Net wor k Wor ki ng Group J. Richer, Ed.
I nternet-Draft The M TRE Cor poration
I ntended status: Experinental April 23, 2012
Expires: October 25, 2012

Alternate Encoding for QAuth 2 Token Responses
draft-richer-oauth-xm-01

Abstract

Thi s docunent describes a nmethod of representing the JSON structured
responses fromthe QAuth 2 Token Endpoint into XM. and form encoded
responses.

Requi rement s Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119 [ RFC2119].

Status of this Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on October 25, 2012
Copyright Notice

Copyright (c) 2012 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect

Ri cher Expi res Cctober 25, 2012 [ Page 1]



Internet-Draft oaut h- xm

to this docunent.

April 2012

Code Conponents extracted fromthis docunent nust

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

>

gmﬂow

A,
A.
A.
A.
A.
A.
A.
Appe
B.
B.
B.
B.
B.
t

Aut h

Ri cher

I ntroduction . .
Content Negoti ati on

.1
. 2.

.1
. 2.

For m Par anet er
Accept Header
Encodi ng .
XML
For m Encodi ng
Exanples . . . .
St andar d OAuth Token .

.1

| ANA Consi derations
Security Considerations
Acknow edgenents .

Nor mati ve References .

2
3
4
5
6
7.
n
1.
2.
3.
4.
5.
o

pendlx A.  General XM Encod| ng RuI es
1. .o

bj ects and Menbers
Type ldentifiers .
Strings and Numbers
Arrays . .
Namespace .

I nformation Loss .
Exanpl es .

dix B. Ceneral Form Encoding Rules .

bj ects and Menbers
Strings and Nunbers
Arrays . .
I nformation Loss .
Exanpl es .

r's Address .

Expi res Cctober 25, 2012

Provi sions and are provided without warranty as

MO0 NN~N~NOOCODOOOODUTUUO DB WWW

[ Page 2]



Internet-Draft oaut h- xm April 2012

1. Introduction

The QAuth 2 Protocol [I-D.ietf-oauth-v2] defines a standard JSON

[ RFC4627] encoding for structured return values fromthe Token
Endpoint in section 5.1 of the specification when used w th nost
flows. Additionally, the QAuth 2 specification defines a UR
fragment encoding for tokens issued fromthe Authorization Endpoint
inthe Inmplicit Grant flow using "application/x-ww-formurl-encoded"
encoding in section 4.2.2.

When QAuth is being used as part of an APl that is built around

di fferent encodi ng technol ogi es, such as XM. [ WBC. CR-xm 11-20021015],
it is not desirable for application devel opers to have to parse JSON
encoded objects just to handle authorization step. This extension
describes a neans for the client to request an alternative format for
respones fromthe Token Endpoi nt and nethods for the Token Endpoi nt
to encode its responses as XM. docunents and form encoded paraneters.
Thi s extension nmakes no claimon responses fromthe Authorization
Endpoi nt or other endpoints defined in QAuth2, its extensions, or
profiles.

2. Content Negotiation

To request an alternate encoding fromthe QAuth 2 Token Endpoint, the
client indicates the desired encoding through one of the follow ng
met hods. Authorization Servers SHOULD support all nethods but MJST
support at |east one so that supporting clients can be configured to
request the right format. Particular fornats available froma given
Aut hori zation Server MJST be docunented and MAY be di scoverabl e

t hrough sone ot her neans.

2. 1. For m Par anet er

In this nethod, the client sends the following OPTIONAL form
paranmeter in any request to the Token Endpoint to indicate its
encodi ng preference.

f or mat
OPTIONAL. The fornmat paraneter specifies the client’s desired
format for responses fromthe token endpoint. Valid values are
"json", "xm", and "form', though other extensions MAY define
other valid val ues.

If the value of the parameter is set to "xnml" and the authorization
server supports XM encodi ng, the authorization server MJST respond
to a valid token request with an HTTP 200 response, a content type of
"application/xm", and HTTP body content as described in Section 3.1

Ri cher Expi res Cctober 25, 2012 [ Page 3]



Internet-Draft oaut h- xm April 2012

If the value of the paraneter is set to "forni' and the authorization
server supports form encodi ng, the authorization server MJST respond
to a valid token request with an HTTP 200 response, a content type of
"appl i cation/ x-ww- f orm encoded”, and an HTTP body content as
described in Section 3.2

If the value of this paranmeter is "json" or the paraneter is omtted
entirely, the authorization server MIST respond to a valid token
reqeust as defined in QAuth 2 [I-D.ietf-oauth-v2].

