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Abstract

   The Generic Multiparty Protocol (swift) is a peer-to-peer based
   transport protocol for content dissemination. It can be used for
   streaming on-demand and live video content, as well as conventional
   downloading. In swift, the clients consuming the content participate
   in the dissemination by forwarding the content to other clients via a
   mesh-like structure.  It is a generic protocol which can run directly
   on top of UDP, TCP, HTTP or as a RTP profile. Features of swift are
   short time-till-playback and extensibility. Hence, it can use
   different mechanisms to prevent freeriding, and work with different
   peer discovery schemes (centralized trackers or Distributed Hash
   Tables). Depending on the underlying transport protocol, swift can
   also use different congestion control algorithms, such as LEDBAT, and
   offer transparent NAT traversal. Finally, swift maintains only a
   small amount of state per peer and detects malicious modification of
   content. This documents describes swift and how it satisfies the
   requirements for the IETF Peer-to-Peer Streaming Protocol (PPSP)
   Working Group’s peer protocol.

Status of this memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
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   http://www.ietf.org/shadow.html.

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

1.1. Purpose

   This document describes the Generic Multiparty Protocol (swift),
   designed from the ground up for the task of disseminating the same
   content to a group of interested parties. Swift supports streaming
   on-demand and live video content, as well as conventional
   downloading, thus covering today’s three major use cases for content
   distribution. To fulfil this task, clients consuming the content are
   put on equal footing with the servers initially providing the content
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   to create a peer-to-peer system where everyone can provide data. Each
   peer connects to a random set of other peers resulting in a mesh-like
   structure.

   Swift uses a simple method of naming content based on self-
   certification. In particular, content in swift is identified by a
   single cryptographic hash that is the root hash in a Merkle hash tree
   calculated recursively from the content [ABMRKL].  This self-
   certifying hash tree allows every peer to directly detect when a
   malicious peer tries to distribute fake content. It also ensures only
   a small amount of information is needed to start a download (just the
   root hash and some peer addresses).

   Swift uses a novel method of addressing chunks of content called "bin
   numbers". Bin numbers allow the addressing of a binary interval of
   data using a single integer. This reduces the amount of state that
   needs to be recorded per peer and the space needed to denote
   intervals on the wire, making the protocol light-weight. In general,
   this numbering system allows swift to work with simpler data
   structures, e.g. to use arrays instead of binary trees, thus reducing
   complexity.

   Swift is a generic protocol which can run directly on top of UDP,
   TCP, HTTP, or as a layer below RTP, similar to SRTP [RFC3711]. As
   such, swift defines a common set of messages that make up the
   protocol, which can have different representations on the wire
   depending on the lower-level protocol used. When the lower-level
   transport is UDP, swift can also use different congestion control
   algorithms and facilitate NAT traversal.

   In addition, swift is extensible in the mechanisms it uses to promote
   client contribution and prevent freeriding, that is, how to deal with
   peers that only download content but never upload to others.
   Furthermore, it can work with different peer discovery schemes, such
   as centralized trackers or fast Distributed Hash Tables [JIM11].

   This documents describes not only the swift protocol but also how it
   satisfies the requirements for the IETF Peer-to-Peer Streaming
   Protocol (PPSP) Working Group’s peer protocol [PPSPCHART,I-D.ietf-
   ppsp-reqs]. A reference implementation of swift over UDP is available
   [SWIFTIMPL].

1.2. Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].
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1.3. Terminology

   message
        The basic unit of swift communication. A message will have
        different representations on the wire depending on the transport
        protocol used. Messages are typically multiplexed into a
        datagram for transmission.

   datagram
        A sequence of messages that is offered as a unit to the
        underlying transport protocol (UDP, etc.). The datagram is
        swift’s Protocol Data Unit (PDU).

   content
        Either a live transmission, a pre-recorded multimedia asset, or
        a file.

   bin
        A number denoting a specific binary interval of the content
        (i.e., one or more consecutive chunks).

   chunk
        The basic unit in which the content is divided. E.g. a block of
        N kilobyte.

   hash
        The result of applying a cryptographic hash function, more
        specifically a modification detection code (MDC) [HAC01], such
        as SHA1 [FIPS180-2], to a piece of data.

   root hash
        The root in a Merkle hash tree calculated recursively from the
        content.

   swarm
        A group of peers participating in the distribution of the same
        content.

   swarm ID
        Unique identifier for a swarm of peers, in swift the root hash
        of the content (video-on-demand,download) or a public key (live
        streaming).

   tracker
        An entity that records the addresses of peers participating in a
        swarm, usually for a set of swarms, and makes this membership
        information available to other peers on request.
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   choking
        When a peer A is choking peer B it means that A is currently not
        willing to accept requests for content from B.

