
PPSP V. Grishchenko
Internet-Draft A. Bakker
Intended status: Informational TU Delft
Expires: April 28, 2012 October 26, 2011

 The Generic Multiparty Transport Protocol (swift)
 <draft-grishchenko-ppsp-swift-03.txt>

Abstract

 The Generic Multiparty Protocol (swift) is a peer-to-peer based
 transport protocol for content dissemination. It can be used for
 streaming on-demand and live video content, as well as conventional
 downloading. In swift, the clients consuming the content participate
 in the dissemination by forwarding the content to other clients via a
 mesh-like structure. It is a generic protocol which can run directly
 on top of UDP, TCP, HTTP or as a RTP profile. Features of swift are
 short time-till-playback and extensibility. Hence, it can use
 different mechanisms to prevent freeriding, and work with different
 peer discovery schemes (centralized trackers or Distributed Hash
 Tables). Depending on the underlying transport protocol, swift can
 also use different congestion control algorithms, such as LEDBAT, and
 offer transparent NAT traversal. Finally, swift maintains only a
 small amount of state per peer and detects malicious modification of
 content. This documents describes swift and how it satisfies the
 requirements for the IETF Peer-to-Peer Streaming Protocol (PPSP)
 Working Group’s peer protocol.

Status of this memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at

Grishchenko and Bakker Expires April 28, 2012 [Page 1]

Internet-Draft swift October 26, 2011

 http://www.ietf.org/shadow.html.

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Purpose . 3
 1.2. Conventions Used in This Document 4
 1.3. Terminology . 5
 2. Overall Operation . 6
 2.1. Joining a Swarm . 6
 2.2. Exchanging Chunks . 6
 2.3. Leaving a Swarm . 7
 3. Messages . 7
 3.1. HANDSHAKE . 8
 3.3. HAVE . 8
 3.3.1. Bin Numbers . 8
 3.3.2. HAVE Message . 9
 3.4. ACK . 9
 3.5. DATA and HASH . 10
 3.5.1. Merkle Hash Tree 10
 3.5.2. Content Integrity Verification 11
 3.5.3. The Atomic Datagram Principle 11
 3.5.4. DATA and HASH Messages 12
 3.6. HINT . 13
 3.7. Peer Address Exchange and NAT Hole Punching 13
 3.8. KEEPALIVE . 14
 3.9. VERSION . 14
 3.10. Conveying Peer Capabilities 14
 3.11. Directory Lists . 14
 4. Automatic Detection of Content Size 14
 4.1. Peak Hashes . 15
 4.2. Procedure . 16
 5. Live streaming . 17
 6. Transport Protocols and Encapsulation 17

Grishchenko and Bakker Expires April 28, 2012 [Page 2]

Internet-Draft swift October 26, 2011

 6.1. UDP . 17
 6.1.1. Chunk Size . 17
 6.1.2. Datagrams and Messages 18
 6.1.3. Channels . 18
 6.1.4. HANDSHAKE and VERSION 19
 6.1.5. HAVE . 20
 6.1.6. ACK . 20
 6.1.7. HASH . 20
 6.1.8. DATA . 20
 6.1.9. KEEPALIVE . 20
 6.1.10. Flow and Congestion Control 21
 6.2. TCP . 21
 6.3. RTP Profile for PPSP 21
 6.3.1. Design . 22
 6.3.2. PPSP Requirements 24
 6.4. HTTP (as PPSP) . 27
 6.4.1. Design . 27
 6.4.2. PPSP Requirements 29
 7. Security Considerations . 32
 8. Extensibility . 32
 8.1. 32 bit vs 64 bit . 32
 8.2. IPv6 . 32
 8.3. Congestion Control Algorithms 32
 8.4. Piece Picking Algorithms 33
 8.5. Reciprocity Algorithms 33
 8.6. Different crypto/hashing schemes 33
 9. Rationale . 33
 9.1. Design Goals . 34
 9.2. Not TCP . 35
 9.3. Generic Acknowledgments 36
 Acknowledgements . 37
 References . 37
 Authors’ addresses . 39

1. Introduction

1.1. Purpose

 This document describes the Generic Multiparty Protocol (swift),
 designed from the ground up for the task of disseminating the same
 content to a group of interested parties. Swift supports streaming
 on-demand and live video content, as well as conventional
 downloading, thus covering today’s three major use cases for content
 distribution. To fulfil this task, clients consuming the content are
 put on equal footing with the servers initially providing the content

Grishchenko and Bakker Expires April 28, 2012 [Page 3]

Internet-Draft swift October 26, 2011

 to create a peer-to-peer system where everyone can provide data. Each
 peer connects to a random set of other peers resulting in a mesh-like
 structure.

 Swift uses a simple method of naming content based on self-
 certification. In particular, content in swift is identified by a
 single cryptographic hash that is the root hash in a Merkle hash tree
 calculated recursively from the content [ABMRKL]. This self-
 certifying hash tree allows every peer to directly detect when a
 malicious peer tries to distribute fake content. It also ensures only
 a small amount of information is needed to start a download (just the
 root hash and some peer addresses).

 Swift uses a novel method of addressing chunks of content called "bin
 numbers". Bin numbers allow the addressing of a binary interval of
 data using a single integer. This reduces the amount of state that
 needs to be recorded per peer and the space needed to denote
 intervals on the wire, making the protocol light-weight. In general,
 this numbering system allows swift to work with simpler data
 structures, e.g. to use arrays instead of binary trees, thus reducing
 complexity.

 Swift is a generic protocol which can run directly on top of UDP,
 TCP, HTTP, or as a layer below RTP, similar to SRTP [RFC3711]. As
 such, swift defines a common set of messages that make up the
 protocol, which can have different representations on the wire
 depending on the lower-level protocol used. When the lower-level
 transport is UDP, swift can also use different congestion control
 algorithms and facilitate NAT traversal.

 In addition, swift is extensible in the mechanisms it uses to promote
 client contribution and prevent freeriding, that is, how to deal with
 peers that only download content but never upload to others.
 Furthermore, it can work with different peer discovery schemes, such
 as centralized trackers or fast Distributed Hash Tables [JIM11].

 This documents describes not only the swift protocol but also how it
 satisfies the requirements for the IETF Peer-to-Peer Streaming
 Protocol (PPSP) Working Group’s peer protocol [PPSPCHART,I-D.ietf-
 ppsp-reqs]. A reference implementation of swift over UDP is available
 [SWIFTIMPL].

1.2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Grishchenko and Bakker Expires April 28, 2012 [Page 4]

Internet-Draft swift October 26, 2011

1.3. Terminology

 message
 The basic unit of swift communication. A message will have
 different representations on the wire depending on the transport
 protocol used. Messages are typically multiplexed into a
 datagram for transmission.

 datagram
 A sequence of messages that is offered as a unit to the
 underlying transport protocol (UDP, etc.). The datagram is
 swift’s Protocol Data Unit (PDU).

 content
 Either a live transmission, a pre-recorded multimedia asset, or
 a file.

 bin
 A number denoting a specific binary interval of the content
 (i.e., one or more consecutive chunks).

 chunk
 The basic unit in which the content is divided. E.g. a block of
 N kilobyte.

 hash
 The result of applying a cryptographic hash function, more
 specifically a modification detection code (MDC) [HAC01], such
 as SHA1 [FIPS180-2], to a piece of data.

 root hash
 The root in a Merkle hash tree calculated recursively from the
 content.

 swarm
 A group of peers participating in the distribution of the same
 content.

 swarm ID
 Unique identifier for a swarm of peers, in swift the root hash
 of the content (video-on-demand,download) or a public key (live
 streaming).

 tracker
 An entity that records the addresses of peers participating in a
 swarm, usually for a set of swarms, and makes this membership
 information available to other peers on request.

Grishchenko and Bakker Expires April 28, 2012 [Page 5]

Internet-Draft swift October 26, 2011

 choking
 When a peer A is choking peer B it means that A is currently not
 willing to accept requests for content from B.

2. Overall Operation

 The basic unit of communication in swift is the message. Multiple
 messages are multiplexed into a single datagram for transmission. A
 datagram (and hence the messages it contains) will have different
 representations on the wire depending on the transport protocol used
 (see Sec. 6).

2.1. Joining a Swarm

 Consider a peer A that wants to download a certain content asset. To
 commence a swift download, peer A must have the swarm ID of the
 content and a list of one or more tracker contact points (e.g.
 host+port). The list of trackers is optional in the presence of a
 decentralized tracking mechanism. The swarm ID consists of the swift
 root hash of the content (video-on-demand, downloading) or a public
 key (live streaming).

 Peer A now registers with the tracker following e.g. the PPSP tracker
 protocol [I-D.ietf.ppsp-reqs] and receives the IP address and port of
 peers already in the swarm, say B, C, and D. Peer A now sends a
 datagram containing a HANDSHAKE message to B, C, and D. This message
 serves as an end-to-end check that the peers are actually in the
 correct swarm, and contains the root hash of the swarm. Peer B and C
 respond with datagrams containing a HANDSHAKE message and one or more
 HAVE messages. A HAVE message conveys (part of) the chunk
 availability of a peer and thus contains a bin number that denotes
 what chunks of the content peer B, resp. C have. Peer D sends a
 datagram with just a HANDSHAKE and omits HAVE messages as a way of
 choking A.

2.2. Exchanging Chunks

 In response to B and C, A sends new datagrams to B and C containing
 HINT messages. A HINT or request message indicates the chunks that a
 peer wants to download, and contains a bin number. The HINT messages
 to B and C refer to disjunct sets of chunks. B and C respond with
 datagrams containing HASH, HAVE and DATA messages. The HASH messages
 contains all cryptographic hashes that peer A needs to verify the
 integrity of the content chunk sent in the DATA message, using the
 content’s root hash as trusted anchor, see Sec. 3.5. Using these
 hashes peer A verifies that the chunks received from B and C are

Grishchenko and Bakker Expires April 28, 2012 [Page 6]

Internet-Draft swift October 26, 2011

 correct. It also updates the chunk availability of B and C using the
 information in the received HAVE messages.

