
PPSP Y. Gu
Internet-Draft J. Xia
Intended status: Standards Track Huawei
Expires: May 3, 2012 R. Cruz
 M. Nunes
 IST/INESC-ID/INOV
 David A. Bryan
 Polycom
 J. Taveira
 ID/INOV
 Oct 31, 2011

 Peer Protocol
 draft-gu-ppsp-peer-protocol-03

Abstract

 This document presents the architecture of the PPSP Peer protocol
 outlining the functional entities, message flows and message
 processing instructions, with the respective parameters. The PPSP
 Peer Protocol proposed in this document extends the capabilities of
 PPSP to support adaptive and scalable video and 3D video, for Video
 On Demand (VoD) and Live video services. The protocol messages
 formal syntax and semantics, methods, and formats are presented for
 both Binary and HTTP/XML encoded formats.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Gu, et al. Expires May 3, 2012 [Page 1]

Internet-Draft Peer Protocol Oct 2011

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Document Conventions . 4
 2.1. Notational Conventions 4
 2.2. Terminology . 4
 3. Protocol Overview . 6
 3.1. Protocol Architecture 7
 3.2. Example Call Flow . 9
 3.3. Chunk Scheduling . 10
 4. Protocol Architecture . 11
 5. Security Consideration . 13
 5.1. Authentication . 13
 5.2. Content Integrity Protection Against Polluting
 Peers/Trackers . 13
 5.3. Residual Attacks and Mitigation 14
 5.4. Pro-incentive Parameter Trustfulness 14
 6. References . 14
 6.1. Normative References 14
 6.2. Informative References 15
 Appendix A. Binary Encoding 16
 A.1. Methods in Peer messages 17
 Appendix B. HTTP/XML Encoding 21
 B.1. HTTP/XML Encoding . 21
 B.2. Method Fields . 22
 B.3. Message Processing . 23
 B.4. GET_PEERLIST Message 24
 B.5. GET_CHUNKMAP Message 26
 B.6. GET_CHUNK Message . 27
 B.7. PEER_STATUS Message 29
 B.8. TRANSPORT_NEGOTIATION Message 30
 Authors’ Addresses . 30

Gu, et al. Expires May 3, 2012 [Page 2]

Internet-Draft Peer Protocol Oct 2011

1. Introduction

 The P2P Streaming Protocol (PPSP) is composed of two protocols: the
 PPSP Tracker Protocol and the PPSP Peer Protocol
 [I-D.ietf-ppsp-problem-statement].

 The PPSP architecture requires PPSP peers able to communicate with a
 Tracker in order to participate in a particular swarm. This
 centralized Tracker service is used for peer and content registration
 and location. Content indexes (Media Presentation Descriptions) are
 also stored in the Tracker system allowing the association of content
 location information to the active peers in the swarm sharing the
 content.

 The PPSP Tracker Protocol provides communication between Trackers and
 Peers and outlines how a peer is able to communicate with a tracker
 in order to exchange meta information about the location of other
 peers contributing with a specific stream (swarm) the peer interested
 in, as well as to report streaming status. The Peer can also apply
 to be a contributor for several streams (swarms), periodically
 reporting its status to the Tracker, allow it to estimate whether the
 peer is a competent contributor.

 The PPSP Peer protocol outlines how a peer is able to communicate
 with other peers in order to control the advertising and exchange of
 media data, directly between peers, for a specific stream (swarm), as
 described in [I-D.ietf-ppsp-problem-statement].

 The process used for media streaming distribution assumes a segment
 transfer scheme whereby the original content (that can be encoded
 using adaptive or scalable techniques) is chopped into small segments
 (and subsegments). For simplicity, in this document the segments
 (and subsegments) of media are named Chunks. The media streaming
 process has the following representations:

 1. Adaptive - alternate representations with different qualities and
 bitrates; a single represention is non-adaptive;

 2. Scalable description levels - multiple additive descriptions
 (i.e., addition of descriptions refine the quality of the video);

 3. Scalable layered levels - nested dependent layers corresponding
 to several hierarchical levels of quality, i.e., higher
 enhancement layers refine the quality of the video of lower
 layers.

 4. Scalable multiple views - views correspond to mono and
 stereoscopic 3D videos, with several hierarchical levels of

Gu, et al. Expires May 3, 2012 [Page 3]

Internet-Draft Peer Protocol Oct 2011

 quality.

 These streaming distribution techniques support dynamic variations in
 video streaming quality while ensuring support for a plethora of end
 user devices and network connections.

 The information that should be exchanged between peers using this
 Peer Protocol includes:

 1. ChunkMap indicating which chunks a peer possesses.

 2. Required ChunkIDs

 3. Peer preferences and status information

 4. Signalling and Data Transport protocol negotiation

 5. Information that can help improve the performance of PPSP.

 In this document, a set of concrete information that needs to be
 exchanged between peers is introduced, together with the messages to
 convey such information.

 This documents describes the PPSP Peer protocol and how it satisfies
 the requirements for the IETF Peer-to-Peer Streaming Protocol (PPSP),
 in order to derive the implications for the standardization of the
 PPSP streaming protocols and to identify open issues and promote
 further discussion.

 This PPSP Peer Protocol proposal presents an early sketch for an
 extensible protocol that extends the capabilities of PPSP to support
 adaptive and scalable video.

2. Document Conventions

2.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.2. Terminology

 The draft uses the terms defined in
 [I-D.ietf-ppsp-problem-statement], [I-D.gu-ppsp-tracker-protocol] and
 [I-D.cruz-ppsp-http-peer-protocol]. Additionally, This document uses
 the following acronyms and definitions frequently in itself:

Gu, et al. Expires May 3, 2012 [Page 4]

Internet-Draft Peer Protocol Oct 2011

 Peer-Peer Messages

 The Peer Protocol messages enable each Peer to exchange content
 availability with other Peers and request other Peers for content.