2. Overall Operation

   The basic unit of communication in swift is the message. Multiple
   messages are multiplexed into a single datagram for transmission. A
   datagram (and hence the messages it contains) will have different
   representations on the wire depending on the transport protocol used
   (see Sec. 6).

2.1. Joining a Swarm

   Consider a peer A that wants to download a certain content asset. To
   commence a swift download, peer A must have the swarm ID of the
   content and a list of one or more tracker contact points (e.g.
   host+port). The list of trackers is optional in the presence of a
   decentralized tracking mechanism. The swarm ID consists of the swift
   root hash of the content (video-on-demand, downloading) or a public
   key (live streaming).

   Peer A now registers with the tracker following e.g. the PPSP tracker
   protocol [I-D.ietf.ppsp-reqs] and receives the IP address and port of
   peers already in the swarm, say B, C, and D. Peer A now sends a
   datagram containing a HANDSHAKE message to B, C, and D. This message
   serves as an end-to-end check that the peers are actually in the
   correct swarm, and contains the root hash of the swarm.  Peer B and C
   respond with datagrams containing a HANDSHAKE message and one or more
   HAVE messages. A HAVE message conveys (part of) the chunk
   availability of a peer and thus contains a bin number that denotes
   what chunks of the content peer B, resp. C have. Peer D sends a
   datagram with just a HANDSHAKE and omits HAVE messages as a way of
   choking A.

2.2. Exchanging Chunks

   In response to B and C, A sends new datagrams to B and C containing
   HINT messages. A HINT or request message indicates the chunks that a
   peer wants to download, and contains a bin number. The HINT messages
   to B and C refer to disjunct sets of chunks.  B and C respond with
   datagrams containing HASH, HAVE and DATA messages.  The HASH messages
   contains all cryptographic hashes that peer A needs to verify the
   integrity of the content chunk sent in the DATA message, using the
   content’s root hash as trusted anchor, see Sec. 3.5. Using these
   hashes peer A verifies that the chunks received from B and C are
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   correct. It also updates the chunk availability of B and C using the
   information in the received HAVE messages.

   After processing, A sends a datagram containing HAVE messages for the
   chunks it just received to all its peers. In the datagram to B and C
   it includes an ACK message acknowledging the receipt of the chunks,
   and adds HINT messages for new chunks. ACK messages are not used when
   a reliable transport protocol is used. When e.g. C finds that A
   obtained a chunk (from B) that C did not yet have, C’s next datagram
   includes a HINT for that chunk.

   Peer D does not send HAVE messages to A when it downloads chunks from
   other peers, until D decides to unchoke peer A. In the case, it sends
   a datagram with HAVE messages to inform A of its current
   availability. If B or C decide to choke A they stop sending HAVE and
   DATA messages and A should then rerequest from other peers. They may
   continue to send HINT messages, or periodic KEEPALIVE messages such
   that A keeps sending them HAVE messages.

   Once peer A has received all content (video-on-demand use case) it
   stops sending messages to all other peers that have all content
   (a.k.a. seeders). Peer A MAY also contact the tracker or another
   source again to obtain more peer addresses.

2.3. Leaving a Swarm

   Depending on the transport protocol used, peers should either use
   explicit leave messages or implicitly leave a swarm by stopping to
   respond to messages. Peers that learn about the departure should
   remove these peers from the current peer list. The implicit-leave
   mechanism works for both graceful and ungraceful leaves (i.e., peer
   crashes or disconnects). When leaving gracefully, a peer should
   deregister from the tracker following the (PPSP) tracker protocol.

3. Messages

   In general, no error codes or responses are used in the protocol;
   absence of any response indicates an error. Invalid messages are
   discarded.

   For the sake of simplicity, one swarm of peers always deals with one
   content asset (e.g. file) only. Retrieval of large collections of
   files is done by retrieving a directory list file and then
   recursively retrieving files, which might also turn to be directory
   lists, as described in Sec. 3.11.

Grishchenko and Bakker   Expires April 28, 2012                 [Page 7]



Internet-Draft                   swift                  October 26, 2011

3.1. HANDSHAKE

   As an end-to-end check that the peers are actually in the correct
   swarm, the initiating peer and the addressed peer SHOULD send a
   HANDSHAKE message in the first datagrams they exchange. The only
   payload of the HANDSHAKE message is the root hash of the content.