 After processing, A sends a datagram containing HAVE messages for the
 chunks it just received to all its peers. In the datagram to B and C
 it includes an ACK message acknowledging the receipt of the chunks,
 and adds HINT messages for new chunks. ACK messages are not used when
 a reliable transport protocol is used. When e.g. C finds that A
 obtained a chunk (from B) that C did not yet have, C’s next datagram
 includes a HINT for that chunk.

 Peer D does not send HAVE messages to A when it downloads chunks from
 other peers, until D decides to unchoke peer A. In the case, it sends
 a datagram with HAVE messages to inform A of its current
 availability. If B or C decide to choke A they stop sending HAVE and
 DATA messages and A should then rerequest from other peers. They may
 continue to send HINT messages, or periodic KEEPALIVE messages such
 that A keeps sending them HAVE messages.

 Once peer A has received all content (video-on-demand use case) it
 stops sending messages to all other peers that have all content
 (a.k.a. seeders). Peer A MAY also contact the tracker or another
 source again to obtain more peer addresses.

2.3. Leaving a Swarm

 Depending on the transport protocol used, peers should either use
 explicit leave messages or implicitly leave a swarm by stopping to
 respond to messages. Peers that learn about the departure should
 remove these peers from the current peer list. The implicit-leave
 mechanism works for both graceful and ungraceful leaves (i.e., peer
 crashes or disconnects). When leaving gracefully, a peer should
 deregister from the tracker following the (PPSP) tracker protocol.

3. Messages

 In general, no error codes or responses are used in the protocol;
 absence of any response indicates an error. Invalid messages are
 discarded.

 For the sake of simplicity, one swarm of peers always deals with one
 content asset (e.g. file) only. Retrieval of large collections of
 files is done by retrieving a directory list file and then
 recursively retrieving files, which might also turn to be directory
 lists, as described in Sec. 3.11.

Grishchenko and Bakker Expires April 28, 2012 [Page 7]

Internet-Draft swift October 26, 2011

3.1. HANDSHAKE

 As an end-to-end check that the peers are actually in the correct
 swarm, the initiating peer and the addressed peer SHOULD send a
 HANDSHAKE message in the first datagrams they exchange. The only
 payload of the HANDSHAKE message is the root hash of the content.

 After the handshakes are exchanged, the initiator knows that the peer
 really responds. Hence, the second datagram the initiator sends MAY
 already contain some heavy payload. To minimize the number of
 initialization roundtrips, implementations MAY dispense with the
 HANDSHAKE message. To the same end, the first two datagrams exchanged
 MAY also contain some minor payload, e.g. HAVE messages to indicate
 the current progress of a peer or a HINT (see Sec. 3.6).

3.3. HAVE

 The HAVE message is used to convey which chunks a peers has
 available, expressed in a new content addressing scheme called "bin
 numbers".

3.3.1. Bin Numbers

 Swift employs a generic content addressing scheme based on binary
 intervals ("bins" in short). The smallest interval is a chunk (e.g. a
 N kilobyte block), the top interval is the complete 2**63 range. A
 novel addition to the classical scheme are "bin numbers", a scheme of
 numbering binary intervals which lays them out into a vector nicely.
 Consider an chunk interval of width W. To derive the bin numbers of
 the complete interval and the subintervals, a minimal balanced binary
 tree is built that is at least W chunks wide at the base. The leaves
 from left-to-right correspond to the chunks 0..W in the interval, and
 have bin number I*2 where I is the index of the chunk (counting
 beyond W-1 to balance the tree). The higher level nodes P in the tree
 have bin number

 binP = (binL + binR) / 2

 where binL is the bin of node P’s left-hand child and binR is the bin
 of node P’s right-hand child. Given that each node in the tree
 represents a subinterval of the original interval, each such
 subinterval now is addressable by a bin number, a single integer. The
 bin number tree of a interval of width W=8 looks like this:

Grishchenko and Bakker Expires April 28, 2012 [Page 8]

Internet-Draft swift October 26, 2011

 7
 / \
 / \
 / \
 / \
 3 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9 13
 / \ / \ / \ / \
 0 2 4 6 8 10 12 14

 So bin 7 represents the complete interval, 3 represents the interval
 of chunk 0..3 and 1 represents the interval of chunks 0 and 1. The
 special numbers 0xFFFFFFFF (32-bit) or 0xFFFFFFFFFFFFFFFF (64-bit)
 stands for an empty interval, and 0x7FFF...FFF stands for
 "everything".

3.3.2. HAVE Message

 When a receiving peer has successfully checked the integrity of a
 chunk or interval of chunks it MUST send a HAVE message to all peers
 it wants to interact with. The latter allows the HAVE message to be
 used as a method of choking. The HAVE message MUST contain the bin
 number of the biggest complete interval of all chunks the receiver
 has received and checked so far that fully includes the interval of
 chunks just received. So the bin number MUST denote at least the
 interval received, but the receiver is supposed to aggregate and
 acknowledge bigger bins, when possible.

 As a result, every single chunk is acknowledged a logarithmic number
 of times. That provides some necessary redundancy of acknowledgments
 and sufficiently compensates for unreliable transport protocols.

 To record which chunks a peer has in the state that an implementation
 keeps for each peer, an implementation MAY use the "binmap" data
 structure, which is a hybrid of a bitmap and a binary tree, discussed
 in detail in [BINMAP].

3.4. ACK

 When swift is run over an unreliable transport protocol, an
 implementation MAY choose to use ACK messages to acknowledge received
 data. When a receiving peer has successfully checked the integrity of
 a chunk or interval of chunks C it MUST send a ACK message containing

Grishchenko and Bakker Expires April 28, 2012 [Page 9]

Internet-Draft swift October 26, 2011

 the bin number of its biggest, complete, interval covering C to the
 sending peer (see HAVE). To facilitate delay-based congestion
 control, an ACK message contains a timestamp.

3.5. DATA and HASH

 The DATA message is used to transfer chunks of content. The
 associated HASH message carries cryptographic hashes that are
 necessary for a receiver to check the the integrity of the chunk.
 Swift’s content integrity protection is based on a Merkle hash tree
 and works as follows.

3.5.1. Merkle Hash Tree

 Swift uses a method of naming content based on self-certification. In
 particular, content in swift is identified by a single cryptographic
 hash that is the root hash in a Merkle hash tree calculated
 recursively from the content [ABMRKL]. This self-certifying hash tree
 allows every peer to directly detect when a malicious peer tries to
 distribute fake content. It also ensures only a small the amount of
 information is needed to start a download (the root hash and some
 peer addresses). For live streaming public keys and dynamic trees are
 used, see below.

 The Merkle hash tree of a content asset that is divided into N chunks
 is constructed as follows. Note the construction does not assume
 chunks of content to be fixed size. Given a cryptographic hash
 function, more specifically a modification detection code (MDC)
 [HAC01], such as SHA1, the hashes of all the chunks of the content
 are calculated. Next, a binary tree of sufficient height is created.
 Sufficient height means that the lowest level in the tree has enough
 nodes to hold all chunk hashes in the set, as before, see HAVE
 message. The figure below shows the tree for a content asset
 consisting of 7 chunks. As before with the content addressing scheme,
 the leaves of the tree correspond to a chunk and in this case are
 assigned the hash of that chunk, starting at the left-most leaf. As
 the base of the tree may be wider than the number of chunks, any
 remaining leaves in the tree are assigned a empty hash value of all
 zeros. Finally, the hash values of the higher levels in the tree are
 calculated, by concatenating the hash values of the two children
 (again left to right) and computing the hash of that aggregate. This
 process ends in a hash value for the root node, which is called the
 "root hash". Note the root hash only depends on the content and any
 modification of the content will result in a different root hash.

Grishchenko and Bakker Expires April 28, 2012 [Page 10]

Internet-Draft swift October 26, 2011

 7 = root hash
 / \
 / \
 / \
 / \
 3* 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9 13* = uncle hash
 / \ / \ / \ / \
 0 2 4 6 8 10* 12 14

 C0 C1 C2 C3 C4 C5 C6 E
 =chunk index ^^ = empty hash

3.5.2. Content Integrity Verification

 Assuming a peer receives the root hash of the content it wants to
 download from a trusted source, it can can check the integrity of any
 chunk of that content it receives as follows. It first calculates the
 hash of the chunk it received, for example chunk C4 in the previous
 figure. Along with this chunk it MUST receive the hashes required to
 check the integrity of that chunk. In principle, these are the hash
 of the chunk’s sibling (C5) and that of its "uncles". A chunk’s
 uncles are the sibling Y of its parent X, and the uncle of that Y,
 recursively until the root is reached. For chunk C4 its uncles are
 bins 13 and 3, marked with * in the figure. Using this information
 the peer recalculates the root hash of the tree, and compares it to
 the root hash it received from the trusted source. If they match the
 chunk of content has been positively verified to be the requested
 part of the content. Otherwise, the sending peer either sent the
 wrong content or the wrong sibling or uncle hashes. For simplicity,
 the set of sibling and uncles hashes is collectively referred to as
 the "uncle hashes".

 In the case of live streaming the tree of chunks grows dynamically
 and content is identified with a public key instead of a root hash,
 as the root hash is undefined or, more precisely, transient, as long
 as new data is generated by the live source. Live streaming is
 described in more detail below, but content verification works the
 same for both live and predefined content.

