
   parameter.  The CHALLENGE_RESPONSE parameter must be covered by the
   packet signature, thereby proving that the receiver is in possession
   of the private key that corresponds to the HI.

   The middlebox can either verify the identity of the initiator, the
   responder, or both peers, depending on the purpose of the middlebox.
   The choice of which authentication is required left to middlebox
   implementers.

2.1.1.  CHALLENGE_REQUEST

   Middleboxes MAY add CHALLENGE_REQUEST parameters to the R1 and I2
   packets and to any UPDATE packet.  This parameter contains an opaque
   data block of variable size, which the middlebox uses to carry
   arbitrary data (e.g., a nonce).  The HIP packets that carry middlebox
   challenges may contain multiple CHALLENGE_REQUEST parameters, since
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   all middleboxes on the path may add these parameters.  A middlebox
   MUST append its own CHALLENGE_REQUEST parameter behind already
   existing CHALLENGE_REQUEST parameters in the HIP packet.  In order to
   avoid packet fragmentation, the MBs should restrict the size of the
   variable data field in the CHALLENGE_REQUEST parameter.  The total
   length of the packets SHOULD not exceed 1280 bytes to avoid IPv6
   fragmentation [RFC2460].

   The middleboxes add the CHALLENGE_REQUEST parameter to the
   unprotected part of a HIP message.  Thus, it does not corrupt any
   HMAC or public-key signatures that protect the HIP packet.  However,
   the middlebox MUST recompute the IP and HIP header checksums as
   defined in [RFC5201] and the UDP headers of UDP encapsulated HIP
   packets as defined in [RFC5770].

   A HIP end-host that receives a HIP control packet containing one or
   more CHALLENGE_REQUEST parameters must copy the contents of each
   parameter without modification to a single CHALLENGE_RESPONSE
   parameter.  This end-host MUST send the CHALLENGE_RESPONSE parameter
   within the signed part of its reply.  Note that middleboxes MAY also
   add ECHO_REQUEST_UNSIGNED parameters as specified in [RFC5201] if the
   receiver of the parameter is not required to sign the contents of the
   ECHO_REQUEST.

   Middleboxes can delay state creation by utilizing the
   CHALLENGE_REQUEST and CHALLENGE_RESPONSE parameters by hiding
   encrypted or otherwise protected information about previous
   authentication steps in the opaque data field.

2.1.2.  CHALLENGE_RESPONSE

   When a middlebox injects an opaque blob of data with a
   CHALLENGE_REQUEST parameter, it expects to receive the same data
   without modification as part of a CHALLENGE_RESPONSE parameter in a
   subsequent packet.  Hence, the opaque data MUST be copied as it is
   from the corresponding CHALLENGE_REQUEST parameter.  In the case of
   multiple CHALLENGE_REQUEST parameters, their order MUST be preserved
   within the corresponding CHALLENGE_RESPONSE parameter.

   The CHALLENGE_REQUEST and CHALLENGE_RESPONSE parameters MAY be used
   for any purpose, in particular when a middlebox has to carry state
   information in a HIP packet to receive it in the next response
   packet.  The CHALLENGE_RESPONSE MUST be covered by the HIP_SIGNATURE.

   The CHALLENGE_RESPONSE parameter is non-critical.  Depending on its
   local policy, a middlebox can react differently on a missing
   CHALLENGE_RESPONSE parameter.  Possible actions range from degraded
   or restricted service, such as bandwidth limitation, up to refusing
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   connections and reporting access violations.

   When sending a HIP control packet, an end-host may face the problem
   that not all opaque values of the received CHALLENGE_REQUEST
   parameters fit into the CHALLENGE_RESPONSE parameter due to HIP
   control packet size restrictions.  In this case, the host should send
   several packets.  The first packet contains a CHALLENGE_RESPONSE
   parameter that includes the received opaque values of the
   CHALLENGE_REQUEST parameters starting from the last occurrence in the
   packet.  Further packets contain the remaining values in the reverse
   order of the inclusion in the received packet.  This way, the
   middleboxes closest to the sender will already have authenticated the
   identity of the peers and can let further control packets pass
   through.