   After the handshakes are exchanged, the initiator knows that the peer
   really responds. Hence, the second datagram the initiator sends MAY
   already contain some heavy payload. To minimize the number of
   initialization roundtrips, implementations MAY dispense with the
   HANDSHAKE message. To the same end, the first two datagrams exchanged
   MAY also contain some minor payload, e.g. HAVE messages to indicate
   the current progress of a peer or a HINT (see Sec. 3.6).

3.3. HAVE

   The HAVE message is used to convey which chunks a peers has
   available, expressed in a new content addressing scheme called "bin
   numbers".

3.3.1. Bin Numbers

   Swift employs a generic content addressing scheme based on binary
   intervals ("bins" in short). The smallest interval is a chunk (e.g. a
   N kilobyte block), the top interval is the complete 2**63 range.  A
   novel addition to the classical scheme are "bin numbers", a scheme of
   numbering binary intervals which lays them out into a vector nicely.
   Consider an chunk interval of width W. To derive the bin numbers of
   the complete interval and the subintervals, a minimal balanced binary
   tree is built that is at least W chunks wide at the base. The leaves
   from left-to-right correspond to the chunks 0..W in the interval, and
   have bin number I*2 where I is the index of the chunk (counting
   beyond W-1 to balance the tree). The higher level nodes P in the tree
   have bin number

         binP = (binL + binR) / 2

   where binL is the bin of node P’s left-hand child and binR is the bin
   of node P’s right-hand child. Given that each node in the tree
   represents a subinterval of the original interval, each such
   subinterval now is addressable by a bin number, a single integer. The
   bin number tree of a interval of width W=8 looks like this:
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                           7
                          / \
                        /     \
                      /         \
                    /             \
                  3                11
                 / \              / \
                /   \            /   \
               /     \          /     \
              1       5        9       13
             / \     / \      / \      / \
            0   2   4   6    8   10  12   14

   So bin 7 represents the complete interval, 3 represents the interval
   of chunk 0..3 and 1 represents the interval of chunks 0 and 1. The
   special numbers 0xFFFFFFFF (32-bit) or 0xFFFFFFFFFFFFFFFF (64-bit)
   stands for an empty interval, and 0x7FFF...FFF stands for
   "everything".

3.3.2. HAVE Message

   When a receiving peer has successfully checked the integrity of a
   chunk or interval of chunks it MUST send a HAVE message to all peers
   it wants to interact with. The latter allows the HAVE message to be
   used as a method of choking. The HAVE message MUST contain the bin
   number of the biggest complete interval of all chunks the receiver
   has received and checked so far that fully includes the interval of
   chunks just received. So the bin number MUST denote at least the
   interval received, but the receiver is supposed to aggregate and
   acknowledge bigger bins, when possible.

   As a result, every single chunk is acknowledged a logarithmic number
   of times. That provides some necessary redundancy of acknowledgments
   and sufficiently compensates for unreliable transport protocols.

   To record which chunks a peer has in the state that an implementation
   keeps for each peer, an implementation MAY use the "binmap" data
   structure, which is a hybrid of a bitmap and a binary tree, discussed
   in detail in [BINMAP].

3.4. ACK

   When swift is run over an unreliable transport protocol, an
   implementation MAY choose to use ACK messages to acknowledge received
   data. When a receiving peer has successfully checked the integrity of
   a chunk or interval of chunks C it MUST send a ACK message containing
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   the bin number of its biggest, complete, interval covering C to the
   sending peer (see HAVE). To facilitate delay-based congestion
   control, an ACK message contains a timestamp.

3.5. DATA and HASH

   The DATA message is used to transfer chunks of content. The
   associated HASH message carries cryptographic hashes that are
   necessary for a receiver to check the the integrity of the chunk.
   Swift’s content integrity protection is based on a Merkle hash tree
   and works as follows.

3.5.1. Merkle Hash Tree

   Swift uses a method of naming content based on self-certification. In
   particular, content in swift is identified by a single cryptographic
   hash that is the root hash in a Merkle hash tree calculated
   recursively from the content [ABMRKL]. This self-certifying hash tree
   allows every peer to directly detect when a malicious peer tries to
   distribute fake content. It also ensures only a small the amount of
   information is needed to start a download (the root hash and some
   peer addresses). For live streaming public keys and dynamic trees are
   used, see below.