3.5.3. The Atomic Datagram Principle

 As explained above, a datagram consists of a sequence of messages.
 Ideally, every datagram sent must be independent of other datagrams,

Grishchenko and Bakker Expires April 28, 2012 [Page 11]

Internet-Draft swift October 26, 2011

 so each datagram SHOULD be processed separately and a loss of one
 datagram MUST NOT disrupt the flow. Thus, as a datagram carries zero
 or more messages, neither messages nor message interdependencies
 should span over multiple datagrams.

 This principle implies that as any chunk is verified using its uncle
 hashes the necessary hashes MUST be put into the same datagram as the
 chunk’s data (Sec. 3.5.4). As a general rule, if some additional
 data is still missing to process a message within a datagram, the
 message SHOULD be dropped.

 The hashes necessary to verify a chunk are in principle its sibling’s
 hash and all its uncle hashes, but the set of hashes to sent can be
 optimized. Before sending a packet of data to the receiver, the
 sender inspects the receiver’s previous acknowledgments (HAVE or ACK)
 to derive which hashes the receiver already has for sure. Suppose,
 the receiver had acknowledged bin 1 (first two chunks of the file),
 then it must already have uncle hashes 5, 11 and so on. That is
 because those hashes are necessary to check packets of bin 1 against
 the root hash. Then, hashes 3, 7 and so on must be also known as they
 are calculated in the process of checking the uncle hash chain.
 Hence, to send bin 12 (i.e. the 7th chunk of content), the sender
 needs to include just the hashes for bins 14 and 9, which let the
 data be checked against hash 11 which is already known to the
 receiver.

 The sender MAY optimistically skip hashes which were sent out in
 previous, still unacknowledged datagrams. It is an optimization
 tradeoff between redundant hash transmission and possibility of
 collateral data loss in the case some necessary hashes were lost in
 the network so some delivered data cannot be verified and thus has to
 be dropped. In either case, the receiver builds the Merkle tree on-
 demand, incrementally, starting from the root hash, and uses it for
 data validation.

 In short, the sender MUST put into the datagram the missing hashes
 necessary for the receiver to verify the chunk.

3.5.4. DATA and HASH Messages

 Concretely, a peer that wants to send a chunk of content creates a
 datagram that MUST consist of one or more HASH messages and a DATA
 message. The datagram MUST contain a HASH message for each hash the
 receiver misses for integrity checking. A HASH message MUST contain
 the bin number and hash data for each of those hashes. The DATA
 message MUST contain the bin number of the chunk and chunk itself. A
 peer MAY send the required messages for multiple chunks in the same
 datagram.

Grishchenko and Bakker Expires April 28, 2012 [Page 12]

Internet-Draft swift October 26, 2011

3.6. HINT

 While bulk download protocols normally do explicit requests for
 certain ranges of data (i.e., use a pull model, for example,
 BitTorrent [BITTORRENT]), live streaming protocols quite often use a
 request-less push model to save round trips. Swift supports both
 models of operation.

 A peer MUST send a HINT message containing the bin of the chunk
 interval it wants to download. A peer receiving a HINT message MAY
 send out requested pieces. When it receives multiple HINTs (either in
 one datagram or in multiple), the peer SHOULD process the HINTs
 sequentially. When live streaming, it also may send some other chunks
 in case it runs out of requests or for some other reason. In that
 case the only purpose of HINT messages is to coordinate peers and to
 avoid unnecessary data retransmission, hence the name.

3.7. Peer Address Exchange and NAT Hole Punching

 Peer address exchange messages (or PEX messages for short) are common
 for many peer-to-peer protocols. By exchanging peer addresses in
 gossip fashion, peers relieve central coordinating entities (the
 trackers) from unnecessary work. swift optionally features two types
 of PEX messages: PEX_REQ and PEX_ADD. A peer that wants to retrieve
 some peer addresses MUST send a PEX_REQ message. The receiving peer
 MAY respond with a PEX_ADD message containing the addresses of
 several peers. The addresses MUST be of peers it has recently
 exchanged messages with to guarantee liveliness.

 To unify peer exchange and NAT hole punching functionality, the
 sending pattern of PEX messages is restricted. As the swift handshake
 is able to do simple NAT hole punching [SNP] transparently, PEX
 messages must be emitted in the way to facilitate that. Namely, once
 peer A introduces peer B to peer C by sending a PEX_ADD message to C,
 it SHOULD also send a message to B introducing C. The messages SHOULD
 be within 2 seconds from each other, but MAY not be, simultaneous,
 instead leaving a gap of twice the "typical" RTT, i.e. 300-600ms. The
 peers are supposed to initiate handshakes to each other thus forming
 a simple NAT hole punching pattern where the introducing peer
 effectively acts as a STUN server [RFC5389]. Still, peers MAY ignore
 PEX messages if uninterested in obtaining new peers or because of
 security considerations (rate limiting) or any other reason.

 The PEX messages can be used to construct a dedicated tracker peer.

Grishchenko and Bakker Expires April 28, 2012 [Page 13]

Internet-Draft swift October 26, 2011

3.8. KEEPALIVE

 A peer MUST send a datagram containing a KEEPALIVE message
 periodically to each peer it wants to interact with in the future but
 has no other messages to send them at present.

3.9. VERSION
 Peers MUST convey which version of the swift protocol they support
 using a VERSION message. This message MUST be included in the initial
 (handshake) datagrams and MUST indicate which version of the swift
 protocol the sending peer supports.

3.10. Conveying Peer Capabilities
 Peers may support just a subset of the swift messages. For example,
 peers running over TCP may not accept ACK messages, or peers used
 with a centralized tracking infrastructure may not accept PEX
 messages. For these reasons, peers SHOULD signal which subset of the
 swift messages they support by means of the MSGTYPE_RCVD message.
 This message SHOULD be included in the initial (handshake) datagrams
 and MUST indicate which swift protocol messages the sending peer
 supports.

3.11. Directory Lists

 Directory list files MUST start with magic bytes ".\n..\n". The rest
 of the file is a newline-separated list of hashes and file names for
 the content of the directory. An example:

 .
 ..
 1234567890ABCDEF1234567890ABCDEF12345678 readme.txt
 01234567890ABCDEF1234567890ABCDEF1234567 big_file.dat

4. Automatic Detection of Content Size

 In swift, the root hash of a static content asset, such as a video
 file, along with some peer addresses is sufficient to start a
 download. In addition, swift can reliably and automatically derive
 the size of such content from information received from the network
 when fixed sized chunks are used. As a result, it is not necessary to
 include the size of the content asset as the metadata of the content,
 in addition to the root hash. Implementations of swift MAY use this
 automatic detection feature.

Grishchenko and Bakker Expires April 28, 2012 [Page 14]

Internet-Draft swift October 26, 2011

4.1. Peak Hashes

 The ability for a newcomer peer to detect the size of the content
 depends heavily on the concept of peak hashes. Peak hashes, in
 general, enable two cornerstone features of swift: reliable file size
 detection and download/live streaming unification (see Sec. 5). The
 concept of peak hashes depends on the concepts of filled and
 incomplete bins. Recall that when constructing the binary trees for
 content verification and addressing the base of the tree may have
 more leaves than the number of chunks in the content. In the Merkle
 hash tree these leaves were assigned empty all-zero hashes to be able
 to calculate the higher level hashes. A filled bin is now defined as
 a bin number that addresses an interval of leaves that consists only
 of hashes of content chunks, not empty hashes. Reversely, an
 incomplete (not filled) bin addresses an interval that contains also
 empty hashes, typically an interval that extends past the end of the
 file. In the following figure bins 7, 11, 13 and 14 are incomplete
 the rest is filled.

 Formally, a peak hash is a hash in the Merkle tree defined over a
 filled bin, whose sibling is defined over an incomplete bin.
 Practically, suppose a file is 7162 bytes long and a chunk is 1
 kilobyte. That file fits into 7 chunks, the tail chunk being 1018
 bytes long. The Merkle tree for that file looks as follows. Following
 the definition the peak hashes of this file are in bins 3, 9 and 12,
 denoted with a *. E denotes an empty hash.

 7
 / \
 / \
 / \
 / \
 3* 11
 / \ / \
 / \ / \
 / \ / \
 1 5 9* 13
 / \ / \ / \ / \
 0 2 4 6 8 10 12* 14

 C0 C1 C2 C3 C4 C5 C6 E
 = 1018 bytes

 Peak hashes can be explained by the binary representation of the
 number of chunks the file occupies. The binary representation for 7
 is 111. Every "1" in binary representation of the file’s packet
 length corresponds to a peak hash. For this particular file there are
 indeed three peaks, bin numbers 3, 9, 12. The number of peak hashes

Grishchenko and Bakker Expires April 28, 2012 [Page 15]

Internet-Draft swift October 26, 2011

 for a file is therefore also at most logarithmic with its size.

 A peer knowing which bins contain the peak hashes for the file can
 therefore calculate the number of chunks it consists of, and thus get
 an estimate of the file size (given all chunks but the last are fixed
 size). Which bins are the peaks can be securely communicated from
 one (untrusted) peer A to another B by letting A send the peak hashes
 and their bin numbers to B. It can be shown that the root hash that B
 obtained from a trusted source is sufficient to verify that these are
 indeed the right peak hashes, as follows.

 Lemma: Peak hashes can be checked against the root hash.

 Proof: (a) Any peak hash is always the left sibling. Otherwise, be it
 the right sibling, its left neighbor/sibling must also be defined
 over a filled bin, because of the way chunks are laid out in the
 leaves, contradiction. (b) For the rightmost peak hash, its right
 sibling is zero. (c) For any peak hash, its right sibling might be
 calculated using peak hashes to the left and zeros for empty bins.
 (d) Once the right sibling of the leftmost peak hash is calculated,
 its parent might be calculated. (e) Once that parent is calculated,
 we might trivially get to the root hash by concatenating the hash
 with zeros and hashing it repeatedly.