2.2. Accept Header

In this nethod, the client sends an HTTP "Accept" header to indicate
to the Authorization Server what encodings it prefers as described in
the HTTP specification [ REF].

If the value of the header includes "application/xm" and the

aut hori zati on server supports XM. encodi ng, the authorization server
MUST respond to a valid token request with an HTTP 200 response, a
content type of "application/xm", and HTTP body content as described
in Section 3. 1.

If the value of the header includes "application/x-ww-formencoded"
and the authorization server supports form encoding, the

aut hori zation server MJST respond to a valid token request with an
HTTP 200 response, a content type of
"application/x-ww-formurl-encoded”, and an HTTP body content as
described in Section 3.2.

If the value of the header is "application/json" or no accept

preference is otherw se given, the authorization server MJST respond
to a valid token reqeust as defined in QAuth 2 [I-D.ietf-oauth-v2].

3. Encoding

Al'l alternate fornms of encoding MUST account for all elenents of a
token as specified in QAut h2.

3.1. XM

For a full description of the transformation rules, see Appendix A
(Appendi x A).

The response MJST use a single XM. root elenment with a node name of
"oauth" to represent the anonynous root JSON object specified in the
QAut h JSON response.

Ri cher Expi res Cctober 25, 2012 [ Page 4]



Internet-Draft oaut h- xm April 2012

The response SHOULD NOT i nclude a default nanespace.

Al'l elements of the JSON object MJST be encoded as XM. el enents, with
val ues encoded as CDATA within each el ement.

3.2. Form Encodi ng

For a full description of the transformation rules, see Appendix B
(Appendi x B).

The form encodi ng MJST follow the sane encoding rules as defined in
Section 4.2.2 of QAuth2.

Al'l values of the JSON response MJUST be encoded as key-val ue pairs.

4. Exanpl es

Bel ow are exanpl es of encoding different QAuth JSON objects with XM.
Al'l line breaks are for display purposes only.

4.1. Standard QAut h Token

A standard QAut h JSON- encoded token response (exanple from QAut h2
Core):

HTTP/ 1.1 200 K

Cont ent - Type: application/json;charset=UTF-8
Cache-Control: no-store

Pragma: no-cache

{
"access_token": " 2Yot nFZFEj r 1zCsi cMApAA",
"token_type":"exanpl e",
"expires_in": 3600,
"refresh_token":"t Gzv3JOKFOXGQX2TI KW A",
"exanpl e_par anet er": "exanpl e_val ue"

}

Ri cher Expi res Cctober 25, 2012 [ Page 5]



Internet-Draft oaut h- xm April 2012

Can be encoded in as the following XM. response document:

HTTP/ 1.1 200 K
Cont ent - Type: application/xm
Cache-Control: no-store
<oaut h>
<access_t oken>2Yot nFZFEj r 1zCsi cMApAA</ access_t oken>
<t oken_t ype>exanpl e</t oken_t ype>
<expires_i n>3600</ expires_i n>
<refresh_t oken>t Gzv3IOKFOXGCE 2Tl KW A</ r ef resh_t oken>
<exanpl e_par anet er >exanpl e_val ue</ exanpl e_par anet er >
</ oaut h>

The sane response can be encoded in form encoding a foll ows:

HTTP/ 1.2 200 OK

Cont ent - Type: application/ x-ww«+for m encoded
Cache-Control : no-store

access_t oken=2Yot nFZFEj r 1zCsi cMApAA&t oken_t ype=exanpl e&

expi res_i n=3600&r ef resh_t oken=t Gzv3JOKFOXGCEQx2TI KW A&
exanpl e_par anet er =exanpl e_val ue

5. | ANA Consi derati ons

Thi s docunment makes no request of | ANA

6. Security Considerations

There are no additional security considerations.

7. Acknow edgenents
Thanks to Eve Mal er, Joseph Hol sten, Tim Brody, and the QAuth Wbrki ng
G oup for feedback.

8. Normative References

[1-D.ietf-oauth-v2]

Ri cher Expi res Cctober 25, 2012 [ Page 6]



Internet-Draft oaut h- xm April 2012

Hammrer - Lahav, E., Recordon, D., and D. Hardt, "The QAuth
2.0 Authorization Protocol", draft-ietf-oauth-v2-23 (work
in progress), January 2012.