2.1.3.  Middlebox Puzzles

   Since PK operations are costly in terms of CPU cycles, a middlebox
   has to defend itself against resource-exhaustion attacks when
   verifying signatures in HIP packets.  The HIP base protocol [RFC5201]
   specifies a puzzle mechanism to protect the Responder from I2 floods
   that require numerous public-key operations.  However, middleboxes
   cannot utilize this mechanism because they cannot verify the
   freshness of the puzzle solution in the BEX packets.  This section
   specifies how middleboxes can utilize the puzzle mechanism to add
   their own puzzles to R1, I2, and any UPDATE packets.  This allows
   middleboxes to shelter against Denial of Service (DoS) attacks on PK
   verification.

   The puzzle mechanism for middleboxes utilizes the CHALLENGE_REQUEST
   and CHALLENGE_RESPONSE parameters.  The CHALLENGE_REQUEST parameter
   contains fields for setting the difficulty and the expiration date of
   the puzzle.  In contrast to the PUZZLE parameter in the HIP base
   specifications, there is no dedicated puzzle seed field.  Instead,
   the hash of the opaque data field in the CHALLENGE_REQUEST parameter
   serves as puzzle seed.  The hash is generated by applying the SHA-1
   algorithm to the opaque data field.  The destination end-host of the
   HIP control packet MUST solve the puzzle and provide the solution in
   the CHALLENGE_RESPONSE parameter.  The middlebox can set the puzzle
   difficulty by adjusting the K value in the CHALLENGE_REQUEST packet.
   The semantics of this field equal the semantics of the PUZZLE
   parameter.  Setting K to 0 signifies that no puzzle solution is
   required.

   In case of multiple CHALLENGE_RESPONSE parameters, the responder
   derives the puzzle seed from the concatenation of the opaque data of
   all CHALLENGE_REQUEST parameters in the received control packet in
   the reverse order of their inclusion.  Furthermore, he MUST compute
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   the solution based on the highest difficulty value K in the received
   CHALLENGE_REQUEST parameters.  This selection of K satisfies the
   security requirements of each middlebox while preventing the the
   receiver from computing multiple puzzle solutions.  The responder
   MUST meet the lowest time boundaries of the received
   CHALLENGE_REQUEST parameters.  Otherwise, there exists one on-path
   middlebox that will not approve the solution.

   When approaching the IPv6 packet fragmentation threshold, end-hosts
   should split the CHALLENGE_RESPONSE parameter in case of multiple
   CHALLENGE_REQUEST parameters.  Hence, end-hosts SHOULD compute the
   puzzle solution after the overall packet size of the response packet
   has been determined.  Hence, only the opaque values of the
   CHALLENGE_REQUEST parameters that are included in the respective
   CHALLENGE_RESPONSE parameter MUST be used during the puzzle seed
   generation.

   Since a puzzle increases the delay and computational cost for
   establishing or updating a HIP association, a middlebox SHOULD only
   increase K when it is under attack.  Moreover, middleboxes SHOULD
   distinguish attack directions.  If the majority of the CPU load is
   caused by verifying HIP control messages that arrive from a certain
   interface, middleboxes MAY increase K for HIP control packets that
   leave the interface.  The middlebox chooses the difficultly of the
   puzzle according to its load and local policies.

2.1.4.  CHALLENGE_RESPONSE Verification

   When a middlebox has added a CHALLENGE_REQUEST parameter to a control
   packet and receives a control packet that contains a
   CHALLENGE_RESPONSE parameter, it first checks if its opaque data has
   been echoed back correctly.  To this end, it traverses the Opaque
   values included in the CHALLENGE_RESPONSE parameter.

   If the opaque data has been echoed back correctly by the end-host,
   the middlebox verifies the provided puzzle solution.  It, therefore,
   hashes the Opaque values as contained in the CHALLENGE_RESPONSE
   parameter and verifies the signaled solution.  In case of a
   successful verification, the middlebox MAY check further security
   mechanisms such as the PK signature and process the packet according
   to its function.