 Informally, the Lemma might be expressed as follows: peak hashes
 cover all data, so the remaining hashes are either trivial (zeros) or
 might be calculated from peak hashes and zero hashes.

 Finally, once peer B has obtained the number of chunks in the content
 it can determine the exact file size as follows. Given that all
 chunks except the last are fixed size B just needs to know the size
 of the last chunk. Knowing the number of chunks B can calculate the
 bin number of the last chunk and download it. As always B verifies
 the integrity of this chunk against the trusted root hash. As there
 is only one chunk of data that leads to a successful verification the
 size of this chunk must be correct. B can then determine the exact
 file size as

 (number of chunks -1) * fixed chunk size + size of last chunk

4.2. Procedure

 A swift implementation that wants to use automatic size detection
 MUST operate as follows. When a peer B sends a DATA message for the
 first time to a peer A, B MUST include all the peak hashes for the
 content in the same datagram, unless A has already signalled earlier
 in the exchange that it knows the peak hashes by having acknowledged

Grishchenko and Bakker Expires April 28, 2012 [Page 16]

Internet-Draft swift October 26, 2011

 any bin, even the empty one. The receiver A MUST check the peak
 hashes against the root hash to determine the approximate content
 size. To obtain the definite content size peer A MUST download the
 last chunk of the content from any peer that offers it.

5. Live streaming

 In the case of live streaming a transfer is bootstrapped with a
 public key instead of a root hash, as the root hash is undefined or,
 more precisely, transient, as long as new data is being generated by
 the live source. Live/download unification is achieved by sending
 signed peak hashes on-demand, ahead of the actual data. As before,
 the sender might use acknowledgements to derive which content range
 the receiver has peak hashes for and to prepend the data hashes with
 the necessary (signed) peak hashes. Except for the fact that the set
 of peak hashes changes with time, other parts of the algorithm work
 as described in Sec. 3.

 As with static content assets in the previous section, in live
 streaming content length is not known on advance, but derived
 on-the-go from the peak hashes. Suppose, our 7 KB stream extended to
 another kilobyte. Thus, now hash 7 becomes the only peak hash, eating
 hashes 3, 9 and 12. So, the source sends out a SIGNED_HASH message to
 announce the fact.

 The number of cryptographic operations will be limited. For example,
 consider a 25 frame/second video transmitted over UDP. When each
 frame is transmitted in its own chunk, only 25 signature verification
 operations per second are required at the receiver for bitrates up to
 ˜12.8 megabit/second. For higher bitrates multiple UDP packets per
 frame are needed and the number of verifications doubles.

6. Transport Protocols and Encapsulation

6.1. UDP

6.1.1. Chunk Size

 Currently, swift-over-UDP is the preferred deployment option.
 Effectively, UDP allows the use of IP with minimal overhead and it

Grishchenko and Bakker Expires April 28, 2012 [Page 17]

Internet-Draft swift October 26, 2011

 also allows userspace implementations. The default is to use chunks
 of 1 kilobyte such that a datagram fits in an Ethernet-sized IP
 packet. The bin numbering allows to use swift over Jumbo
 frames/datagrams. Both DATA and HAVE/ACK messages may use e.g. 8
 kilobyte packets instead of the standard 1 KiB. The hashing scheme
 stays the same. Using swift with 512 or 256-byte packets is
 theoretically possible with 64-bit byte-precise bin numbers, but IP
 fragmentation might be a better method to achieve the same result.

6.1.2. Datagrams and Messages

 When using UDP, the abstract datagram described above corresponds
 directly to a UDP datagram. Each message within a datagram has a
 fixed length, which depends on the type of the message. The first
 byte of a message denotes its type. The currently defined types are:

 HANDSHAKE = 0x00
 DATA = 0x01
 ACK = 0x02
 HAVE = 0x03
 HASH = 0x04
 PEX_ADD = 0x05
 PEX_REQ = 0x06
 SIGNED_HASH = 0x07
 HINT = 0x08
 MSGTYPE_RCVD = 0x09
 VERSION = 0x10

 Furthermore, integers are serialized in the network (big-endian) byte
 order. So consider the example of an ACK message (Sec 3.4). It has
 message type of 0x02 and a payload of a bin number, a four-byte
 integer (say, 1); hence, its on the wire representation for UDP can
 be written in hex as: "02 00000001". This hex-like two character-per-
 byte notation is used to represent message formats in the rest of
 this section.

6.1.3. Channels

 As it is increasingly complex for peers to enable UDP communication
 between each other due to NATs and firewalls, swift-over-UDP uses a
 multiplexing scheme, called "channels", to allow multiple swarms to
 use the same UDP port. Channels loosely correspond to TCP connections
 and each channel belongs to a single swarm. When channels are used,
 each datagram starts with four bytes corresponding to the receiving
 channel number.

Grishchenko and Bakker Expires April 28, 2012 [Page 18]

Internet-Draft swift October 26, 2011

6.1.4. HANDSHAKE and VERSION

 A channel is established with a handshake. To start a handshake, the
 initiating peer needs to know:

 (1) the IP address of a peer
 (2) peer’s UDP port and
 (3) the root hash of the content (see Sec. 3.5.1).

 To do the handshake the initiating peer sends a datagram that MUST
 start with an all 0-zeros channel number followed by a VERSION
 message, then a HASH message whose payload is the root hash, and a
 HANDSHAKE message, whose only payload is a locally unused channel
 number.

 On the wire the datagram will look something like this:
 00000000 10 01
 04 7FFFFFFF 1234123412341234123412341234123412341234
 00 00000011
 (to unknown channel, handshake from channel 0x11 speaking protocol
 version 0x01, initiating a transfer of a file with a root hash
 123...1234)

 The receiving peer MUST respond with a datagram that starts with the
 channel number from the sender’s HANDSHAKE message, followed by a
 VERSION message, then a HANDSHAKE message, whose only payload is a
 locally unused channel number, followed by any other messages it
 wants to send.

 Peer’s response datagram on the wire:
 00000011 10 01
 00 00000022 03 00000003
 (peer to the initiator: use channel number 0x22 for this transfer and
 proto version 0x01; I also have first 4 chunks of the file, see Sec.
 4.3)

 At this point, the initiator knows that the peer really responds; for
 that purpose channel ids MUST be random enough to prevent easy
 guessing. So, the third datagram of a handshake MAY already contain
 some heavy payload. To minimize the number of initialization
 roundtrips, the first two datagrams MAY also contain some minor
 payload, e.g. a couple of HAVE messages roughly indicating the
 current progress of a peer or a HINT (see Sec. 3.6). When receiving
 the third datagram, both peers have the proof they really talk to
 each other; three-way handshake is complete.

 A peer MAY explicit close a channel by sending a HANDSHAKE message
 that MUST contain an all 0-zeros channel number.

Grishchenko and Bakker Expires April 28, 2012 [Page 19]

Internet-Draft swift October 26, 2011

 On the wire:
 00 00000000

6.1.5. HAVE

 A HAVE message (type 0x03) states that the sending peer has the
 complete specified bin and successfully checked its integrity:
 03 00000003
 (got/checked first four kilobytes of a file/stream)

6.1.6. ACK

 An ACK message (type 0x02) acknowledges data that was received from
 its addressee; to facilitate delay-based congestion control, an
 ACK message contains a timestamp, in particular, a 64-bit microsecond
 time.
 02 00000002 12345678
 (got the second kilobyte of the file from you; my microsecond
 timer was showing 0x12345678 at that moment)

6.1.7. HASH

 A HASH message (type 0x04) consists of a four-byte bin number and
 the cryptographic hash (e.g. a 20-byte SHA1 hash)
 04 7FFFFFFF 1234123412341234123412341234123412341234

6.1.8. DATA

 A DATA message (type 0x01) consists of a four-byte bin number and the
 actual chunk. In case a datagram contains a DATA message, a sender
 MUST always put the data message in the tail of the datagram. For
 example:
 01 00000000 48656c6c6f20776f726c6421
 (This message accommodates an entire file: "Hello world!")

6.1.9. KEEPALIVE

 Keepalives do not have a message type on UDP. They are just simple
 datagrams consisting of a 4-byte channel id only.

 On the wire:
 00000022

Grishchenko and Bakker Expires April 28, 2012 [Page 20]

Internet-Draft swift October 26, 2011

6.1.10. Flow and Congestion Control

 Explicit flow control is not necessary in swift-over-UDP. In the case
 of video-on-demand the receiver will request data explicitly from
 peers and is therefore in control of how much data is coming towards
 it. In the case of live streaming, where a push-model may be used,
 the amount of data incoming is limited to the bitrate, which the
 receiver must be able to process otherwise it cannot play the stream.
 Should, for any reason, the receiver get saturated with data that
 situation is perfectly detected by the congestion control. Swift-
 over-UDP can support different congestion control algorithms, in
 particular, it supports the new IETF Low Extra Delay Background
 Transport (LEDBAT) congestion control algorithm that ensures that
 peer-to-peer traffic yields to regular best-effort traffic [LEDBAT].

6.2. TCP

 When run over TCP, swift becomes functionally equivalent to
 BitTorrent. Namely, most swift messages have corresponding BitTorrent
 messages and vice versa, except for BitTorrent’s explicit interest
 declarations and choking/unchoking, which serve the classic
 implementation of the tit-for-tat algorithm [TIT4TAT]. However, TCP
 is not well suited for multiparty communication, as argued in Sec. 9.