   The Merkle hash tree of a content asset that is divided into N chunks
   is constructed as follows. Note the construction does not assume
   chunks of content to be fixed size. Given a cryptographic hash
   function, more specifically a modification detection code (MDC)
   [HAC01], such as SHA1, the hashes of all the chunks of the content
   are calculated. Next, a binary tree of sufficient height is created.
   Sufficient height means that the lowest level in the tree has enough
   nodes to hold all chunk hashes in the set, as before, see HAVE
   message. The figure below shows the tree for a content asset
   consisting of 7 chunks. As before with the content addressing scheme,
   the leaves of the tree correspond to a chunk and in this case are
   assigned the hash of that chunk, starting at the left-most leaf. As
   the base of the tree may be wider than the number of chunks, any
   remaining leaves in the tree are assigned a empty hash value of all
   zeros. Finally, the hash values of the higher levels in the tree are
   calculated, by concatenating the hash values of the two children
   (again left to right) and computing the hash of that aggregate. This
   process ends in a hash value for the root node, which is called the
   "root hash". Note the root hash only depends on the content and any
   modification of the content will result in a different root hash.
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                           7 = root hash
                          / \
                        /     \
                      /         \
                    /             \
                  3*               11
                 / \              / \
                /   \            /   \
               /     \          /     \
              1       5        9       13* = uncle hash
             / \     / \      / \      / \
            0   2   4   6    8   10* 12   14

            C0  C1  C2  C3   C4  C5  C6   E
            =chunk index     ^^           = empty hash

3.5.2. Content Integrity Verification

   Assuming a peer receives the root hash of the content it wants to
   download from a trusted source, it can can check the integrity of any
   chunk of that content it receives as follows. It first calculates the
   hash of the chunk it received, for example chunk C4 in the previous
   figure. Along with this chunk it MUST receive the hashes required to
   check the integrity of that chunk. In principle, these are the hash
   of the chunk’s sibling (C5) and that of its "uncles". A chunk’s
   uncles are the sibling Y of its parent X, and the uncle of that Y,
   recursively until the root is reached. For chunk C4 its uncles are
   bins 13 and 3, marked with * in the figure. Using this information
   the peer recalculates the root hash of the tree, and compares it to
   the root hash it received from the trusted source. If they match the
   chunk of content has been positively verified to be the requested
   part of the content. Otherwise, the sending peer either sent the
   wrong content or the wrong sibling or uncle hashes. For simplicity,
   the set of sibling and uncles hashes is collectively referred to as
   the "uncle hashes".

   In the case of live streaming the tree of chunks grows dynamically
   and content is identified with a public key instead of a root hash,
   as the root hash is undefined or, more precisely, transient, as long
   as new data is generated by the live source. Live streaming is
   described in more detail below, but content verification works the
   same for both live and predefined content.

3.5.3. The Atomic Datagram Principle

   As explained above, a datagram consists of a sequence of messages.
   Ideally, every datagram sent must be independent of other datagrams,
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   so each datagram SHOULD be processed separately and a loss of one
   datagram MUST NOT disrupt the flow.  Thus, as a datagram carries zero
   or more messages, neither messages nor message interdependencies
   should span over multiple datagrams.

   This principle implies that as any chunk is verified using its uncle
   hashes the necessary hashes MUST be put into the same datagram as the
   chunk’s data (Sec. 3.5.4).  As a general rule, if some additional
   data is still missing to process a message within a datagram, the
   message SHOULD be dropped.

   The hashes necessary to verify a chunk are in principle its sibling’s
   hash and all its uncle hashes, but the set of hashes to sent can be
   optimized. Before sending a packet of data to the receiver, the
   sender inspects the receiver’s previous acknowledgments (HAVE or ACK)
   to derive which hashes the receiver already has for sure. Suppose,
   the receiver had acknowledged bin 1 (first two chunks of the file),
   then it must already have uncle hashes 5, 11 and so on. That is
   because those hashes are necessary to check packets of bin 1 against
   the root hash. Then, hashes 3, 7 and so on must be also known as they
   are calculated in the process of checking the uncle hash chain.
   Hence, to send bin 12 (i.e. the 7th chunk of content), the sender
   needs to include just the hashes for bins 14 and 9, which let the
   data be checked against hash 11 which is already known to the
   receiver.

   The sender MAY optimistically skip hashes which were sent out in
   previous, still unacknowledged datagrams. It is an optimization
   tradeoff between redundant hash transmission and possibility of
   collateral data loss in the case some necessary hashes were lost in
   the network so some delivered data cannot be verified and thus has to
   be dropped. In either case, the receiver builds the Merkle tree on-
   demand, incrementally, starting from the root hash, and uses it for
   data validation.

   In short, the sender MUST put into the datagram the missing hashes
   necessary for the receiver to verify the chunk.