2.2.  Identity Verification by Middleboxes

   This section describes how middleboxes can influence the BEX and the
   HIP update process in order to verify the identity of the HIP end-
   hosts.
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2.2.1.  Identity Verification During BEX

   Middleboxes MAY add CHALLENGE_REQUEST parameters to R1 and I2 packets
   in order to verify the identities of the participating end-hosts.
   Middleboxes can choose either to authenticate the Initiator, the
   Responder, or both.  Middleboxes MUST NOT add CHALLENGE_REQUEST
   parameters to I1 messages because this would expose the Responder to
   DoS attacks.  Thus, middleboxes MUST let unauthenticated and minimal
   I1 packets traverse.  Minimal means that the I1 packet MUST NOT
   contain more than the minimal set of parameters specified by HIP
   standards or internet drafts.  In particular, the I1 packet MUST NOT
   contain any attached payload.  Figure 1 illustrates the
   authentication process during the BEX.

    Main path:

    Initiator               Middlebox                        Responder
                       .-----------------.
     I1                |                 | I1
    -----------------> |                 |---------------------------->
                       |                 |
     R1, + CQ1         | Add CQ          | R1
    <----------------- |                 |<----------------------------
                       |                 |
     I2, {CR1}         | Verify CR1      | I2, {CR1} + CQ2
    -----------------> | Add CQ2         |---------------------------->
                       |                 |
                       |                 |
     R2, {CR2}         | Verify CR2      | R2, {CR2}
    <----------------- |                 |<-----------------------------
                       ’-----------------’

    CQ: Middlebox challenge reQuest
    CR: Middlebox challenge Response
    {}: Signature with sender’s HI as key

   Middlebox authentication of a HIP base exchange.

                                 Figure 1

2.2.2.  Identity Verification During Mobility Updates

   HIP rekeying, mobility and multihoming UPDATE mechanisms for non-
   NATted environments are described in [RFC5206].  This section
   describes how middleboxes process UPDATE messages in non-NATted
   environments and leave NATted environments for future revisions of

Heer, et al.             Expires April 30, 2012                [Page 10]



Internet-Draft               Hip-Middle-Auth                October 2011

   the draft.

   The middleboxes can apply middlebox challenges to mobility related
   HIP control messages in the case where both end-hosts are single-
   homed.  The middlebox challenges can be applied both ways as the
   UPDATE process consists of three packets (U1, U2, U3) which all
   traverse through the same middlebox as shown in Figure 2.

   In cases, in which fewer packets are used for updating an
   association, the following rule applies.

   RESPONSE RULE:

   A HIP host, receiving a CHALLENGE_REQUEST MUST reply with a
   CHALLENGE_RESPONSE in its next UPDATE packet.  If no further UPDATE
   packets are necessary to complete the update procedure, an additional
   UPDATE packet containing the CHALLENGE_RESPONSE MUST be sent.

    Initiator                     Middlebox                   Responder
                                   .------.
     U1                            |      |  U1 + CQ1
    -----------------------------> |      | -------------------------->
                                   |      |
     U2, {CR1} + CQ2               |      |  U2, {CR1}
    <----------------------------- |OK    | <--------------------------
                                   |      |
     U3, {CR2}                     |      |  U3, {CR2}
    -----------------------------> |    OK| -------------------------->
                                   ’------’
    CQ: Middlebox challenge reQuest
    CR: Middlebox challenge Response
    {}: Signature with sender’s HI as key

   Middlebox authentication of a HIP mobility update over a single path.

                                 Figure 2

   Middlebox 1 in Figure 2 can verify the identity of the Responder by
   checking its PK signature and the presence of the CHALLENGE_RESPONSE
   in the U2 packet.  If necessary, the middlebox MAY add an
   CHALLENGE_REQUEST for the Initiator of the update.  The middlebox can
   verify the Initiator’s identity by verifying its signature and the
   CHALLENGE_RESPONSE in the U3 packet.
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2.2.3.  Identity Verification for Multihomed Mobility Updates

   Multihomed hosts may use multiple communication paths during an HIP
   mobility update.  Depending on whether the middlebox is located on
   the communication path between the preferred locators of the hosts or
   not, the middlebox forwards different packets and, thus, needs to
   interact differently with the updates.  Figure 3 I) and II)
   illustrates an update with Middlebox 1 on the path between the
   Initiator’s and the Responder’s preferred locators and with Middlebox
   2 on an alternative path.  Middlebox 2 is not located on the path
   between the preferred locators of the HIP end-hosts does not receive
   the U1 message.  Therefore, it will not recognize any
   CHALLENGE_RESPONSE (CR1) in the second UPDATE packet.  Thus, if a
   middlebox encounters non-matching or missing CHALLENGE_RESPONSE
   parameter in an initial update packet, the middlebox SHOULD ignore
   it.