6.3. RTP Profile for PPSP

 In this section we sketch how swift can be integrated into RTP
 [RFC3550] to form the Peer-to-Peer Streaming Protocol (PPSP) [I-
 D.ietf-ppsp-reqs] running over UDP. The PPSP charter requires
 existing media transfer protocols be used [PPSPCHART]. Hence, the
 general idea is to define swift as a profile of RTP, in the same way
 as the Secure Real-time Transport Protocol (SRTP) [RFC3711]. SRTP,
 and therefore swift is considered ‘‘a "bump in the stack"
 implementation which resides between the RTP application and the
 transport layer. [swift] intercepts RTP packets and then forwards an
 equivalent [swift] packet on the sending side, and intercepts [swift]
 packets and passes an equivalent RTP packet up the stack on the
 receiving side.’’ [RFC3711].

 In particular, to encode a swift datagram in an RTP packet all the
 non-DATA messages of swift such as HINT and HAVE are postfixed to the
 RTP packet using the UDP encoding and the content of DATA messages is
 sent in the payload field. Implementations MAY omit the RTP header
 for packets without payload. This construction allows the streaming
 application to use of all RTP’s current features, and with a
 modification to the Merkle tree hashing scheme (see below) meets

Grishchenko and Bakker Expires April 28, 2012 [Page 21]

Internet-Draft swift October 26, 2011

 swift’s atomic datagram principle. The latter means that a receiving
 peer can autonomously verify the RTP packet as being correct content,
 thus preventing the spread of corrupt data (see requirement PPSP.SEC-
 REQ-4).

 The use of ACK messages for reliability is left as a choice of the
 application using PPSP.

6.3.1. Design

 6.3.1.1. Joining a Swarm

 To commence a PPSP download a peer A must have the swarm ID of the
 stream and a list of one or more tracker contact points (e.g.
 host+port). The list of trackers is optional in the presence of a
 decentralized tracking mechanism. The swarm ID consists of the swift
 root hash of the content, which is divided into chunks (see
 Discussion).

 Peer A now registers with the PPSP tracker following the tracker
 protocol [I-D.ietf.ppsp-reqs] and receives the IP address and RTP
 port of peers already in the swarm, say B, C, and D. Peer A now sends
 an RTP packet containing a HANDSHAKE without channel information to
 B, C, and D. This serves as an end-to-end check that the peers are
 actually in the correct swarm. Optionally A could include a HINT
 message in some RTP packets if it wants to start receiving content
 immediately. B and C respond with a HANDSHAKE and HAVE messages. D
 sends just a HANDSHAKE and omits HAVE messages as a way of choking A.

 6.3.1.2. Exchanging Chunks

 In response to B and C, A sends new RTP packets to B and C with HINTs
 for disjunct sets of chunks. B and C respond with the requested
 chunks in the payload and HAVE messages, updating their chunk
 availability. Upon receipt, A sends HAVE for the chunks received and
 new HINT messages to B and C. When e.g. C finds that A obtained a
 chunk (from B) that C did not yet have, C’s response includes a HINT
 for that chunk.

 D does not send HAVE messages, instead if D decides to unchoke peer
 A, it sends an RTP packet with HAVE messages to inform A of its
 current availability. If B or C decide to choke A they stop sending
 HAVE and DATA messages and A should then rerequest from other peers.
 They may continue to send HINT messages, or exponentially slowing
 KEEPALIVE messages such that A keeps sending them HAVE messages.

Grishchenko and Bakker Expires April 28, 2012 [Page 22]

Internet-Draft swift October 26, 2011

 Once A has received all content (video-on-demand use case) it stops
 sending messages to all other peers that have all content (a.k.a.
 seeders).

 6.3.1.3. Leaving a Swarm

 Peers can implicitly leave a swarm by stopping to respond to
 messages. Sending peers should remove these peers from the current
 peer list. This mechanism works for both graceful and ungraceful
 leaves (i.e., peer crashes or disconnects). When leaving gracefully,
 a peer should deregister from the tracker following the PPSP tracker
 protocol.

 More explicit graceful leaves could be implemented using RTCP. In
 particular, a peer could send a RTCP BYE on the RTCP port that is
 derivable from a peer’s RTP port for all peers in its current peer
 list. However, to prevent malicious peers from sending BYEs a form of
 peer authentication is required (e.g. using public keys as peer IDs
 [PERMIDS].)

 6.3.1.4. Discussion

 Using swift as an RTP profile requires a change to the content
 integrity protection scheme (see Sec. 3.5). The fields in the RTP
 header, such as the timestamp and PT fields, must be protected by the
 Merkle tree hashing scheme to prevent malicious alterations.
 Therefore, the Merkle tree is no longer constructed from pure content
 chunks, but from the complete RTP packet for a chunk as it would be
 transmitted (minus the non-DATA swift messages). In other words, the
 hash of the leaves in the tree is the hash over the Authenticated
 Portion of the RTP packet as defined by SRTP, illustrated in the
 following figure (extended from [RFC3711]). There is no need for the
 RTP packets to be fixed size, as the hashing scheme can deal with
 variable-sized leaves.

Grishchenko and Bakker Expires April 28, 2012 [Page 23]

Internet-Draft swift October 26, 2011

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+<+
 |V=2|P|X| CC |M| PT | sequence number | |
 +-+ |
 | timestamp | |
 +-+ |
 | synchronization source (SSRC) identifier | |
 +=+ |
 | contributing source (CSRC) identifiers | |
 | | |
 +-+ |
 | RTP extension (OPTIONAL) | |
 +-+ |
 | payload ... | |
 | +-------------------------------+ |
 | | RTP padding | RTP pad count | |
 +-+<+
 ˜ swift non-DATA messages (REQUIRED) ˜ |
 +-+ |
 | length of swift messages (REQUIRED) | |
 +-+ |
 |
 Authenticated Portion ---+

 Figure: The format of an RTP-Swift packet.

 As a downside, with variable-sized payloads the automatic content
 size detection of Section 4 no longer works, so content length MUST
 be explicit in the metadata. In addition, storage on disk is more
 complex with out-of-order, variable-sized packets. On the upside,
 carrying RTP over swift allow decryption-less caching.

 As with UDP, another matter is how much data is carried inside each
 packet. An important swift-specific factor here is the resulting
 number of hash calculations per second needed to verify chunks.
 Experiments should be conducted to ensure they are not excessive for,
 e.g., mobile hardware.

 At present, Peer IDs are not required in this design.

6.3.2. PPSP Requirements

 6.3.2.1. Basic Requirements

 - PPSP.REQ-1: The swift PEX message can also be used as the basis for

Grishchenko and Bakker Expires April 28, 2012 [Page 24]

Internet-Draft swift October 26, 2011

 a tracker protocol, to be discussed elsewhere.

 - PPSP.REQ-2: This draft preserves the properties of RTP.

 - PPSP.REQ-3: This draft does not place requirements on peer IDs,
 IP+port is sufficient.

 - PPSP.REQ-4: The content is identified by its root hash (video-on-
 demand) or a public key (live streaming).

 - PPSP.REQ-5: The content is partitioned by the streaming
 application.

 - PPSP.REQ-6: Each chunk is identified by a bin number (and its
 cryptographic hash.)

 - PPSP.REQ-7: The protocol is carried over UDP because RTP is.

 - PPSP.REQ-8: The protocol has been designed to allow meaningful data
 transfer between peers as soon as possible and to avoid unnecessary
 round-trips. It supports small and variable chunk sizes, and its
 content integrity protection enables wide scale caching.

 6.3.2.2. Peer Protocol Requirements

 - PPSP.PP.REQ-1: A GET_HAVE would have to be added to request which
 chunks are available from a peer, if the proposed push-based HAVE
 mechanism is not sufficient.

 - PPSP.PP.REQ-2: A set of HAVE messages satisfies this.

 - PPSP.PP.REQ-3: The PEX_REQ message satisfies this. Care should be
 taken with peer address exchange in general, as the use of such
 hearsay is a risk for the protocol as it may be exploited by
 malicious peers (as a DDoS attack mechanism). A secure tracking /
 peer sampling protocol like [PUPPETCAST] may be needed to make peer-
 address exchange safe.

 - PPSP.PP.REQ-4: HAVE messages convey current availability via a push
 model.

 - PPSP.PP.REQ-5: Bin numbering enables a compact representation of
 chunk availability.

 - PPSP.PP.REQ-6: A new PPSP specific Peer Report message would have
 to be added to RTCP.

Grishchenko and Bakker Expires April 28, 2012 [Page 25]

Internet-Draft swift October 26, 2011

 - PPSP.PP.REQ-7: Transmission and chunk requests are integrated in
 this protocol.

 6.3.2.3. Security Requirements

 - PPSP.SEC.REQ-1: An access control mechanism like Closed Swarms
 [CLOSED] would have to be added.

 - PPSP.SEC.REQ-2: As RTP is carried verbatim over swift, RTP
 encryption can be used. Note that just encrypting the RTP part will
 allow for caching servers that are part of the swarm but do not need
 access to the decryption keys. They just need access to the swift
 HASHES in the postfix to verify the packet’s integrity.

 - PPSP.SEC.REQ-3: RTP encryption or IPsec [RFC4303] can be used, if
 the swift messages must also be encrypted.

 - PPSP.SEC.REQ-4: The Merkle tree hashing scheme prevents the
 indirect spread of corrupt content, as peers will only forward chunks
 to others if their integrity check out. Another protection mechanism
 is to not depend on hearsay (i.e., do not forward other peers’
 availability information), or to only use it when the information
 spread is self-certified by its subjects.

 Other attacks, such as a malicious peer claiming it has content but
 not replying, are still possible. Or wasting CPU and bandwidth at a
 receiving peer by sending packets where the DATA doesn’t match the
 HASHes.

 - PPSP.SEC.REQ-5: The Merkle tree hashing scheme allows a receiving
 peer to detect a malicious or faulty sender, which it can
 subsequently ignore. Spreading this knowledge to other peers such
 that they know about this bad behavior is hearsay.