 Tracker-Peer Messages

 The Tracker Protocol messages provide communication between Peers
 and Trackers, by which Peers provide content availability, report
 streaming status and request candidate Peer lists from Trackers.

 Connection Tracker

 The Tracker Node to which the PPSP Peer will connect when it wants
 to join the PPSP system.

 Sender Peer

 A peer that contains the corresponding chunk files requested by
 leech peer is the Sender peer. Many peers can contain the
 content, but only one who is contributing the content to the leech
 peer can be named as Sender peer.

 Leech Peer

 A peer that requests the specific media content from other peers.
 Note that the leech peer can also contribute the downloaded media
 content (i.e., chunks) even the swarm is not completed, in such
 case, the leech peer will take on the role of sender peer for
 downloaded chunks.

 Chunk Map

 A peer list that indicates which chunks can be available for leech
 peer to playback smoothly.

 Live Streaming

 The scenario where all clients receive streaming content for the
 same ongoing event. The lags between the play points of the
 clients and that of the streaming source are small.

 Video-on-demand (VoD)

 The scenario where all clients are allowed to select and watch
 video content on demand.

Gu, et al. Expires May 3, 2012 [Page 5]

Internet-Draft Peer Protocol Oct 2011

 Adaptive Streaming

 Multiple alternate versions (different qualities and bitrates) of
 the same media content co-exist for the same streaming session;
 each alternate version corresponds to a different media quality
 level; peers can choose among the alternate versions for decode
 and playback.

 Scalable Streaming

 With Multiple Description Coding (MDC), multiple additive
 descriptions (that can be independently played-out) to refine the
 quality of the video when combined together. With Scalable Video
 Coding (SVC), nested dependent enhancement layers (hierarchical
 levels of quality), refine the quality of lower layers, from the
 lowest level (the playable Base Layer). With Multiple View Coding
 (MVC), multiple views allow the video to be played in 3D when the
 views are combined together.

 Base Layer

 The playable level in Scalable Video Coding (SVC) required by all
 upper level Enhancements Layers for proper decoding of the video.

 Enhancement Layer

 Enhancement differential quality level in Scalable Video Coding
 (SVC) used to produce a higher quality, higher definition video in
 terms of space (i.e., image resolution), time (i.e., frame rate)
 or Signal-to-Noise Ratio (SNR) when combined with the playable
 Base Layer.

 Continuous Media

 Media with an inherent notion of time, for example, speech, audio,
 video, timed text or timed metadata.

 Media Component

 An encoded version of one individual media type such as audio,
 video or timed text with specific attributes, e.g., bandwidth,
 language, or resolution.

3. Protocol Overview

Gu, et al. Expires May 3, 2012 [Page 6]

Internet-Draft Peer Protocol Oct 2011

3.1. Protocol Architecture

 The functional entities involved in the PPSP Peer Protocol are Peers,
 which may support different capabilities.

 Peers correspond to devices that actually participate in sharing a
 media content and are organized in (various) swarms corresponding
 each swarm to the group of peers streaming that content at any given
 time.

 Each peer contacts a Tracker to advertise which information it has
 available. When a peer wishes to obtain information about the swarm,
 it contacts the Tracker to find other peers participating in that
 specific swarm.

 The tracker is a logical entity that maintains the lists of peers
 storing/exchanging chunks for a specific Live media channel or VoD
 media streaming content, answers queries from peers and collects
 information on the activity of peers. A simplified network diagram
 showing this interaction of tracker and peers is depicted in Figure
 1.

 +-----------------------------------+
 | Tracker |
 +-----------------------------------+
 ^ | ^
 connect/ | | |
 join/ | | peer list |streaming Status/
 find/ | | |Content availability/
 leave/ | | |node capability
 disconnect | V |
 +-------------+ +------------+
 | Peer 1 |<------------->| Peer 2 |
 +-------------+ content info/ +------------+
 data requests

 Figure 1: A PPSP streaming process

 The signaling between PPSP Peers and trackers is done using a
 request/reply mechanism as defined in PPSP Tracker protocol
 [I-D.gu-ppsp-tracker-protocol].

 This protocol can be used to connect peers that are sharing real-time
 streams of video or offline video, segmented in chunks. As for the
 streams of video, they can correspond to Live or Video on Demand
 streaming modes.

 There are some significant differences between the details of these

Gu, et al. Expires May 3, 2012 [Page 7]

Internet-Draft Peer Protocol Oct 2011

 scenarios, i.e., Live streaming, VoD and offline video. From a high
 level perspective the overall structure is quite similar. The
 optimal signaling flow for the different scenarios could also be
 different, but it depends on the real situation and on the
 implementer’s choice

 This draft defines a PULL based streaming signaling, as mandatory.
 However, a PUSH based or hybrid streaming signaling can optionally be
 considered.

 For a PULL based Peer Protocol, the steps of signaling for a peer
 wishing to participate either in a Live streaming or a VoD or offline
 video is as follows (assuming the leech peer has already obtained
 from the Tracker a list of peers) and that, in case of traversing a
 NAT, performed ICE connectivity checks [I-D.li-ppsp-nat-traversal]
 with candidate peers using PPSP’s own authentication method, as
 described in [I-D.gu-ppsp-tracker-protocol]:

 1. The leech peer using PPSP Peer Protocol messages, establishes a
 connection to at least one of the peers in the Peerlist, based on
 the known PeerID and Peer IP address.

 2. The peer sends request to candidate peers and the request could
 include one or more of the information described in below:

 * Request for the data availability of the candidate peer;

 * Notify its data availability to the candidate peer;

 * Request for the peer status of the candidate peer;

 * Notify its peer status to the candidate peer;

 * Request for additional peerlist;

 * Transport negotiation, wherein the requesting peer can have
 two choices:

 + Only support Mandatory Tranport Protocol;

 + Providing a list of supported Transport protocol.