3.5.4. DATA and HASH Messages

   Concretely, a peer that wants to send a chunk of content creates a
   datagram that MUST consist of one or more HASH messages and a DATA
   message. The datagram MUST contain a HASH message for each hash the
   receiver misses for integrity checking. A HASH message MUST contain
   the bin number and hash data for each of those hashes. The DATA
   message MUST contain the bin number of the chunk and chunk itself. A
   peer MAY send the required messages for multiple chunks in the same
   datagram.
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3.6. HINT

   While bulk download protocols normally do explicit requests for
   certain ranges of data (i.e., use a pull model, for example,
   BitTorrent [BITTORRENT]), live streaming protocols quite often use a
   request-less push model to save round trips. Swift supports both
   models of operation.

   A peer MUST send a HINT message containing the bin of the chunk
   interval it wants to download. A peer receiving a HINT message MAY
   send out requested pieces. When it receives multiple HINTs (either in
   one datagram or in multiple), the peer SHOULD process the HINTs
   sequentially. When live streaming, it also may send some other chunks
   in case it runs out of requests or for some other reason. In that
   case the only purpose of HINT messages is to coordinate peers and to
   avoid unnecessary data retransmission, hence the name.

3.7. Peer Address Exchange and NAT Hole Punching

   Peer address exchange messages (or PEX messages for short) are common
   for many peer-to-peer protocols. By exchanging peer addresses in
   gossip fashion, peers relieve central coordinating entities (the
   trackers) from unnecessary work. swift optionally features two types
   of PEX messages: PEX_REQ and PEX_ADD. A peer that wants to retrieve
   some peer addresses MUST send a PEX_REQ message. The receiving peer
   MAY respond with a PEX_ADD message containing the addresses of
   several peers. The addresses MUST be of peers it has recently
   exchanged messages with to guarantee liveliness.

   To unify peer exchange and NAT hole punching functionality, the
   sending pattern of PEX messages is restricted. As the swift handshake
   is able to do simple NAT hole punching [SNP] transparently, PEX
   messages must be emitted in the way to facilitate that. Namely, once
   peer A introduces peer B to peer C by sending a PEX_ADD message to C,
   it SHOULD also send a message to B introducing C. The messages SHOULD
   be within 2 seconds from each other, but MAY not be, simultaneous,
   instead leaving a gap of twice the "typical" RTT, i.e. 300-600ms. The
   peers are supposed to initiate handshakes to each other thus forming
   a simple NAT hole punching pattern where the introducing peer
   effectively acts as a STUN server [RFC5389]. Still, peers MAY ignore
   PEX messages if uninterested in obtaining new peers or because of
   security considerations (rate limiting) or any other reason.

   The PEX messages can be used to construct a dedicated tracker peer.
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3.8. KEEPALIVE

   A peer MUST send a datagram containing a KEEPALIVE message
   periodically to each peer it wants to interact with in the future but
   has no other messages to send them at present.

3.9. VERSION
   Peers MUST convey which version of the swift protocol they support
   using a VERSION message. This message MUST be included in the initial
   (handshake) datagrams and MUST indicate which version of the swift
   protocol the sending peer supports.

3.10. Conveying Peer Capabilities
   Peers may support just a subset of the swift messages. For example,
   peers running over TCP may not accept ACK messages, or peers used
   with a centralized tracking infrastructure may not accept PEX
   messages. For these reasons, peers SHOULD signal which subset of the
   swift messages they support by means of the MSGTYPE_RCVD message.
   This message SHOULD be included in the initial (handshake) datagrams
   and MUST indicate which swift protocol messages the sending peer
   supports.

3.11. Directory Lists

   Directory list files MUST start with magic bytes ".\n..\n". The rest
   of the file is a newline-separated list of hashes and file names for
   the content of the directory. An example:

   .
   ..
   1234567890ABCDEF1234567890ABCDEF12345678  readme.txt
   01234567890ABCDEF1234567890ABCDEF1234567  big_file.dat

4. Automatic Detection of Content Size

   In swift, the root hash of a static content asset, such as a video
   file, along with some peer addresses is sufficient to start a
   download. In addition, swift can reliably and automatically derive
   the size of such content from information received from the network
   when fixed sized chunks are used. As a result, it is not necessary to
   include the size of the content asset as the metadata of the content,
   in addition to the root hash. Implementations of swift MAY use this
   automatic detection feature.
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4.1. Peak Hashes

   The ability for a newcomer peer to detect the size of the content
   depends heavily on the concept of peak hashes. Peak hashes, in
   general, enable two cornerstone features of swift: reliable file size
   detection and download/live streaming unification (see Sec. 5). The
   concept of peak hashes depends on the concepts of filled and
   incomplete bins. Recall that when constructing the binary trees for
   content verification and addressing the base of the tree may have
   more leaves than the number of chunks in the content. In the Merkle
   hash tree these leaves were assigned empty all-zero hashes to be able
   to calculate the higher level hashes. A filled bin is now defined as
   a bin number that addresses an interval of leaves that consists only
   of hashes of content chunks, not empty hashes. Reversely, an
   incomplete (not filled) bin addresses an interval that contains also
   empty hashes, typically an interval that extends past the end of the
   file. In the following figure bins 7, 11, 13 and 14 are incomplete
   the rest is filled.