 - PPSP.SEC.REQ-6: A risk in peer-to-peer streaming systems is that
 malicious peers launch an Eclipse [ECLIPSE] attack on the initial
 injectors of the content (in particular in live streaming). The
 attack tries to let the injector upload to just malicious peers which
 then do not forward the content to others, thus stopping the
 distribution. An Eclipse attack could also be launched on an
 individual peer. Letting these injectors only use trusted trackers
 that provide true random samples of the population or using a secure
 peer sampling service [PUPPETCAST] can help negate such an attack.

Grishchenko and Bakker Expires April 28, 2012 [Page 26]

Internet-Draft swift October 26, 2011

 - PPSP.SEC.REQ-7: swift supports decentralized tracking via PEX or
 additional mechanisms such as DHTs [SECDHTS], but self-certification
 of addresses is needed. Self-certification means For example, that
 each peer has a public/private key pair [PERMIDS] and creates self-
 certified address changes that include the swarm ID and a timestamp,
 which are then exchanged among peers or stored in DHTs. See also
 discussion of PPSP.PP.REQ-3 above. Content distribution can continue
 as long as there are peers that have it available.

 - PPSP.SEC.REQ-8: The verification of data via hashes obtained from a
 trusted source is well-established in the BitTorrent protocol
 [BITTORRENT]. The proposed Merkle tree scheme is a secure extension
 of this idea. Self-certification and not using hearsay are other
 lessons learned from existing distributed systems.

 - PPSP.SEC.REQ-9: Swift has built-in content integrity protection via
 self-certified naming of content, see SEC.REQ-5 and Sec. 3.5.1.

6.4. HTTP (as PPSP)

 In this section we sketch how swift can be carried over HTTP
 [RFC2616] to form the PPSP running over TCP. The general idea is to
 encode a swift datagram in HTTP GET and PUT requests and their
 replies by transmitting all the non-DATA messages such as HINTs and
 HAVEs as headers and send DATA messages in the body. This idea
 follows the atomic datagram principle for each request and reply. So
 a receiving peer can autonomously verify the message as carrying
 correct data, thus preventing the spread of corrupt data (see
 requirement PPSP.SEC-REQ-4).

 A problem with HTTP is that it is a client/server protocol. To
 overcome this problem, a peer A uses a PUT request instead of a GET
 request if the peer B has indicated in a reply that it wants to
 retrieve a chunk from A. In cases where peer A is no longer
 interested in receiving requests from B (described below) B may need
 to establish a new HTTP connection to A to quickly download a chunk,
 instead of waiting for a convenient time when A sends another
 request. As an alternative design, two HTTP connections could be used
 always., but this is inefficient.

6.4.1. Design

 6.4.1.1. Joining a Swarm

 To commence a PPSP download a peer A must have the swarm ID of the
 stream and a list of one or more tracker contact points, as above.
 The swarm ID as earlier also consists of the swift root hash of the

Grishchenko and Bakker Expires April 28, 2012 [Page 27]

Internet-Draft swift October 26, 2011

 content, divided in chunks by the streaming application (e.g. fixed-
 size chunks of 1 kilobyte for video-on-demand).

 Peer A now registers with the PPSP tracker following the tracker
 protocol [I-D.ietf-ppsp-reqs] and receives the IP address and HTTP
 port of peers already in the swarm, say B, C, and D. Peer A now
 establishes persistent HTTP connections with B, C, D and sends GET
 requests with the Request-URI set to /<encoded roothash>. Optionally
 A could include a HINT message in some requests if it wants to start
 receiving content immediately. A HINT is encoded as a Range header
 with a new "bins" unit [RFC2616,$14.35].

 B and C respond with a 200 OK reply with header-encoded HAVE
 messages. A HAVE message is encoded as an extended Accept-Ranges:
 header [RFC2616,$14.5] with the new bins unit and the possibility of
 listing the set of accepted bins. If no HINT/Range header was present
 in the request, the body of the reply is empty. D sends just a 200 OK
 reply and omits the HAVE/Accept-Ranges header as a way of choking A.

 6.4.1.2. Exchanging Chunks

 In response to B and C, A sends GET requests with Range headers,
 requesting disjunct sets of chunks. B and C respond with 206 Partial
 Content replies with the requested chunks in the body and Accept-
 Ranges headers, updating their chunk availability. The HASHES for the
 chunks are encoded in a new Content-Merkle header and the Content-
 Range is set to identify the chunk [RFC2616,$14.16]. A new
 "multipart-bin ranges" equivalent to the "multipart-bytes ranges"
 media type may be used to transmit multiple chunks in one reply.

 Upon receipt, A sends a new GET request with a HAVE/Accept-Ranges
 header for the chunks received and new HINT/Range headers to B and C.
 Now when e.g. C finds that A obtained a chunk (from B) that C did not
 yet have, C’s response includes a HINT/Range for that chunk. In this
 case, A’s next request to C is not a GET request, but a PUT request
 with the requested chunk sent in the body.

 Again, working around the fact that HTTP is a client/server protocol,
 peer A periodically sends HEAD requests to peer D (which was
 virtually choking A) that serve as keepalives and may contain
 HAVE/Accept-Ranges headers. If D decides to unchoke peer A, it
 includes an Accept-Ranges header in the "200 OK" reply to inform A of
 its current chunk availability.

 If B or C decide to choke A they start responding with 204 No Content
 replies without HAVE/Accept-Ranges headers and A should then re-
 request from other peers. However, if their replies contain
 HINT/Range headers A should keep on sending PUT requests with the

Grishchenko and Bakker Expires April 28, 2012 [Page 28]

Internet-Draft swift October 26, 2011

 desired data (another client/server workaround). If not, A should
 slowly send HEAD requests as keepalive and content availability
 update.

 Once A has received all content (video-on-demand use case) it closes
 the persistent connections to all other peers that have all content
 (a.k.a. seeders).

 6.4.1.3. Leaving a Swarm

 Peers can explicitly leave a swarm by closing the connection. This
 mechanism works for both graceful and ungraceful leaves (i.e., peer
 crashes or disconnects). When leaving gracefully, a peer should
 deregister from the tracker following the PPSP tracker protocol.

 6.4.1.4. Discussion

 As mentioned earlier, this design suffers from the fact that HTTP is
 a client/server protocol. A solution where a peer establishes two
 HTTP connections with every other peer may be more elegant, but
 inefficient. The mapping of swift messages to headers remains the
 same:

 HINT = Range
 HAVE = Accept-Ranges
 HASH = Content-Merkle
 PEX = e.g. extended Content-Location

 The Content-Merkle header should include some parameters to indicate
 the hash function and chunk size (e.g. SHA1 and 1K) used to build the
 Merkle tree.

6.4.2. PPSP Requirements

 6.4.2.1. Basic Requirements

 - PPSP.REQ-1: The HTTP-based BitTorrent tracker protocol [BITTORRENT]
 can be used as the basis for a tracker protocol, to be discussed
 elsewhere.

 - PPSP.REQ-2: This draft preserves the properties of HTTP, but extra
 mechanisms may be necessary to protect against faulty or malicious
 peers.

 - PPSP.REQ-3: This draft does not place requirements on peer IDs,

Grishchenko and Bakker Expires April 28, 2012 [Page 29]

Internet-Draft swift October 26, 2011

 IP+port is sufficient.

 - PPSP.REQ-4: The content is identified by its root hash (video-on-
 demand) or a public key (live streaming).

 - PPSP.REQ-5: The content is partitioned into chunks by the streaming
 application (see 6.4.1.1.)

 - PPSP.REQ-6: Each chunk is identified by a bin number (and its
 cryptographic hash.)

 - PPSP.REQ-7: The protocol is carried over TCP because HTTP is.

 6.4.2.2. Peer Protocol Requirements

 - PPSP.PP.REQ-1: A HEAD request can be used to find out which chunks
 are available from a peer, which returns the new Accept-Ranges
 header.

 - PPSP.PP.REQ-2: The new Accept-Ranges header satisfies this.

 - PPSP.PP.REQ-3: A GET with a request-URI requesting the peers of a
 resource (e.g. /<encoded roothash>/peers) would have to be added to
 request known peers from a peer, if the proposed push-based
 PEX/˜Content-Location mechanism is not sufficient. Care should be
 taken with peer address exchange in general, as the use of such
 hearsay is a risk for the protocol as it may be exploited by
 malicious peers (as a DDoS attack mechanism). A secure tracking /
 peer sampling protocol like [PUPPETCAST] may be needed to make peer-
 address exchange safe.

 - PPSP.PP.REQ-4: HAVE/Accept-Ranges headers convey current
 availability.

 - PPSP.PP.REQ-5: Bin numbering enables a compact representation of
 chunk availability.

 - PPSP.PP.REQ-6: A new PPSP specific Peer-Report header would have to
 be added.

 - PPSP.PP.REQ-7: Transmission and chunk requests are integrated in
 this protocol.

Grishchenko and Bakker Expires April 28, 2012 [Page 30]

Internet-Draft swift October 26, 2011

 6.4.2.3. Security Requirements

 - PPSP.SEC.REQ-1: An access control mechanism like Closed Swarms
 [CLOSED] would have to be added.

 - PPSP.SEC.REQ-2: As swift is carried over HTTP, HTTPS encryption can
 be used instead. Alternatively, just the body could be encrypted. The
 latter allows for caching servers that are part of the swarm but do
 not need access to the decryption keys (they need access to the swift
 HASHES in the headers to verify the packet’s integrity).

 - PPSP.SEC.REQ-3: HTTPS encryption or the content encryption
 facilities of HTTP can be used.