 3. Finally, the peers exchange the actual chunks of data, using the
 mechanism/protocol negotiated in the previous step.

 In terms of Data Transport protocol negotiation, the leech peer can
 either inform the candidate that it supports a Mandatory Tranport
 Protocol or provides a list of supported Transport protocols. That

Gu, et al. Expires May 3, 2012 [Page 8]

Internet-Draft Peer Protocol Oct 2011

 there are several options here to negotiate the connection model.
 The PPSP Peer Protocol may include new mechanisms to negotiate the
 protocol used to exchange data, or the offer-answer mechanism in SIP
 [RFC3261] (the IETF protocol for session establishment) along with
 SDP [RFC4566].

 Note also that these mechanisms are not new protocols defined in
 PPSP, but existing protocols, and would eventually differ between an
 offline and a Live streaming scenario. Mechanisms such as flow
 control are handled in the negotiated Data Transport mechanism, not
 in the Peer Protocol itself.

3.2. Example Call Flow

 This is a very high-level example of a session in which a leech peer
 joins a swarm, and retrieves some data (either via blocks or by
 streaming). The protocol used is indicated for each transaction.
 Note that not all of the communication shown in this figure are in
 scope of Peer Protocol, only those request/response followed by Peer
 Protocol are in scope.

Gu, et al. Expires May 3, 2012 [Page 9]

Internet-Draft Peer Protocol Oct 2011

 +--------+ +--------+ +--------+ +---------+ +--------+
 | Player | | Peer 1 | | Portal | | Tracker | | Peer 2 |
 +--------+ +--------+ +--------+ +---------+ +--------+
 | | | | |
 | | | | |
 | |------------FIND(optional)--------------->|
 |<-----------OK--|<----------------Peerlist(optional)-------|
 | | | | |
 | |--------GET_CHUNKMAP (Peer protocol)----->|
 | |<--------------------ChunkMap-------------|
 | | | | |
 | |--------GET_STATUS (Peer protocol)------->|
 | |<----------------PEER2 STATUS-------------|
 | | | | |
 | |--TRANSPORT_NEGOTIATION (Peer protocol)-->|
 | |<-------------CONNECTION SETUP------------|
 | | | | |
 |--GET (Chunk)-->|--------GET_CHUNK (Peer protocol)-------->|
 |<---OK+Chunk----|<-----------------Chunk-------------------|
 : : : : :
 | |--------GET_STATUS (Peer protocol)------->| | |
 | |<----------------PEER2 STATUS-------------|
 | | | | |
 |--GET (Chunk)-->|--------GET_CHUNK (Peer protocol)-------->|
 |<-----OK+Chunk--|<------------------Chunk------------------|
 : : : : :
 | | | |

 Figure 2: Example Call Flow

3.3. Chunk Scheduling

 The goal of chunk trading is receiving the stream smoothly (and with
 small delay) and to cooperate in the distribution procedure. Peers
 need to exchange information about their current status to enable
 scheduling decisions. The information exchanged refers to the state
 of the peer with respect to the flow, i.e., a map of which chunks are
 needed by a peer to smoothly playback the stream.

 This task means:

 1. sending chunk maps to other nodes with the proper timing,

 2. receiving chunk maps from other nodes and merging the information
 in the local buffer map.

 3. besides chunk map exchange, the signaling includes Status/
 Request/Select primitives used to trade chunks.

Gu, et al. Expires May 3, 2012 [Page 10]

Internet-Draft Peer Protocol Oct 2011

 The core of the scheduler, not described in this specification, is
 the algorithm used to choose the chunks to be exchanged and the peers
 to communicate with.

4. Protocol Architecture

 The PPSP Peer Protocol is a request-response protocol. Requests are
 sent, and responses returned to these requests. A single request
 generates a single response (neglecting fragmentation of messages).

 As shown in example call flow depicted in Figure 2, the Peer protocol
 only provides signaling messages for obtaining additional peerlist
 (optionally), query for content availability and negotiation for
 transfer protocol. Peer protocol may also provide communication for
 peers to exchange information that can improve system performance.

 The encoding for the signaling messages is not yet decided. Two
 encodings are proposed, a Text-based (HTTP/XML) and a Binary-based,
 described in Appendixes A and B. The authors will raise more
 discussion on the encoding, and will move the one that gets rough
 consensus of the PPSP WG to the draft text. In the Appendixes, some
 considerations are provided on each encoding based on the Mail List
 discussions.

 The specific PPSP signaling messages are listed as following:

 GET_PEERLIST:

 The GET_PEERLIST message is sent from a leech peer to one or more
 remote peers in order for a peer to refresh/update the list of
 active peers in the swarm.

 When receiving the GET_PEERLIST message, and if the message is
 well formed and accepted, the peer will search for the requested
 data and will respond to the leech peer with the peer list with
 PeerIDs (and respective IP Addresses) of sender peers that can
 provide the specific content.

 GET_CHUNKMAP:

 The GET_CHUNKMAP message is sent from a leech peer to one or more
 remote peers in order to receive the map of chunks of a content
 (of a swarm identified by SwarmID) the other peer presently
 stores. The chunk map returned by the other peer lists ranges of
 chunks.

Gu, et al. Expires May 3, 2012 [Page 11]

Internet-Draft Peer Protocol Oct 2011

 When receiving the GET_CHUNKMAP message, and if the message is
 well formed and accepted, the peer will search for the requested
 data and will respond to the leech peer with the map of chunks it
 currently stores of the specific content.

 GET_CHUNK:

 The GET_CHUNK message is sent from a leech peer to sender peer in
 order to request the delivery of media content chunks.

 When receiving the GET_CHUNK message, and if the message is well
 formed and accepted, the peer will search for the requested data
 and will respond to the leech peer with the specific chunks the
 leech peer requested.

 GET_STATUS:

 The GET_ STATUS message is sent from a leech peer to one or more
 remote peers in order to request the corresponding properties of
 the sender peers. The corresponding properties are enumerated in
 [draft-gu-ppsp-tracker-protocol], e.g., Caching Size, Bandwidth
 etc.