   Formally, a peak hash is a hash in the Merkle tree defined over a
   filled bin, whose sibling is defined over an incomplete bin.
   Practically, suppose a file is 7162 bytes long and a chunk is 1
   kilobyte. That file fits into 7 chunks, the tail chunk being 1018
   bytes long. The Merkle tree for that file looks as follows. Following
   the definition the peak hashes of this file are in bins 3, 9 and 12,
   denoted with a *. E denotes an empty hash.

                           7
                          / \
                        /     \
                      /         \
                    /             \
                  3*               11
                 / \              / \
                /   \            /   \
               /     \          /     \
              1       5        9*      13
             / \     / \      / \      / \
            0   2   4   6    8   10  12*  14

            C0  C1  C2  C3   C4  C5  C6   E
                                     = 1018 bytes

   Peak hashes can be explained by the binary representation of the
   number of chunks the file occupies. The binary representation for 7
   is 111. Every "1" in binary representation of the file’s packet
   length corresponds to a peak hash. For this particular file there are
   indeed three peaks, bin numbers 3, 9, 12. The number of peak hashes
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   for a file is therefore also at most logarithmic with its size.

   A peer knowing which bins contain the peak hashes for the file can
   therefore calculate the number of chunks it consists of, and thus get
   an estimate of the file size (given all chunks but the last are fixed
   size). Which bins are the peaks can  be securely communicated from
   one (untrusted) peer A to another B by letting A send the peak hashes
   and their bin numbers to B. It can be shown that the root hash that B
   obtained from a trusted source is sufficient to verify that these are
   indeed the right peak hashes, as follows.

   Lemma: Peak hashes can be checked against the root hash.

   Proof: (a) Any peak hash is always the left sibling. Otherwise, be it
   the right sibling, its left neighbor/sibling must also be defined
   over a filled bin, because of the way chunks are laid out in the
   leaves, contradiction. (b) For the rightmost peak hash, its right
   sibling is zero. (c) For any peak hash, its right sibling might be
   calculated using peak hashes to the left and zeros for empty bins.
   (d) Once the right sibling of the leftmost peak hash is calculated,
   its parent might be calculated. (e) Once that parent is calculated,
   we might trivially get to the root hash by concatenating the hash
   with zeros and hashing it repeatedly.

   Informally, the Lemma might be expressed as follows: peak hashes
   cover all data, so the remaining hashes are either trivial (zeros) or
   might be calculated from peak hashes and zero hashes.

   Finally, once peer B has obtained the number of chunks in the content
   it can determine the exact file size as follows. Given that all
   chunks except the last are fixed size B just needs to know the size
   of the last chunk. Knowing the number of chunks B can calculate the
   bin number of the last chunk and download it. As always B verifies
   the integrity of this chunk against the trusted root hash. As there
   is only one chunk of data that leads to a successful verification the
   size of this chunk must be correct. B can then determine the exact
   file size as

       (number of chunks -1) * fixed chunk size + size of last chunk

4.2. Procedure

   A swift implementation that wants to use automatic size detection
   MUST operate as follows. When a peer B sends a DATA message for the
   first time to a peer A, B MUST include all the peak hashes for the
   content in the same datagram, unless A has already signalled earlier
   in the exchange that it knows the peak hashes by having acknowledged
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   any bin, even the empty one. The receiver A MUST check the peak
   hashes against the root hash to determine the approximate content
   size. To obtain the definite content size peer A MUST download the
   last chunk of the content from any peer that offers it.

5. Live streaming

   In the case of live streaming a transfer is bootstrapped with a
   public key instead of a root hash, as the root hash is undefined or,
   more precisely, transient, as long as new data is being generated by
   the live source. Live/download unification is achieved by sending
   signed peak hashes on-demand, ahead of the actual data. As before,
   the sender might use acknowledgements to derive which content range
   the receiver has peak hashes for and to prepend the data hashes with
   the necessary (signed) peak hashes. Except for the fact that the set
   of peak hashes changes with time, other parts of the algorithm work
   as described in Sec. 3.

   As with static content assets in the previous section, in live
   streaming content length is not known on advance, but derived
   on-the-go from the peak hashes. Suppose, our 7 KB stream extended to
   another kilobyte. Thus, now hash 7 becomes the only peak hash, eating
   hashes 3, 9 and 12. So, the source sends out a SIGNED_HASH message to
   announce the fact.