   Complying to the RESPONSE RULE stated in Section Section 2.2.2, the
   RESPONDER generates an additional fourth update packet on receiving
   the CHALLENGE_REQUEST.  The update process for a middlebox on the
   preferred communication path (Middlebox 1) and a middlebox off the
   preferred communication path (Middlebox 2) is depicted in Figure 3.
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   I)  Main path:

    Initiator                    Middlebox 1                 Responder
                                  .------.
     U1                           |      |  U1 + CQ1
    ----------------------------> |      | --------------------------->
                                  |      |
     U2, {CR1} + CQ2              |      |  U2, {CR1}
    <---------------------------- |OK    | <---------------------------
                                  |      |
     U3, {CR2}                    |      |  U3, {CR2}
    ----------------------------> |    OK| --------------------------->
                                  ’------’

   II) Alternative path:

    Initiator                    Middlebox 2                 Responder

     U1 (bypasses Middlebox 2)
    ------------------------------------------------------------------>
                                  .------.
     U2, {CR1} + CQ3              |      |  U2, {CR1}
    <---------------------------- | wrong| <---------------------------
                                  |      |
     U3’, {CR3}                   |      |  U3’, {CR3} + CQ4
    ----------------------------> |OK    | --------------------------->
                                  |      |
     U4, {CR4}                    |      |  U4,  {CR4}
    <---------------------------- |    OK| <---------------------------
                                  ’------’
    CQ: Middlebox challenge reQuest
    CR: Middlebox challenge Response
    {}: Signature with sender’s HI as key

   Middlebox authentication of a HIP mobility update over different
   paths.

                                 Figure 3

2.2.4.  Identity Signaling During Updates

   As middleboxes have to verify rapidly and forward HIP packets, they
   need to be supplied with all information necessary to do so.  If end-
   hosts hand over communication to a new communication path,
   middleboxes need to be able to learn their Host Identifiers (HIs)
   from the UPDATE packets.  Therefore, all packets that contain a
   CHALLENGE_RESPONSE parameter MUST contain the HOST_ID parameter.
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2.2.5.  Closing of Connections

   The connection tear down as defined in [RFC5201] consists of two
   consecutive messages.  This lack of a third message restricts
   middleboxes to authenticating the Responder of a CLOSE packet.
   However, verifying the legitimacy of the Responder suffices in most
   network scenarios, as CLOSE packets from unauthentic Initiators will
   be dropped by the Responder due to an invalid HMAC parameter.  As a
   result, on-path middleboxes will not see CLOSE_ACK packets for
   rejected CLOSE packets.  CLOSE_ACK packets can be authenticated by
   the middleboxes by adding a CHALLENGE_REQUEST parameter to the
   corresponding CLOSE packet as described above.  Hence, middleboxes do
   not falsely tear down connections on illegitimate (forged) CLOSE
   packets.

   If local policies still require a middlebox to authenticate the CLOSE
   messages of both peers, the tear down operation needs to be extended
   following the RESPONSE RULE in Section 2.2.2.  Hence, the responder
   side CLOSE_ACK packet MUST be followed by an initiator side CLOSE_ACK
   if the received CLOSE_ACK packet contains a CHALLENGE_REQUEST
   parameter.

   Middleboxes should have learned the identities of the peers during
   the BEX or an UPDATE prior to the CLOSE exchange.  Hence, end-hosts
   are not required to include their identities in the CLOSE exchange.
   If a middlebox has not learned the identities of the peers when
   inspecting a CLOSE packet, it MUST forward the packet.  In order to
   prevent misuse of the CLOSE exchange as a side channel for disallowed
   communication, middleboxes SHOULD rate limit unauthenticated CLOSE
   exchanges.
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   I) Regular CLOSE authentication:

    Initiator                    Middlebox                   Responder
                                  .------.
     CLOSE                        |      |  CLOSE + CQ1
    ----------------------------> |      | --------------------------->
                                  |      |
     CLOSE_ACK, {CR1}             |      |  CLOSE_ACK, {CR1}
    <---------------------------- |OK    | <---------------------------
                                  |      |
                                  ’------’