 When receiving the GET_STATUS message, and if the message is well
 formed and accepted, the peer will search for the requested data
 and will respond to the leech peer with the specific parameters to
 the properties the leech peer requested.

 TRANSPORT_NEGOTIATION:

 The TRANSPORT_NEGOTIATION message is sent from a leech peer to a
 sender peer in order to negotiate the underlying transport
 protocol. Leech peer provide a set of transport protocols it
 supported to sender peer, and leave send peer to choose its
 preference. Reusing existing transport protocol to transfer data
 is recommended.

 When receiving the TRANSPORT_NEGOTIATION message, and if the
 message is well formed and accepted, the sender peer will decide
 the transport protocol and will respond to the leech peer with the
 specific transport protocol the sender peer preferred.

Gu, et al. Expires May 3, 2012 [Page 12]

Internet-Draft Peer Protocol Oct 2011

5. Security Consideration

 P2P streaming systems are subject to attacks by malicious/unfriendly
 peers/trackers that may eavesdrop on signaling, forge/deny
 information/knowledge about streaming content and/or its
 availability, impersonating to be another valid participant, or
 launch DoS attacks to a chosen victim.

 No security system can guarantees complete security in an open P2P
 streaming system where participants may be malicious or
 uncooperative. The goal of security considerations described here is
 to provide sufficient protection for maintaining some security
 properties during the peer-peer communication even in the face of a
 large number of malicious peers.

 As in typical Peer to Peer network, the most significant security
 issue is that the peers are untrusted. A peer may announce that it
 has a specific content, but the content might be just noise or it
 could be poisoned. A peer could also download a large number of
 chunks but upload very few of them. This problem can be alleviated
 by incentive mechanism, the goal of which is to reward honest peers
 and degrade dishonest peers.

5.1. Authentication

 To protect the PPSP signaling from attackers pretending to be valid
 peers (or peers other than themselves) all messages received in the
 Tracker are required to be received from authorized peers.

 For that purpose a peer must enroll in the system via a centralized
 enrollment server. The enrollment server is expected to provide a
 proper PeerID for the peer and information about the authentication
 mechanisms. The specification of the enrollment method and the
 provision of identifiers and authentication tokens is out of scope of
 this draft.

 The authetication mechanism MUST allow the means for negotiating data
 security layer mechanisms to provide data integrity, data
 confidentiality, and other services, subject to local policies and
 security requirements.

5.2. Content Integrity Protection Against Polluting Peers/Trackers

 Malicious peers may declaim ownership of popular content to the
 Tracker but serve polluted (i.e., decoy content or even virus/trojan
 infected contents) to other peers. This kind of pollution can be
 detected by incorporating a checksum distribution scheme for
 published sharing content. As content chunks of the same content are

Gu, et al. Expires May 3, 2012 [Page 13]

Internet-Draft Peer Protocol Oct 2011

 transferred independently and concurrently, correspondent chunk-level
 checksums MUST be distributed from an authentic origin.

5.3. Residual Attacks and Mitigation

 To mitigate the impact of sybil attackers, impersonating a large
 number of valid participants by repeatedly acquiring different peer
 identities, the enrollment server SHOULD carefully regulate the rate
 of peer/tracker admission.

 There is no guarantee that a peer honestly report its status to the
 Tracker, or server authentic content to other peers as it claims to
 the Tracker. It is expected that a global trust mechanism, where the
 credit of each peer is accumulated from evaluations for previous
 transactions, may be taken into account by other peers when selecting
 partner for future transactions, helping to mitigate the impact of
 such malicious behaviors. A globally trusted Tracker MAY also take
 part of the trust mechanism by collecting evaluations, computing
 credit values and providing them to joining peers.

5.4. Pro-incentive Parameter Trustfulness

 Properties for PEER_STATUS messages will consider pro-incentive
 parameters, which can enable the improvement of the performance of
 the whole P2P streaming system. Trustworthiness of these pro-
 incentive parameters is critical to the effectiveness of the
 incentive mechanisms. For example, ChunkMap is essential, and needs
 to be accurate. The P2P system should be designed in a way such that
 a peer will have the incentive to report truthfully its ChunkMap
 (otherwise it may penalize itself).

 Furthermore, both the amount of upload and download should be
 reported to the Tracker to allow checking if there is any
 inconsistency between the upload and download report, and establish
 an appropriate credit/trust system.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

Gu, et al. Expires May 3, 2012 [Page 14]

Internet-Draft Peer Protocol Oct 2011

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [draft-ietf-p2psip-base]
 Jennings, C., Lowekamp, B., Ed., Rescorla, E., and H.
 Schulzrinne, "draft-ietf-p2psip-base-07", February 2010,
 <draft-ietf-p2psip-base>.

6.2. Informative References

 [I-D.ietf-ppsp-problem-statement]
 Zhang, Y., Zong, N., Camarillo, V., Seng, J., and R. Yang,
 "Problem Statement of P2P Streaming Protocol (PPSP)",
 Januray 2011, <I-D.ietf-ppsp-problem-statement>.

 [I-D.ietf-ppsp-reqs]
 Zong, N., Zhang, Y., Pascual, V., and C. Williams, "P2P
 Streaming Protocol (PPSP) Requirements", February 2011,
 <I-D.ietf-ppsp-reqs>.

 [I-D.ietf-ppsp-survey]
 Gu, Y., Zong, N., Zhang, H., Zhang, Y., Camarillo, G., and
 Y. Liu, "Survey of P2P Streaming Applications",
 March 2011, <I-D.ietf-ppsp-survey>.

 [I-D.gu-ppsp-tracker-protocol]
 Cruz, R., Nunes, M., Gu, Y., Xia, J., Bryan, D., Taveira,
 J., and D. Deng, "PPSP Tracker Protocol", March 2011,
 <I-D.gu-ppsp-tracker-protocol>.