 - PPSP.SEC.REQ-4: The Merkle tree hashing scheme prevents the
 indirect spread of corrupt content, as peers will only forward
 content to others if its integrity checks out. Another protection
 mechanism is to not depend on hearsay (i.e., do not forward other
 peers’ availability information), or to only use it when the
 information spread is self-certified by its subjects.

 Other attacks such as a malicious peer claiming it has content, but
 not replying are still possible. Or wasting CPU and bandwidth at a
 receiving peer by sending packets where the body doesn’t match the
 HASH/Content-Merkle headers.

 - PPSP.SEC.REQ-5: The Merkle tree hashing scheme allows a receiving
 peer to detect a malicious or faulty sender, which it can
 subsequently close its connection to and ignore. Spreading this
 knowledge to other peers such that they know about this bad behavior
 is hearsay.

 - PPSP.SEC.REQ-6: A risk in peer-to-peer streaming systems is that
 malicious peers launch an Eclipse [ECLIPSE] attack on the initial
 injectors of the content (in particular in live streaming). The
 attack tries to let the injector upload to just malicious peers which
 then do not forward the content to others, thus stopping the
 distribution. An Eclipse attack could also be launched on an
 individual peer. Letting these injectors only use trusted trackers
 that provide true random samples of the population or using a secure
 peer sampling service [PUPPETCAST] can help negate such an attack.

 - PPSP.SEC.REQ-7: swift supports decentralized tracking via PEX or
 additional mechanisms such as DHTs [SECDHTS], but self-certification
 of addresses is needed. Self-certification means For example, that

Grishchenko and Bakker Expires April 28, 2012 [Page 31]

Internet-Draft swift October 26, 2011

 each peer has a public/private key pair [PERMIDS] and creates self-
 certified address changes that include the swarm ID and a timestamp,
 which are then exchanged among peers or stored in DHTs. See also
 discussion of PPSP.PP.REQ-3 above. Content distribution can continue
 as long as there are peers that have it available.

 - PPSP.SEC.REQ-8: The verification of data via hashes obtained from a
 trusted source is well-established in the BitTorrent protocol
 [BITTORRENT]. The proposed Merkle tree scheme is a secure extension
 of this idea. Self-certification and not using hearsay are other
 lessons learned from existing distributed systems.

 - PPSP.SEC.REQ-9: Swift has built-in content integrity protection via
 self-certified naming of content, see SEC.REQ-5 and Sec. 3.5.1.

7. Security Considerations

 As any other network protocol, the swift faces a common set of
 security challenges. An implementation must consider the possibility
 of buffer overruns, DoS attacks and manipulation (i.e. reflection
 attacks). Any guarantee of privacy seems unlikely, as the user is
 exposing its IP address to the peers. A probable exception is the
 case of the user being hidden behind a public NAT or proxy.

8. Extensibility

8.1. 32 bit vs 64 bit

 While in principle the protocol supports bigger (>1TB) files, all the
 mentioned counters are 32-bit. It is an optimization, as using
 64-bit numbers on-wire may cost ˜2% practical overhead. The 64-bit
 version of every message has typeid of 64+t, e.g. typeid 68 for
 64-bit hash message:
 44 000000000000000E 01234567890ABCDEF1234567890ABCDEF1234567

8.2. IPv6

 IPv6 versions of PEX messages use the same 64+t shift as just
 mentioned.

8.3. Congestion Control Algorithms

 Congestion control algorithm is left to the implementation and may
 even vary from peer to peer. Congestion control is entirely
 implemented by the sending peer, the receiver only provides clues,

Grishchenko and Bakker Expires April 28, 2012 [Page 32]

Internet-Draft swift October 26, 2011

 such as hints, acknowledgments and timestamps. In general, it is
 expected that servers would use TCP-like congestion control schemes
 such as classic AIMD or CUBIC [CUBIC]. End-user peers are expected to
 use weaker-than-TCP (least than best effort) congestion control, such
 as [LEDBAT] to minimize seeding counter-incentives.

8.4. Piece Picking Algorithms

 Piece picking entirely depends on the receiving peer. The sender peer
 is made aware of preferred pieces by the means of HINT messages. In
 some scenarios it may be beneficial to allow the sender to ignore
 those hints and send unrequested data.

8.5. Reciprocity Algorithms

 Reciprocity algorithms are the sole responsibility of the sender
 peer. Reciprocal intentions of the sender are not manifested by
 separate messages (as BitTorrent’s CHOKE/UNCHOKE), as it does not
 guarantee anything anyway (the "snubbing" syndrome).

8.6. Different crypto/hashing schemes

 Once a flavor of swift will need to use a different crypto scheme
 (e.g., SHA-256), a message should be allocated for that. As the root
 hash is supplied in the handshake message, the crypto scheme in use
 will be known from the very beginning. As the root hash is the
 content’s identifier, different schemes of crypto cannot be mixed in
 the same swarm; different swarms may distribute the same content
 using different crypto.

9. Rationale

 Historically, the Internet was based on end-to-end unicast and,
 considering the failure of multicast, was addressed by different
 technologies, which ultimately boiled down to maintaining and
 coordinating distributed replicas. On one hand, downloading from a
 nearby well-provisioned replica is somewhat faster and/or cheaper; on
 the other hand, it requires to coordinate multiple parties (the data
 source, mirrors/CDN sites/peers, consumers). As the Internet
 progresses to richer and richer content, the overhead of peer/replica
 coordination becomes dwarfed by the mass of the download itself.
 Thus, the niche for multiparty transfers expands. Still, current,
 relevant technologies are tightly coupled to a single use case or
 even infrastructure of a particular corporation. The mission of our

Grishchenko and Bakker Expires April 28, 2012 [Page 33]

Internet-Draft swift October 26, 2011

 project is to create a generic content-centric multiparty transport
 protocol to allow seamless, effortless data dissemination on the Net.

 TABLE 1. Use cases.

 | mirror-based peer-assisted peer-to-peer
 ------+--
 data | SunSITE CacheLogic VelociX BitTorrent
 VoD | YouTube Azureus(+seedboxes) SwarmPlayer
 live | Akamai Str. Octoshape, Joost PPlive

 The protocol must be designed for maximum genericity, thus focusing
 on the very core of the mission, contain no magic constants and no
 hardwired policies. Effectively, it is a set of messages allowing to
 securely retrieve data from whatever source available, in parallel.
 Ideally, the protocol must be able to run over IP as an independent
 transport protocol. Practically, it must run over UDP and TCP.

9.1. Design Goals

 The technical focus of the swift protocol is to find the simplest
 solution involving the minimum set of primitives, still being
 sufficient to implement all the targeted usecases (see Table 1),
 suitable for use in general-purpose software and hardware (i.e. a web
 browser or a set-top box). The five design goals for the protocol
 are:

 1. Embeddable kernel-ready protocol.
 2. Embrace real-time streaming, in- and out-of-order download.
 3. Have short warm-up times.
 4. Traverse NATs transparently.
 5. Be extensible, allow for multitude of implementation over
 diverse mediums, allow for drop-in pluggability.

 The objectives are referenced as (1)-(5).

 The goal of embedding (1) means that the protocol must be ready to
 function as a regular transport protocol inside a set-top box, mobile
 device, a browser and/or in the kernel space. Thus, the protocol must
 have light footprint, preferably less than TCP, in spite of the
 necessity to support numerous ongoing connections as well as to
 constantly probe the network for new possibilities. The practical
 overhead for TCP is estimated at 10KB per connection [HTTP1MLN]. We
 aim at <1KB per peer connected. Also, the amount of code necessary to
 make a basic implementation must be limited to 10KLoC of C.
 Otherwise, besides the resource considerations, maintaining and
 auditing the code might become prohibitively expensive.

Grishchenko and Bakker Expires April 28, 2012 [Page 34]

Internet-Draft swift October 26, 2011

 The support for all three basic usecases of real-time streaming,
 in-order download and out-of-order download (2) is necessary for the
 manifested goal of THE multiparty transport protocol as no single
 usecase dominates over the others.

 The objective of short warm-up times (3) is the matter of end-user
 experience; the playback must start as soon as possible. Thus any
 unnecessary initialization roundtrips and warm-up cycles must be
 eliminated from the transport layer.

 Transparent NAT traversal (4) is absolutely necessary as at least 60%
 of today’s users are hidden behind NATs. NATs severely affect
 connection patterns in P2P networks thus impacting performance and
 fairness [MOLNAT,LUCNAT].

 The protocol must define a common message set (5) to be used by
 implementations; it must not hardwire any magic constants, algorithms
 or schemes beyond that. For example, an implementation is free to use
 its own congestion control, connection rotation or reciprocity
 algorithms. Still, the protocol must enable such algorithms by
 supplying sufficient information. For example, trackerless peer
 discovery needs peer exchange messages, scavenger congestion control
 may need timestamped acknowledgments, etc.

9.2. Not TCP

 To large extent, swift’s design is defined by the cornerstone
 decision to get rid of TCP and not to reinvent any TCP-like
 transports on top of UDP or otherwise. The requirements (1), (4), (5)
 make TCP a bad choice due to its high per-connection footprint,
 complex and less reliable NAT traversal and fixed predefined
 congestion control algorithms. Besides that, an important
 consideration is that no block of TCP functionality turns out to be
 useful for the general case of swarming downloads. Namely,
 1. in-order delivery is less useful as peer-to-peer protocols
 often employ out-of-order delivery themselves and in either case
 out-of-order data can still be stored;
 2. reliable delivery/retransmissions are not useful because
 the same data might be requested from different sources; as
 in-order delivery is not required, packet losses might be
 patched up lazily, without stopping the flow of data;
 3. flow control is not necessary as the receiver is much less
 likely to be saturated with the data and even if so, that
 situation is perfectly detected by the congestion control;
 4. TCP congestion control is less useful as custom congestion
 control is often needed [LEDBAT].
 In general, TCP is built and optimized for a different usecase than

Grishchenko and Bakker Expires April 28, 2012 [Page 35]

Internet-Draft swift October 26, 2011

 we have with swarming downloads. The abstraction of a "data pipe"
 orderly delivering some stream of bytes from one peer to another
 turned out to be irrelevant. In even more general terms, TCP
 supports the abstraction of pairwise _conversations_, while we need
 a content-centric protocol built around the abstraction of a cloud
 of participants disseminating the same _data_ in any way and order
 that is convenient to them.