   II) Extended CLOSE authentication:

    Initiator                    Middlebox                   Responder
                                  .------.
     CLOSE                        |      |  CLOSE + CQ1
    ----------------------------> |      | --------------------------->
                                  |      |
     CLOSE_ACK, {CR1} + CQ2       |      |  CLOSE_ACK, {CR1}
    <---------------------------- |OK    | <---------------------------
                                  |      |
     CLOSE_ACK, {CR2}             |      |  CLOSE_ACK, {CR2}
    ----------------------------> |    OK| --------------------------->
                                  ’------’
    CQ: Middlebox challenge reQuest
    CR: Middlebox challenge Response
    {}: Signature with sender’s HI as key

   Middlebox authentication of a HIP close with authentication of (I)
   the Responder and (II) both peers.

                                 Figure 4

2.3.  Failure Signaling

   Middleboxes SHOULD inform the sender of a BEX packet or update packet
   if it does not satisfy the requirements of the middlebox.  Reasons
   for non-satisfactory packets are missing HOST_ID or
   CHALLENGE_RESPONSE parameters.  Other reasons may be middlebox
   policies regarding, for example, insufficient client capabilities or
   or insufficient credentials delivered in a HIP CERT parameter
   [RFC6253].  Options for expressing such shortcomings are ICMP packets
   if no HIP association is established and HIP_NOTIFY packets in case
   of an already established HIP association.  Defining this signaling
   mechanism is future work.
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2.4.  Fragmentation

   Analogously to the specification in [RFC5201], HIP aware middleboxes
   SHOULD support IP-level fragmentation and reassembly for IPv6 and
   MUST support IP-level fragmentation and reassembly for IPv4.
   However, when adding CHALLENGE_REQUEST parameters, a middlebox SHOULD
   keep the total packet size below 1280 bytes to avoid packet
   fragmentation in IPv6.

2.5.  HIP Parameters

   This HIP extension specifies four new HIP parameters that allow
   middleboxes to authenticate HIP end-hosts and to protect against DoS
   attacks.

2.5.1.  CHALLENGE_REQUEST

   A middlebox MAY append the CHALLENGE_REQUEST parameter to R1, I2, and
   UPDATE packets.  The structure of the CHALLENGE_REQUEST parameter is
   depicted in the following figure.  The semantics of the K and
   Lifetime fields are identical to the fields defined in the PUZZLE
   parameter in [RFC5201].  The opaque data field serves as nonce and
   puzzle seed value.  To generate the seed corresponding to the 8-byte
   value I in [RFC5201], the receiver of the puzzle applies Ltrunc as
   defined in [RFC5201] to the received opaque data and truncates the
   result to 8 bytes.  Note that the opaque data field must provide
   sufficient randomness to serve as puzzle seed.
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    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | K, 1 byte     |    Lifetime   |                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               /
   /                                                               /
   /                    Opaque, (variable length)                  /
   /                                           +-+-+-+-+-+-+-+-+-+-|
   /                                           |      Padding      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type           65334
   Length         Variable
   K              K is the number of verified bits
   Lifetime       Challenge lifetime 2^(value-32) seconds
   Opaque         Opaque data that serves as nonce and as basis for the
                  puzzle. The puzzle value I is generated by hashing the
                  opaque data field with the hash function SHA-1 and
                  truncating it to 8-byte length.