 [I-D.cruz-ppsp-http-peer-protocol]
 Gu, Y., Xia, J., Cruz, R., Nunes, M., Bryan, D., and J.
 Taveira, "PPSP HTTP-Based Peer Protocol", March 2011,
 <I-D.cruz-ppsp-http-peer-protocol>.

 [I-D.li-ppsp-nat-traversal]
 Li , L., Wang , J., and W. Chen , "PPSP NAT Traversal",
 March 2011, <I-D.li-ppsp-nat-traversal>.

 [BittorrentSpecification]
 "Bittorrent Protocol Specification v1.0", February 2010,
 <Bittorrent Specification>.

Gu, et al. Expires May 3, 2012 [Page 15]

Internet-Draft Peer Protocol Oct 2011

Appendix A. Binary Encoding

 Binary Encoding is an encoding of data in plain text. More
 precisely, it is an encoding of binary data in a sequence of ASCII-
 printable characters. Binary Encoding is necessary for transmission
 of data when the channel or the protocol only allows ASCII-printable
 characters.

 The PPSP Peer protocol can be carried on top of IP, UDP, RTP or TCP.
 But using which layer to carry peer protocol is out of scope in
 current stage.

 The peer message header has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | PPSP Peer Protocol Token |
 +-+
 | Version | Message | Reserved |
 +-+
 | Transaction ID
 +-+
 |
 +-+
 | Message Length |
 +-+

 Figure 3: PPSP Peer message header

 The fields have the following meaning:

 PPSP Peer Protocol Token: 32 bits

 A fixed token indicating to the receiver this message is a PPSP
 Peer Protocol message. The token field is four bytes long. This
 value MUST be set to 0x50505350, the string "PPSP".

 Version: 8 bits The version of the PPSP peer protocol being used in
 the form of a fixed point integer between 0.1 and 25.4. For the
 version of the protocol described in this document, this field
 MUST be set to 0.1. The version field is one byte long.

Gu, et al. Expires May 3, 2012 [Page 16]

Internet-Draft Peer Protocol Oct 2011

 Message Types: 8 bits

 Message types currently have two kinds of value: Request and
 Response.

 Reserved: 16 bits

 Not to be assigned. Reserved values are held for special uses,
 such as to extend the namespace when it becomes exhausted.
 Reserved values are not available for general assignment.

 Transaction ID: 64 bits

 Identifies the transaction and also allows receivers to
 disambiguate transactions which are otherwise identical.
 Responses use the same Transaction ID as the request they
 correspond to. Transaction IDs are also used for fragment
 reassembly.

 Message Length: 32 bits:

 The length of the message, including header, in bytes. Note if
 the message is fragmented, this is the length of this message, not
 the total length of all assembled fragments.

A.1. Methods in Peer messages

 To improve the compatibility of the peer methods, the method fields
 in message extension MUST be encoded as TLV elements as described
 below and sketched in Figure 4:

 To improve the compatibility of the peer methods, the method fields
 in message extension MUST be encoded as TLV elements as described
 below and sketched in Figure 4:

 o Type: A single-octet identifier that defines the type of the
 parameter represented in this TLV element.

 o Length: A two-octet field that indicates the length (in octets) of
 the TLV element excluding the Type and Length fields, and the
 8-bit Reserved field between them. Note that this length does not
 include any padding that is required for alignment.

Gu, et al. Expires May 3, 2012 [Page 17]

Internet-Draft Peer Protocol Oct 2011

 o Value: Variable-size set of octets that contains the specific
 value for the parameter.

 In the extensions, the Reserved field SHALL be set to zero and
 ignored. If a TLV element does not fall on a 32-bit boundary, the
 last word MUST be padded to the boundary using further bits set to
 zero.

 In a peer message, any method extension MUST be placed after the
 mandatory message header. The extensions MAY be placed in any order.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Reserved | Length |
 +-+
 : Value :
 +-+

 Figure 4: Structure of a TLV element

 Method Type: 8 bits

 Indicates the method type for the message. There are five method
 types: GET_PEERLIST, GET_CHUNKMAP, GET_CHUNK, GET_ PROPERTY and
 TRANSPORT_NEGOTIATION. They are counted from 1 to 5.

 Method Body Length: 24 bits

 The length of the method body in bytes.

A.1.1. GET_PEERLIST

 Peerlist is composed of several pairs of Peer ID and Peer IP. Peer
 ID is a 128 bit integer that is unique in the P2P streaming system.
 That’s no matter there is a centralized tracker or several
 distributed trackers in the streaming system, a peer ID should be
 unique.

Gu, et al. Expires May 3, 2012 [Page 18]

Internet-Draft Peer Protocol Oct 2011

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 00000001 | Method Body Length |
 +-+
 | PEER ID 1
 +-+

 +-+

 +-+
 |
 +-+
 | PEER IP 1 |
 +-+
 | PEER ID 2
 +-+

 +-+

 +-+
 |
 +-+
 PEER IP 2 |
 +-+

 Figure 5: GET_PEERLIST Method Body

A.1.2. GET_CHUNKMAP

 Chunkmap of a content (a swarm identified by SwarmID)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 00000002 | Method Body Length |
 +-+
 | SWARM ID 1 |
 +-+
 | Chunkmap |
 +-+
 | |
 +-+
 : :
 +-+
 | |
 +-+

Gu, et al. Expires May 3, 2012 [Page 19]

Internet-Draft Peer Protocol Oct 2011

 Figure 6: GET_CHUNKMAP Method Body

A.1.3. GET_CHUNK

 [TBD]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 00000003 | Method Body Length |
 +-+
 | SWARM ID
 +-+
 + Chunk ID
 +-+
 +
 +-+
 + |
 +-+
 | |
 +-+

 Figure 6: GET_CHUNKMAP Method Body

A.1.4. GET_STATUS

 Several property types are defined in I-D.gu-ppsp-tracker-protocol.
 But not all of the property types are reasonable to be used in peer
 protocol. So we just list the following property types. New types
 can be easily added.