   The number of cryptographic operations will be limited. For example,
   consider a 25 frame/second video transmitted over UDP. When each
   frame is transmitted in its own chunk, only 25 signature verification
   operations per second are required at the receiver for bitrates up to
   ˜12.8 megabit/second. For higher bitrates multiple UDP packets per
   frame are needed and the number of verifications doubles.

6. Transport Protocols and Encapsulation

6.1. UDP

6.1.1. Chunk Size

   Currently, swift-over-UDP is the preferred deployment option.
   Effectively, UDP allows the use of IP with minimal overhead and it
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   also allows userspace implementations. The default is to use chunks
   of 1 kilobyte such that a datagram fits in an Ethernet-sized IP
   packet. The bin numbering allows to use swift over Jumbo
   frames/datagrams. Both DATA and HAVE/ACK messages may use e.g. 8
   kilobyte packets instead of the standard 1 KiB. The hashing scheme
   stays the same. Using swift with 512 or 256-byte packets is
   theoretically possible with 64-bit byte-precise bin numbers, but IP
   fragmentation might be a better method to achieve the same result.

6.1.2. Datagrams and Messages

   When using UDP, the abstract datagram described above corresponds
   directly to a UDP datagram. Each message within a datagram has a
   fixed length, which depends on the type of the message. The first
   byte of a message denotes its type. The currently defined types are:

           HANDSHAKE = 0x00
           DATA = 0x01
           ACK = 0x02
           HAVE = 0x03
           HASH = 0x04
           PEX_ADD = 0x05
           PEX_REQ = 0x06
           SIGNED_HASH = 0x07
           HINT = 0x08
           MSGTYPE_RCVD = 0x09
           VERSION = 0x10

   Furthermore, integers are serialized in the network (big-endian) byte
   order. So consider the example of an ACK message (Sec 3.4). It has
   message type of 0x02 and a payload of a bin number, a four-byte
   integer (say, 1); hence, its on the wire representation for UDP can
   be written in hex as: "02 00000001". This hex-like two character-per-
   byte notation is used to represent message formats in the rest of
   this section.

6.1.3. Channels

   As it is increasingly complex for peers to enable UDP communication
   between each other due to NATs and firewalls, swift-over-UDP uses a
   multiplexing scheme, called "channels", to allow multiple swarms to
   use the same UDP port. Channels loosely correspond to TCP connections
   and each channel belongs to a single swarm. When channels are used,
   each datagram starts with four bytes corresponding to the receiving
   channel number.
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6.1.4. HANDSHAKE and VERSION

   A channel is established with a handshake. To start a handshake, the
   initiating peer needs to know:

   (1) the IP address of a peer
   (2) peer’s UDP port and
   (3) the root hash of the content (see Sec. 3.5.1).

   To do the handshake the initiating peer sends a datagram that MUST
   start with an all 0-zeros channel number followed by a VERSION
   message, then a HASH message whose payload is the root hash, and a
   HANDSHAKE message, whose only payload is a locally unused channel
   number.

   On the wire the datagram will look something like this:
      00000000 10 01
      04 7FFFFFFF 1234123412341234123412341234123412341234
      00 00000011
   (to unknown channel, handshake from channel 0x11 speaking protocol
   version 0x01, initiating a transfer of a file with a root hash
   123...1234)

   The receiving peer MUST respond with a datagram that starts with the
   channel number from the sender’s HANDSHAKE message, followed by a
   VERSION message, then a HANDSHAKE message, whose only payload is a
   locally unused channel number, followed by any other messages it
   wants to send.

   Peer’s response datagram on the wire:
      00000011 10 01
      00 00000022  03 00000003
   (peer to the initiator: use channel number 0x22 for this transfer and
   proto version 0x01; I also have first 4 chunks of the file, see Sec.
   4.3)

   At this point, the initiator knows that the peer really responds; for
   that purpose channel ids MUST be random enough to prevent easy
   guessing. So, the third datagram of a handshake MAY already contain
   some heavy payload. To minimize the number of initialization
   roundtrips, the first two datagrams MAY also contain some minor
   payload, e.g. a couple of HAVE messages roughly indicating the
   current progress of a peer or a HINT (see Sec. 3.6). When receiving
   the third datagram, both peers have the proof they really talk to
   each other; three-way handshake is complete.