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[ RFC4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627, July 2006.

[WBC. CR-xm 11-20021015]
Cowan, J., "Extensible Markup Language (XM.) 1.1", WBC
CR CR-xnl 11- 20021015, Cctober 2002.

Appendi x A, General XM. Encodi ng Rul es

Thi s Appendi x defines encodings for different parts of the JSON data
model in XM equivalents to facilitate structured extensions to the
QAut h2 JSON t oken response. Since this JSON response MAY incl ude

el ements such as JSON obj ects or arrays, a server w shing to support
such extended responses and XM. encodi ng MJUST use these encodi ng
rules to translate them

A.1l. Objects and Menbers

JSON obj ects SHALL be encoded by using XML El ements. The obj ect
itself SHALL be represented by the root el ment of an XM. subtree.

Al'l menbers of the object SHALL be represented by sub-el enents of the
root elenment. The key of the menber pair SHALL be the node nane of
the XML El enent, and the value of the menber pair SHALL be encoded as
the content of the XML El enent.

A. 2. Type ldentifiers

Al'l elenments MAY have an OPTIONAL "type" attribute, which has a valid
val ue of "object", "string", "nunber", or "array". These attributes
can be used to differentiate between ot herw se potentially anbi guous
encodi ngs (Appendi x A 6), though the nbost common cases will not need
t hem

A. 3. Strings and Numbers
Strings and nunbers SHALL be encoded as CDATA within their enclosing

el ement. These values MJST be properly escaped XML CDATA, and MAY be
represented using <[CDATAl ... ]]> encoding.

Ri cher Expi res Cctober 25, 2012 [ Page 7]



Internet-Draft oaut h- xm April 2012

A 4. Arrays

Arrays SHALL be represented using repeated, sibling XM. El ement nodes
(nodes with the same node nane). The order of the array is encoded
usi ng docunent order of the array el enents.

A.5. Nanespace

Thi s extension does not define a required nanmespace for the QAuth XM
encodi ng, and a supporting server SHOULD not use a nanespace.

A.6. Information Loss

This encoding schenme is intended to give a clear an intuitive mapping
bet ween JSON and XM. data structures. However, the mapping between
the two formats is not exact and sonme information | oss nmay occur, and
round-trip translation between the two formats MJST NOT be depended
upon.

1. Both strings and nunbers (Appendix A.3) in JSON are represented
as CDATA in XM.. Wthout type identifiers (Appendix A 2) there
is no clear way to differentiate between the two in the XM
encodi ng.

2. Arrays (Appendix A.4) in JSON are represented by repeated
elements in XM.. There is therefore no reliable way to
di stingui sh between a single-elenent array and a standal one
string or nunber value in the XML encodi ng, as both woul d be
encoded the sane way.

A. 7. Exanples
Li ne breaks are for display purposes only.

The exanpl e above, with type attributes (Appendix A 2) in place:

HTTP/ 1.1 200 K
Cont ent - Type: application/xm
Cache-Control: no-store

<oaut h type="object">
<access_t oken type="string">2Yot nFZFEj r 1zCsi cM\pAA</ access_t oken>
<t oken_type type="string">exanpl e</t oken_type>
<expires_in type="nunber">3600</expires_in>
<refresh_token type="string">t GZv3JOKFOXGX2TlI KW A</ refresh_t oken>
<exanpl e_paraneter type="string">exanpl e_val ue</ exanpl e_par ant er >
</ oaut h>

Ri cher Expi res Cctober 25, 2012 [ Page 8]



Internet-Draft

oaut h- xm

April 2012

Thi s exanpl e uses both objects and arrays to support a conplicated,

fictional exanple extension to the QAuth protocol:

HTTP/ 1.1 200 K

Cont ent - Type: application/json

Cache-Control :

{

no-store

"access_token":"2Yot nFZFEj r 1zCsi cM\pAA",
"token_type":"exanpl e",

"expires_in": 3600,

"refresh_token": "t Gzv3JOKFOXGEQ2TI KW A",

"ext _val ue":