 +-------------+--+------+
 | PROPERTY | Description | Code |
 +-------------+--+------+
CachingSize	Caching size: available size for caching	0x01
Bandwidth	Bandwidth: available bandwidth	0x02
LinkNumber	Link number: acceptable links for remote	0x03
	peer	
Certificate	Certificate: certificate of the peer	0x04
 +-------------+--+------+

 Table 1: Status changed between peers

Gu, et al. Expires May 3, 2012 [Page 20]

Internet-Draft Peer Protocol Oct 2011

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 00000004 | Method Body Length |
 +-+
 | STATUS Code| STATUS Length |
 +-+
 | STATUS Value |
 +-+
 + |
 +-+
 | |
 +-+

 Figure 6: GET_STATUS Method Body

A.1.5. TRANSPORT_NEGOTIATION

 To Do: Define mandatory transport protocol and some optional
 transport protocol.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 00000005 | Method Body Length |
 +-+
 | Method Body |
 +-+

 Figure 7: TRANSPORT_NEGOTIATION Method Body

Appendix B. HTTP/XML Encoding

 The PPSP Peer Protocol HTTP/XML encoding messages follow the request
 and response standard formats for HTTP Request and Response messages
 [RFC2616].

B.1. HTTP/XML Encoding

 A Request message is a standard HTTP Request generated by the HTTP
 Client Peer with the following syntax:

 <Method> /<Resource> HTTP/1.1
 Host: <Host>

Gu, et al. Expires May 3, 2012 [Page 21]

Internet-Draft Peer Protocol Oct 2011

 The HTTP Method and URI path (the Resource) indicates the operation
 requested. The current proposal uses only HTTP POST as a mechanism
 for the request messages.

 The Host header follows the standard rules for the HTTP 1.1 Host
 Header.

 The Response message is also a standard HTTP Response generated by
 the HTTP Serving Peer with the following syntax:

 HTTP/1.1 <StatusCode> <StatusMsg>
 Content-Lenght: <ContentLenght>
 Content-Type: <ContentType>
 Content-Encoding: <ContentCoding>
 <Response_Body>

 The body for both Request and Response messages are encoded in XML
 for all the PPSP Peer Protocols messages, with the following schema
 (the XML information being method specific):

 <?xml version="1.0" encoding="utf-8"?>
 <ProtocolName version="#.#">
 <Method>***</Method> <!-- for the Request method -->
 <Response>***</Response> <!-- for the Response method -->
 <TransactionID>###</TransactionID>
 ...XML information specific of the Method...
 </ProtocolName>

 In the XML body, the *** represents alphanumeric data and ###
 represents numeric data to be inserted. The <Method> corresponds to
 the method type for the message, the <Response> corresponds to the
 response method type of the message and the element <TransactionID>
 uniquely identifies the transaction.

 The Response message MAY use Content-Encoding entity-header with
 "gzip" compression scheme [RFC2616] for faster transmission times and
 less network bandwidth usage.

B.2. Method Fields

 Table B 1 and Table B 2 define the valid string representations for
 the requests and responses, respectively. These values MUST be
 treated as case-insensitive.

Gu, et al. Expires May 3, 2012 [Page 22]

Internet-Draft Peer Protocol Oct 2011

 +-----------------------+--------------------------+
 | PPSP Request | XML Request Value String |
 +-----------------------+--------------------------+
 | GET_PEERLIST | GET_PEERLIST |
 | GET_CHUNKMAP | GET_CHUNKMAP |
 | GET_CHUNK | GET_CHUNK |
 | PEER_STATUS | PEER_STATUS |
 | TRANSPORT_NEGOTIATION | TRANSP_NEGO |
 +-----------------------+--------------------------+

 Table B 1: Valid Strings for Requests

 +----------------------+---------------------+--------------------+
 | Response Method Name | HTTP Response | XML Response Value |
 | | Mechanism | |
 +----------------------+---------------------+--------------------+
 | SUCCESSFUL (OK) | 200 OK | OK |
 | INVALID SYNTAX | 400 Bad Request | INVALID SYNTAX |
 | VERSION NOT | 400 Bad Request | VERSION NOT |
 | SUPPORTED | | SUPPORTED |
 | AUTHENTICATION | 401 Unauthorized | AUTHENTICATION |
 | REQUIRED | | REQUIRED |
 | MESSAGE FORBIDDEN | 403 Forbidden | MESSAGE FORBIDDEN |
 | OBJECT NOT FOUND | 404 Not Found | OBJECT NOT FOUND |
 | INTERNAL ERROR | 500 Internal Server | INTERNAL ERROR |
 | | Error | |
 | TEMPORARILY | 503 Service | TEMPORARILY |
 | OVERLOADED | Unavailable | OVERLOADED |
 +----------------------+---------------------+--------------------+

 Table B 2: Valid Strings for Responses

B.3. Message Processing

 When a PPSP Peer Protocol message is received in a peer, some basic
 processing is performed, regardless of the message type. Upon
 reception, a message is examined to ensure that it is properly
 formed. The receiver MUST check that the HTTP message itself is
 properly formed, and if not appropriate standard HTTP errors MUST be
 generated. The receiver must also verify that the XML body is
 properly formed. If the message is found to be incorrectly formed or
 the length does not match the length encoded in the header, the
 receiver MUST reply with an HTTP 400 response with a PPSP XML body
 with the Response method set to INVALID SYNTAX.

Gu, et al. Expires May 3, 2012 [Page 23]

Internet-Draft Peer Protocol Oct 2011

B.4. GET_PEERLIST Message

 The GET_PEERLIST message is sent from a client peer to a selected
 serving peer in order for a peer to refresh/update the list of active
 peers in the swarm.