 Thus, the choice is to design a protocol that runs on top of
 unreliable datagrams. Instead of reimplementing TCP, we create a
 datagram-based protocol, completely dropping the sequential data
 stream abstraction. Removing unnecessary features of TCP makes it
 easier both to implement the protocol and to verify it; numerous TCP
 vulnerabilities were caused by complexity of the protocol’s state
 machine. Still, we reserve the possibility to run swift on top of TCP
 or HTTP.

 Pursuing the maxim of making things as simple as possible but not
 simpler, we fit the protocol into the constraints of the transport
 layer by dropping all the transmission’s technical metadata except
 for the content’s root hash (compare that to metadata files used in
 BitTorrent). Elimination of technical metadata is achieved through
 the use of Merkle [MERKLE,ABMRKL] hash trees, exclusively single-file
 transfers and other techniques. As a result, a transfer is identified
 and bootstrapped by its root hash only.

 To avoid the usual layering of positive/negative acknowledgment
 mechanisms we introduce a scale-invariant acknowledgment system (see
 Sec 4.4). The system allows for aggregation and variable level of
 detail in requesting, announcing and acknowledging data, serves
 in-order and out-of-order retrieval with equal ease. Besides the
 protocol’s footprint, we also aim at lowering the size of a minimal
 useful interaction. Once a single datagram is received, it must be
 checked for data integrity, and then either dropped or accepted,
 consumed and relayed.

9.3. Generic Acknowledgments

 Generic acknowledgments came out of the need to simplify the
 data addressing/requesting/acknowledging mechanics, which tends
 to become overly complex and multilayered with the conventional
 approach. Take the BitTorrent+TCP tandem for example:

 1. The basic data unit is a byte of content in a file.
 2. BitTorrent’s highest-level unit is a "torrent", physically a
 byte range resulting from concatenation of content files.

Grishchenko and Bakker Expires April 28, 2012 [Page 36]

Internet-Draft swift October 26, 2011

 3. A torrent is divided into "pieces", typically about a thousand
 of them. Pieces are used to communicate progress to other
 peers. Pieces are also basic data integrity units, as the torrent’s
 metadata includes a SHA1 hash for every piece.
 4. The actual data transfers are requested and made in 16KByte
 units, named "blocks" or chunks.
 5. Still, one layer lower, TCP also operates with bytes and byte
 offsets which are totally different from the torrent’s bytes and
 offsets, as TCP considers cumulative byte offsets for all content
 sent by a connection, be it data, metadata or commands.
 6. Finally, another layer lower, IP transfers independent datagrams
 (typically around 1.5 kilobyte), which TCP then reassembles into
 continuous streams.

 Obviously, such addressing schemes need lots of mappings; from
 piece number and block to file(s) and offset(s) to TCP sequence
 numbers to the actual packets and the other way around. Lots of
 complexity is introduced by mismatch of bounds: packet bounds are
 different from file, block or hash/piece bounds. The picture is
 typical for a codebase which was historically layered.

 To simplify this aspect, we employ a generic content addressing
 scheme based on binary intervals, or "bins" for short.

Acknowledgements

 Victor Grishchenko and Arno Bakker are partially supported by the
 P2P-Next project (http://www.p2p-next.org/), a research project
 supported by the European Community under its 7th Framework Programme
 (grant agreement no. 216217). The views and conclusions contained
 herein are those of the authors and should not be interpreted as
 necessarily representing the official policies or endorsements,
 either expressed or implied, of the P2P-Next project or the European
 Commission.

 The authors would like to thank the following people for their
 contributions to this draft: Mihai Capota, Raul Jiminez, Flutra
 Osmani, Riccardo Petrocco, Johan Pouwelse, and Raynor Vliegendhart.

References

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels
[HTTP1MLN] Richard Jones. "A Million-user Comet Application with
 Mochiweb", Part 3. http://www.metabrew.com/article/
 a-million-user-comet-application-with-mochiweb-part-3

Grishchenko and Bakker Expires April 28, 2012 [Page 37]

Internet-Draft swift October 26, 2011

[MOLNAT] J.J.D. Mol, J.A. Pouwelse, D.H.J. Epema and H.J. Sips:
 "Free-riding, Fairness, and Firewalls in P2P File-Sharing"
[LUCNAT] submitted
[BINMAP] V. Grishchenko, J. Pouwelse: "Binmaps: hybridizing bitmaps
 and binary trees"
 http://www.tribler.org/download/binmaps-alenex.pdf
[SNP] B. Ford, P. Srisuresh, D. Kegel: "Peer-to-Peer Communication
 Across Network Address Translators",
 http://www.brynosaurus.com/pub/net/p2pnat/
[FIPS180-2]
 Federal Information Processing Standards Publication 180-2:
 "Secure Hash Standard" 2002 August 1.
[MERKLE] Merkle, R. "A Digital Signature Based on a Conventional
 Encryption Function". Proceedings CRYPTO’87, Santa Barbara, CA,
 USA, Aug 1987. pp 369-378.
[ABMRKL] Arno Bakker: "Merkle hash torrent extension", BEP 30,
 http://bittorrent.org/beps/bep_0030.html
[CUBIC] Injong Rhee, and Lisong Xu: "CUBIC: A New TCP-Friendly
 High-Speed TCP Variant",
 http://www4.ncsu.edu/˜rhee/export/bitcp/cubic-paper.pdf
[LEDBAT] S. Shalunov: "Low Extra Delay Background Transport (LEDBAT)"
 http://www.ietf.org/id/draft-ietf-ledbat-congestion-00.txt
[TIT4TAT] Bram Cohen: "Incentives Build Robustness in BitTorrent", 2003,
 http://www.bittorrent.org/bittorrentecon.pdf
[BITTORRENT] B. Cohen, "The BitTorrent Protocol Specification",
 February 2008, http://www.bittorrent.org/beps/bep_0003.html
[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.
[RFC3711] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman,
 "The Secure Real-time Transport Protocol (SRTP), RFC 3711, March
 2004.
[RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389, October 2008.
[I-D.ietf-ppsp-reqs] Zong, N., Zhang, Y., Pascual, V., Williams, C.,
 and L. Xiao, "P2P Streaming Protocol (PPSP) Requirements",
 draft-ietf-ppsp-reqs-05 (work in progress), October 2011.
[PPSPCHART] Stiemerling et al. "Peer to Peer Streaming Protocol (ppsp)
 Description of Working Group"
 http://datatracker.ietf.org/wg/ppsp/charter/
[PERMIDS] A. Bakker et al. "Next-Share Platform M8--Specification
 Part", App. C. P2P-Next project deliverable D4.0.1 (revised),
 June 2009.
 http://www.p2p-next.org/download.php?id=E7750C654035D8C2E04D836243E6526E
[PUPPETCAST] A. Bakker and M. van Steen. "PuppetCast: A Secure Peer
 Sampling Protocol". Proceedings 4th Annual European Conference on
 Computer Network Defense (EC2ND’08), pp. 3-10, Dublin, Ireland,
 11-12 December 2008.

Grishchenko and Bakker Expires April 28, 2012 [Page 38]

Internet-Draft swift October 26, 2011

[CLOSED] N. Borch, K. Michell, I. Arntzen, and D. Gabrijelcic: "Access
 control to BitTorrent swarms using closed swarms". In Proceedings
 of the 2010 ACM workshop on Advanced video streaming techniques
 for peer-to-peer networks and social networking (AVSTP2P ’10).
 ACM, New York, NY, USA, 25-30.
 http://doi.acm.org/10.1145/1877891.1877898
[ECLIPSE] E. Sit and R. Morris, "Security Considerations for
 Peer-to-Peer Distributed Hash Tables", IPTPS ’01: Revised Papers
 from the First International Workshop on Peer-to-Peer Systems, pp.
 261-269, Springer-Verlag, London, UK, 2002.
[SECDHTS] G. Urdaneta, G. Pierre, M. van Steen, "A Survey of DHT
 Security Techniques", ACM Computing Surveys, vol. 43(2), June 2011.
[HTTP] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
 P. Leach, T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",
 RFC2616, June 1999.
[SWIFTIMPL] V. Grishchenko, et al. "Swift M40 reference implementation",
 http://swarmplayer.p2p-next.org/download/Next-Share-M40.tar.bz2
 (subdirectory Next-Share/TUD/swift-trial-r2242/), July 2011.
[CCNWIKI] http://en.wikipedia.org/wiki/Content-centric_networking
[HAC01] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. "Handbook of
 Applied Cryptography", CRC Press, October 1996 (Fifth Printing,
 August 2001).
[JIM11] R. Jimenez, F. Osmani, and B. Knutsson. "Sub-Second Lookups on
 a Large-Scale Kademlia-Based Overlay". 11th IEEE International
 Conference on Peer-to-Peer Computing 2011, Kyoto, Japan, Aug. 2011

Authors’ addresses

 A. Bakker
 Technische Universiteit Delft
 Department EWI/ST/PDS
 Room HB 9.160
 Mekelweg 4
 2628CD Delft
 The Netherlands

 Email: arno@cs.vu.nl

Grishchenko and Bakker Expires April 28, 2012 [Page 39]