2.5.2.  CHALLENGE_RESPONSE

   The CHALLENGE_RESPONSE parameter is the response to one or more
   CHALLENGE_REQUEST parameters.  The receiver of a CHALLENGE_REQUEST
   parameter SHOULD reply with a CHALLENGE_RESPONSE.  Otherwise, the
   middlebox that added the CHALLENGE_REQUEST parameter MAY decide to
   degrade or deny its service.  The Opaque fields of the received
   CHALLENGE_REQUEST parameters must be copied to the CHALLENGE_RESPONSE
   parameter in the reverse order of reception without any modification.
   As the number of opaque fields may be variable, it is encoded in the
   CHALLENGE_RESPONSE parameter.  Furthermore, the length of each Opaque
   value is variable and is included in the parameter.  The Opaque
   values are appended behind the last Opaque length field.  Instead of
   copying the Opaque field of each CHALLENGE_REQUEST parameter, the
   input for the puzzle generation procedure may be reused.  If the
   puzzle difficulty in the received CHALLENGE_REQUEST parameters is set
   to any other value except 0, an appropriate puzzle solution (adhering
   to the SOLUTION specifications in [RFC5201]) must be provided in the
   CHALLENGE_RESPONSE parameter.  The CHALLENGE_RESPONSE parameter is
   non-critical and covered by the SIGNATURE.  The structure of the
   CHALLENGE_RESPONSE parameter is depicted below:
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    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | K, 1 byte     |    Lifetime   |       No. opaque values       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   /                   Puzzle solution #J, 8 bytes                 /
   /                                                               /
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Opaque length        |         Opaque length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   /                   Opaque, (variable length)                   /
   /                                   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   /                                   |                           /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                           /
   /                   Opaque, (variable length)                   /
   /                         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   /                         |               Padding               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type               322
   Length             Variable
   K                  K is the number of verified bits
   Lifetime           Challenge lifetime 2^(value-32) seconds
   No. opaque values  Number of included opaque values
   Puzzle solution    Random number
   Opaque length      Length of an included Opaque field
   Opaque             Copied unmodified from the received
                      CHALLENGE_REQUEST parameters

3.  Security Services for the HIP Control Channel

   In this section, we define the adversary model that the security
   analysis in the later sections will be based on.

3.1.  Adversary model and Security Services

   For discussing the security properties of the proposed HIP extension
   we first define an attacker model.  We assume a Dolev-Yao threat
   model in which an adversary can eavesdrop on all traffic regardless
   of its source and destination.  The adversary can inject arbitrary
   packets with any source and destination addresses.  Consequently, an
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   adversary can also replay previously eavesdropped messages.  However,
   the adversary cannot subvert the cryptographic ciphers and hash
   function, nor can it compromise one of the communicating nodes.

   Even in the face of this strong attacker, the proposed HIP extension
   enables middleboxes to verify the identity of the communicating HIP
   peers.  It ensures that both peers are involved in the communication
   and that the HIP BEX or update packets are fresh, i.e. not replayed.
   It enables the middlebox to verify the source and destination (in
   terms of HIs) of the HIP association and the integrity of RSA and DSA
   signed HIP packets.

4.  Security Services for the HIP Payload Channel

   The presented extension for HIP authentication by middleboxes only
   covers the HIP control channel, i.e., the HIP control messages.
   Depending on the binding between the HIP control and payload channel,
   certain security properties for the payload channel can be derived
   from the strong cryptographic authentication of the end-hosts.
   Assuming that there is a secure binding between packets belonging to
   a payload stream and the control stream, the same security properties
   as in Section 3 apply to the payload stream.

   ESP [RFC5202] is currently the default payload encapsulation format
   for HIP.  A limitation of ESP is that it does not provide a secure
   binding between the HIP control channel and the ESP traffic on a per-
   packet basis.  Hence, the achievable level of security for the
   payload channel is lower compared to the HIP control channel.

   This section discusses security properties of an ESP payload channel
   bound to a HIP control channel.  Depending on the assumed adversary
   model, certain security services are possible.  We briefly describe
   two application scenarios and how they benefit from the resulting
   security services.  For the payload channel, HIP in combination with
   the middlebox authentication scheme offers the following security
   services:

   Attribute binding:  Middleboxes can extract certain payload channel
      attributes (e.g. locators and SPIs) from the control channel.
      These attributes can be used to enforce certain restrictions on
      the payload channel, e.g., to exhibit the same attributes as the
      control channel.  The attributes can either be stated explicitly
      in the HIP control packets or can be derived from the IP or UDP
      packets carrying the HIP control messages.
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   Host involvement:  Middleboxes can verify whether a certain host is
      involved in the establishment of a HIP association and, thus,
      involved in the establishment of the payload channel.

   Based on these security services we construct two use cases that
   illustrate the use of HIP authentication by middleboxes: access
   control and resource allocation as described in the following
   sections.

4.1.  Access Control

   Middleboxes can manage resources based on HIs.  As an example, let us
   assume that a middlebox only forwards HIP payload packets after a
   successful HIP BEX or HIP update.  The middlebox uses the parameters
   in the control channel (specifically IP addresses and SPIs) to filter
   the payload traffic.  The middlebox only forwards traffic from and to
   specific authenticated hosts and drops other traffic.