 The Request message uses a HTTP POST method with the following body:

 <?xml version="1.0" encoding="utf-8"?>
 <PPSPPeerProtocol version="#.#">
 <Method>GET_PEERLIST</Method>
 <PeerID>***</PeerID>
 <SwarmID>***</SwarmID>
 <TransactionID>###</TransactionID>
 </PPSPPeerProtocol>

 The sender MUST properly form the XML body, MUST set the Method
 string to GET_PEERLIST, MUST set the PeerID to the PeerID of the
 peer, MUST set the SwarmID to the joined swarm identifier and
 randomly generate and set the TransactionID value.

 When receiving the GET_PEERLIST message, and if the message is well
 formed and accepted, the peer will search for the requested data and
 will respond to the requesting peer with an HTTP 200 OK message
 response with a PPSP XML payload SUCCESSFUL, as well as the peer list
 with PeerIDs (and respective IP Addresses) of peers that can provide
 the specific content.

 The response MUST have the same TransactionID value as the request.

 An example of the Response message structure is the following:

Gu, et al. Expires May 3, 2012 [Page 24]

Internet-Draft Peer Protocol Oct 2011

 <?xml version="1.0" encoding="utf-8"?>
 <PPSPPeerProtocol version="#.#">
 <Response>OK</Response>
 <SwarmID>***</SwarmID>
 <TransactionID>###</TransactionID>
 <PeerInfoList>
 <PeerInfo>
 <PeerID>***</PeerID>
 <PeerType>***</PeerType>
 <PeerAddresses>
 <PeerAddress ip="##.##.##.##"
 port="###" />
 <PeerAddress ip="hh:hh:hh:hh:hh:hh:hh:hh"
 port="###" />
 </PeerAddresses>
 <PeerLocation>****</PeerLocation>
 <ConnectionType>***</ConnectionType>
 <EndPointRankCost>###</EndPointRankCost>
 </PeerInfo>
 <PeerInfo>
 <PeerID>***</PeerID>
 <PeerType>***</PeerType>
 <PeerAddresses>
 <PeerAddress ip="##.##.##.##"
 port="###" />
 <PeerAddress ip="hh:hh:hh:hh:hh:hh:hh:hh"
 port="###" />
 </PeerAddresses>
 <PeerLocation>****</PeerLocation>
 <ConnectionType>***</ConnectionType>
 <EndPointRankCost>###</EndPointRankCost>
 </PeerInfo>
 </PeerInfoList>
 </PPSPPeerProtocol>

 The element <PeerInfoList> MAY contain multiple <PeerInfo> child
 elements.

 The element <PeerAddresses> MAY contain multiple <PeerAddress> child
 elements with attributes "ip" and "port" corresponding to each of the
 network interfaces of the peer. The "ip" attribute can be expressed
 in dotted decimal format for IPv4 or 16-bit hexadecimal values (hh)
 separated by colons (:) for IPv6.

 The elements <PeerLocation> and <ConnectionType> have a string
 format, and together with the element <EndPointRankCost> of numerical
 integer format, form a set of information related to peer location.

Gu, et al. Expires May 3, 2012 [Page 25]

Internet-Draft Peer Protocol Oct 2011

B.5. GET_CHUNKMAP Message

 The GET_CHUNKMAP message is sent from a client peer to a selected
 serving peer in order to receive the map of chunks of a content (of a
 swarm identified by SwarmID) the other peer presently stores. The
 chunk map returned by the other peer lists ranges of chunks. The
 Request message uses a HTTP POST method with the following body:

 <?xml version="1.0" encoding="utf-8"?>
 <PPSPPeerProtocol version="#.#">
 <Method>GET_CHUNKMAP</Method>
 <PeerID>***</PeerID>
 <SwarmID>***</SwarmID>
 <TransactionID>###</TransactionID>
 </PPSPPeerProtocol>

 The sender MUST properly form the XML body, MUST set the Method
 string to GET_CHUNKMAP, MUST set the PeerID to the PeerID of the
 peer, MUST set the SwarmID to the joined swarm identifier and
 randomly generate and set the TransactionID value.

 When receiving the GET_CHUNKMAP message, and if the message is well
 formed and accepted, the peer will search for the requested data and
 will respond to the requesting peer with an HTTP 200 OK message
 response with a PPSP XML payload SUCCESSFUL, as well as the map of
 chunks it currently stores of the specific content.

 The response MUST have the same TransactionID value as the request.

 The Response message is an HTTP 200 OK message with the following
 body, exemplified for a video component of a media clip:

 <?xml version="1.0" encoding="utf-8"?>
 <PPSPPeerProtocol version="#.#">
 <Response>OK</Response>
 <TransactionID>###</TransactionID>
 <StreamInfo>
 <SwarmID>***</SwarmID>
 <Clip>
 <Name>***</Name>
 <ChunkSegments type="video/audio/etc">
 <ChunkSegment from="###" to="###"
 bitmapSize="###">
 ...(base64 string)...
 </ChunkSegment>
 </ChunkSegments>
 </Clip>
 </StreamInfo>

Gu, et al. Expires May 3, 2012 [Page 26]

Internet-Draft Peer Protocol Oct 2011

 </PPSPPeerProtocol>

 The element <StreamInfo> MAY contain multiple <Clip> child elements.

 The element <ChunkSegments> has an attribute "type" that indicates
 the type of media of the corresponding chunks.

 A <ChunkSegments> element MAY contain multiple <ChunkSegment> child
 elements with attributes "from" and "to" corresponding to ranges of
 contiguous chunks. The "from", "to", and "bitmapSize" attributes are
 expressed as integer number string format. The <ChunkSegment>
 content corresponds to the chunk map, and is represented as base64
 encoded string.