"ext ensi on",

"ext _list": [ 1, 2, "three" ],

"ext _object":
"menber 1": "val uel",
"menberlist": [ "A", "B", "C'],
"menber 3": 3,
"menberobj ": {
"a": "first",
"b": "second",
"c": "third"
}
}
}
Ri cher Expi res Cctober 25, 2012

[ Page 9]



Internet-Draft oaut h- xm April 2012

The above is encoded into XM. as follows (w thout using type
attributes):

HTTP/ 1.1 200 OK
Cont ent - Type: application/ xn
Cache-Control: no-store

<oaut h>
<access_t oken>2Yot nFZFEj r 1zCsi cM\AA</ access_t oken>
<t oken_t ype>exanpl e</t oken_t ype>
<expi res_i n>3600</ expires_i n>
<refresh_t oken>t Gzv3IOKFOXGCE 2Tl KW A</ r ef resh_t oken>
<ext _val ue>ext ensi on</ ext _val ue>
<ext list>1</ext list>
<ext list>2</ext |ist>
<ext list>three</ext |ist>
<ext _obj ect >
<menber 1>val uel</ nenber >
<nmenberl i st >A</ nenberl i st>
<menber| i st >B</ nenber| i st >
<menber | i st >C</ nenberli st >
<menber 3>3</ nenber 3>
<menber obj >
<a>first</a>
<b>second</ b>
<c>t hi rd</c>
</ menber obj >
</ ext _obj ect >
</ oaut h>

Appendi x B. General Form Encodi ng Rul es

Thi s Appendi x defines encodings for different parts of the JSON data
nmodel in formencoded equivalents to facilitate structured extensions
to the QAuth2 JSON token response. Since this JSON response MAY

i nclude el ements such as JSON objects or arrays, a server wishing to
support such extended responses and form encodi ng MJST use these
encoding rules to translate them These encoding rules MAY be used
to extend the response of the Authorization Endpoint in the Inplicit
flow

B.1. njects and Menbers

JSON obj ects SHALL be represented by encoding all nenbers as separate
form paranmeters. Sub-objects SHALL be encoded by a dot-notation

Ri cher Expi res Cctober 25, 2012 [ Page 10]



Internet-Draft oaut h- xm April 2012

syntax, with the nenber nanme of a sub-object being appended to the
nane of its containing object nenber, separated by a single period.

B.2. Strings and Nunbers

Al'l String and Nunber values SHALL be encoded as sinple string
val ues.

B.3. Arrays

Arrays SHALL be encoded by repeating the nenber nane for each val ue
in the array. The order of the array is encoded by the presentation
order of the values in the response.

B. 4. I nformati on Loss

This encoding schene is intended to give a clear an intuitive mapping
bet ween JSON and form encoded data structures. However, the mapping
between the two formats is not exact and sone infornmation | oss may
occur, and round-trip translation between the two formats MJST NOT be
depended upon.

1. Both strings and nunbers (Appendix B.2) in JSON are represented
as strings in the formencoding, and there is no clear way to
differenti ate between the two in the form encoding.

2. Arrays (Appendix B.3) in JSON are represented by repeated
elements in the formencoding. There is therefore no reliable
way to distinguish between a single-elenent array and a
standal one string or nunber value in the formencodi ng, as both
woul d be encoded the sanme way.

Ri cher Expi res Cctober 25, 2012 [ Page 11]



Internet-Draft oaut h- xm April 2012

B.5. Exanples

Thi s exanpl e encodes the fictionally extended QAuth token response
above. Line breaks are for display purposes only.

HTTP/ 1.1 200 K
Cont ent - Type: application/x-ww«+form encoded
Cache-Control: no-store

access_t oken=2Yot nFZFEj r 1zCsi cM\pAA&t oken_t ype=exanpl e&
expi res_i n=3600&r ef resh_t oken=t Gzv3JOKFOXGCE 2Tl KW A&

ext _val ue=ext ensi on&ext |ist=1&ext |ist=2&ext _|ist=three&
ext _obj ect. menber 1=val uel&ext obj ect. menberli st =A&

ext _obj ect. menberl i st =B&ext _obj ect. nenberlist=C&

ext _obj ect. menber 3=3&ext _obj ect. menberobj.a=first&

ext _obj ect. nenber obj . b=second&ext obj ect. menberobj.c=third

Aut hor’' s Address

Justin Richer (editor)
The M TRE Cor poration

Email: jricher@ritre.org

Ri cher Expi res Cctober 25, 2012 [ Page 12]