   The feasibility of subverting the function of the middlebox depends
   on the assumed adversary model.

4.1.1.  Adversary model and Security Services

   If we assume a Dolev-Yao threat model, attribute binding is not
   helpful to aid packet filtering for access control.  An attacker can
   send packets from any IP address and can read packets destined to any
   IP address.  Without per packet verification by the middlebox, such
   an attacker can inject arbitrary forged packets into the HIP payload
   channel and make them traverse the middlebox.  The attacker can also
   read the packets from the HIP payload channel, and hence, communicate
   across the middlebox.  However, the forged packets are disclosed by
   inconsistencies in the ESP sequence numbers, which makes the attack
   visible to the middlebox as well as the HIP end hosts.  Moreover,
   attackers can only inject packets into an already established HIP
   payload channel.  Opening a new payload channel and replaying a
   closing of the channel are not possible.

   An attacker that is not able to send IP packets from an arbitrary
   source address and receive IP packets addressed to any destination,
   cannot use the ESP channel to send fake ESP packets when the
   middleboxes bind HIs and SPI numbers to addresses.  By fixing the set
   of source and destination IP addresses, the opportunity to
   successfully inject packets into the payload channel is limited to
   hosts that can send packets from the same source address as the
   legitimate HIP hosts.  Moreover, an attacker can only receive
   injected packets if it is on the communication path towards the
   legitimate HIP peer.  Attackers cannot open new HIP payload channels
   and thus have no influence on the bound payload stream parameters.
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   Finally, attackers cannot close HIP associations of legitimate peers.

4.2.  Resource allocation

   When using HIs to limit the resources (e.g. bandwidth) allocated for
   a certain host, the HIs can be used to authenticate the hosts in a
   similar fashion to the access control illustrated above.  Regarding
   authentication, both use cases share the same strengths and
   weaknesses.  However, the implications for the targeted scenarios
   differ.  Therefore, we restrict the following discussion to these
   differences.

4.2.1.  Adversary Model and Security Services

   When assuming an Dolev-Yao threat model, an attacker is able to use
   resources allocated for the payload channel of another host by
   injecting packets into this channel.  Also, the attacker cannot open
   a new payload channel with another host nor can it close an existing
   one.

   When binding the IP addresses of the HIP payload channel to the IP
   addresses used in the HIP control channel and assuming an attacker is
   unable to receive IP packets addressed to the IP address of an
   authenticated host, the attacker cannot utilize the resources
   allocated to authenticated host.  However, the attacker can still
   inject packets and waste resources, yet without having any benefit
   other than causing disturbance to the other host.  Specifically, it
   cannot increase the share of resources allocated to itself.  Hence,
   this measure takes incentive from selfish users that try to benefit
   by mounting a DoS attack.  Defense against purely malicious attackers
   that aim at creating disturbance without immediate benefit is
   difficult to achieve and out of scope of this document.

5.  Security Considerations

   This HIP extension specifies how HIP-aware middleboxes interact with
   the handshake and mobility-signaling of the Host Identity Protocol.
   The scope is restricted to the authentication of end-hosts and
   excludes the issue of stronger authentication of ESP traffic at the
   middlebox.

   Providing middleboxes with a way of adding puzzles to the HIP control
   packets may cause both HIP peers, including the Responder, to spend
   CPU time on solving these puzzles.  Thus, it is advised that HIP
   implementations for servers employ mechanisms to prevent middlebox
   puzzles from being used as DoS attacks.  Under high CPU load, servers
   can rate limit or assign lower priority to packets containing
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   middlebox puzzles.

6.  IANA Considerations

   This document specifies two new HIP parameter types.  The preliminary
   parameter type numbers are 322 and 65334.
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8.  Changelog

8.1.  Version 4

   - Some clarifications.

   - Add new way to compute single solution for multiple
   CHALLENGE_REQUEST parameters.

   - Modify parameter layout for CHALLENGE_RESPONSE parameter.

   - Add middlebox authentication for the CLOSE exchange.

   - Updated outdated references.

8.2.  Version 3

   - Some editorial changes.

   - Added text about space issues in response packets with too many
   CHALLENGE_RESPONSE parameters in Section Section 2.1.2
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