B.6. GET_CHUNK Message

 The GET_CHUNK message is sent from a client peer to a serving peer in
 order to request the delivery of media content chunks. The Request
 message uses a HTTP POST method with the following body:

 <?xml version="1.0" encoding="utf-8"?>
 <PPSPPeerProtocol version="#.#">
 <Method>GET_CHUNK</Method>
 <PeerID>***</PeerID>
 <SwarmID>***</SwarmID>
 <TransactionID>###</TransactionID>
 </PPSPPeerProtocol>

 The sender MUST properly for the HTTP request for a POST method
 including the URI path (the Resource) of the chunk. The sender MUST
 also properly form the XML body, MUST set the Method string to
 GET_CHUNK, MUST set the PeerID to the PeerID of the peer, MUST set
 the SwarmID to the joined swarm identifier and randomly generate and
 set the TransactionID value.

Gu, et al. Expires May 3, 2012 [Page 27]

Internet-Draft Peer Protocol Oct 2011

 +--------------+ +-------------+
 | Peer (Leech) | | Peer (Seed) |
 +--------------+ +-------------+
 | POST /path/name/123456789-L0-00000.h264 HTTP/1.1 |
 | Host: example.net |
 |-->|
 | <?xml version="1.0" encoding="utf-8"?> |
 | <PPSPPeerProtocol version="#.#"> |
 | <Method>GET_CHUNK</Method> |
 | <PeerID>***</PeerID> |
 | <SwarmID>***</SwarmID> |
 | <TransactionID>###</TransactionID> |
 | </PPSPPeerProtocol> |
 | |
 | |
 | HTTP/1.1 200 OK |
 | Content-Type: text/xml |
 | Transfer-Encoding: chunked |
 |<--|
 | |
 | 143 |
 | <?xml version="1.0" encoding="utf-8"?> |
 | <PPSPPeerProtocol version="#.#"> |
 | <Response>OK</Response> |
 | <TransactionID>###</TransactionID> |
 | </PPSPPeerProtocol> |
 | |
 | ### |
 | (### bytes of the video chunk) |
 | 0 |

 Figure B 1: Example of GET_CHUNK message sequence (simplified)

 When receiving the GET_CHUNK message, and if the message is well
 formed and accepted, the peer will search for the requested data and
 will respond to the requesting peer with an HTTP 200 OK message
 response with a PPSP XML payload SUCCESSFUL.

 The Response message is an HTTP 200 OK message. If The Data
 Transport Protocol negotiated is also HTTP/XML, the body of the
 response to GET_CHUNK can be immediately followed by the chunk data
 transfer, as shown in Figure B 1.

 The response MUST have the same TransactionID as the request.

Gu, et al. Expires May 3, 2012 [Page 28]

Internet-Draft Peer Protocol Oct 2011

B.7. PEER_STATUS Message

 The PEER_STATUS message is sent from a serving peer to a client peer
 to indicate its participation status. The information conveyed may
 include information related to chunk trading like "choke" (to inform
 the other peer of the intention to stop sending data to it) and
 "unchoke" (to inform the other peer of the intention to start/re-
 start sending data to it).

 The Request message uses a HTTP POST method with the following body:

 <?xml version="1.0" encoding="utf-8"?>
 <PPSPPeerProtocol version="#.#">
 <Method>PEER_STATUS</Method>
 <PeerID>***</PeerID>
 <SwarmID>***</SwarmID>
 <TransactionID>###</TransactionID>
 <Status>(choke/unchoke)</Status>
 </PPSPPeerProtocol>

 The sender MUST properly form the XML body, MUST set the Method
 string to PEER_STATUS, MUST set the PeerID to the PeerID of the peer,
 MUST set the SwarmID to the joined swarm identifier and randomly
 generate and set the TransactionID value.

 When receiving the PEER_STATUS message, and if the message is well
 formed and accepted, the peer will respond to the requesting peer
 with an HTTP 200 OK message response with a PPSP XML payload
 SUCCESSFUL.

 If the status signal received is "choke" the peer will stop
 requesting chunks from the other peer until receiving an "unchoke"
 status signal.

 The only element currently defined in the request message is
 <Status>, assuming values of "choke" and "unchoke", but, in future,
 other values may be added.

 The Response message is an HTTP 200 OK message with the following
 body.

 <?xml version="1.0" encoding="utf-8"?>
 <PPSPPeerProtocol version="#.#">
 <Response>OK</Response>
 <TransactionID>###</TransactionID>
 </PPSPPeerProtocol>

 The response MUST have the same TransactionID value as the request.

Gu, et al. Expires May 3, 2012 [Page 29]

Internet-Draft Peer Protocol Oct 2011

 The only element currently defined in the response message is the
 <TransactionID>, but, in future, other elements may be added, for
 example, containing statistical data or other primitives for chunk
 trading negotiation.

B.8. TRANSPORT_NEGOTIATION Message

 To Do: Define message format, mandatory transport protocol and some
 optional transport protocols.

Authors’ Addresses

 Yingjie Gu
 Huawei
 No.101 Software Avenue
 Nanjing, Jiangsu Province 210012
 P.R.China

 Phone: +86-25-56622638
 Email: guyingjie@huawei.com

 Jinwei Xia
 Huawei
 Software No.101
 Nanjing, Yuhuatai District 210012
 China

 Phone: +86-025-86622310
 Email: xiajinwei@huawei.com

 Rui Santos Cruz
 IST/INESC-ID/INOV

 Phone: +351.939060939
 Email: rui.cruz@ieee.org

Gu, et al. Expires May 3, 2012 [Page 30]

Internet-Draft Peer Protocol Oct 2011

 Mario Serafim Nunes
 IST/INESC-ID/INOV
 Rua Alves Redol, n.9
 1000-029 LISBOA
 Portugal

 Phone: +351.213100256
 Email: mario.nunes@inov.pt

 David A. Bryan
 Polycom
 San Jose, CA, USA,
 USA

 Phone:
 Email: dbryan@ethernot.org

 Joao P. Taveira
 ID/INOV

 Email: joao.silva@inov.pt

Gu, et al. Expires May 3, 2012 [Page 31]