   A peer MAY explicit close a channel by sending a HANDSHAKE message
   that MUST contain an all 0-zeros channel number.
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   On the wire:
      00 00000000

6.1.5. HAVE

   A HAVE message (type 0x03) states that the sending peer has the
   complete specified bin and successfully checked its integrity:
      03 00000003
   (got/checked first four kilobytes of a file/stream)

6.1.6. ACK

   An ACK message (type 0x02) acknowledges data that was received from
   its addressee; to facilitate delay-based congestion control, an
   ACK message contains a timestamp, in particular, a 64-bit microsecond
   time.
      02 00000002 12345678
   (got the second kilobyte of the file from you; my microsecond
   timer was showing 0x12345678 at that moment)

6.1.7. HASH

   A HASH message (type 0x04) consists of a four-byte bin number and
   the cryptographic hash (e.g. a 20-byte SHA1 hash)
      04 7FFFFFFF 1234123412341234123412341234123412341234

6.1.8. DATA

   A DATA message (type 0x01) consists of a four-byte bin number and the
   actual chunk. In case a datagram contains a DATA message, a sender
   MUST always put the data message in the tail of the datagram. For
   example:
      01 00000000 48656c6c6f20776f726c6421
   (This message accommodates an entire file: "Hello world!")

6.1.9. KEEPALIVE

   Keepalives do not have a message type on UDP. They are just simple
   datagrams consisting of a 4-byte channel id only.

   On the wire:
      00000022
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6.1.10. Flow and Congestion Control

   Explicit flow control is not necessary in swift-over-UDP. In the case
   of video-on-demand the receiver will request data explicitly from
   peers and is therefore in control of how much data is coming towards
   it. In the case of live streaming, where a push-model may be used,
   the amount of data incoming is limited to the bitrate, which the
   receiver must be able to process otherwise it cannot play the stream.
   Should, for any reason, the receiver get saturated with data that
   situation is perfectly detected by the congestion control. Swift-
   over-UDP can support different congestion control algorithms, in
   particular, it supports the new IETF Low Extra Delay Background
   Transport (LEDBAT) congestion control algorithm that ensures that
   peer-to-peer traffic yields to regular best-effort traffic [LEDBAT].

6.2. TCP

   When run over TCP, swift becomes functionally equivalent to
   BitTorrent. Namely, most swift messages have corresponding BitTorrent
   messages and vice versa, except for BitTorrent’s explicit interest
   declarations and choking/unchoking, which serve the classic
   implementation of the tit-for-tat algorithm [TIT4TAT]. However, TCP
   is not well suited for multiparty communication, as argued in Sec. 9.

6.3. RTP Profile for PPSP

   In this section we sketch how swift can be integrated into RTP
   [RFC3550] to form the Peer-to-Peer Streaming Protocol (PPSP) [I-
   D.ietf-ppsp-reqs] running over UDP. The PPSP charter requires
   existing media transfer protocols be used [PPSPCHART]. Hence, the
   general idea is to define swift as a profile of RTP, in the same way
   as the Secure Real-time Transport Protocol (SRTP) [RFC3711]. SRTP,
   and therefore swift is considered ‘‘a "bump in the stack"
   implementation which resides between the RTP application and the
   transport layer. [swift] intercepts RTP packets and then forwards an
   equivalent [swift] packet on the sending side, and intercepts [swift]
   packets and passes an equivalent RTP packet up the stack on the
   receiving side.’’ [RFC3711].

   In particular, to encode a swift datagram in an RTP packet all the
   non-DATA messages of swift such as HINT and HAVE are postfixed to the
   RTP packet using the UDP encoding and the content of DATA messages is
   sent in the payload field. Implementations MAY omit the RTP header
   for packets without payload. This construction allows the streaming
   application to use of all RTP’s current features, and with a
   modification to the Merkle tree hashing scheme (see below) meets
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   swift’s atomic datagram principle. The latter means that a receiving
   peer can autonomously verify the RTP packet as being correct content,
   thus preventing the spread of corrupt data (see requirement PPSP.SEC-
   REQ-4).

   The use of ACK messages for reliability is left as a choice of the
   application using PPSP.

6.3.1. Design

   6.3.1.1. Joining a Swarm

   To commence a PPSP download a peer A must have the swarm ID of the
   stream and a list of one or more tracker contact points (e.g.
   host+port). The list of trackers is optional in the presence of a
   decentralized tracking mechanism. The swarm ID consists of the swift
   root hash of the content, which is divided into chunks (see
   Discussion).

   Peer A now registers with the PPSP tracker following the tracker
   protocol [I-D.ietf.ppsp-reqs] and receives the IP address and RTP
   port of peers already in the swarm, say B, C, and D. Peer A now sends
   an RTP packet containing a HANDSHAKE without channel information to
   B, C, and D. This serves as an end-to-end check that the peers are
   actually in the correct swarm. Optionally A could include a HINT
   message in some RTP packets if it wants to start receiving content
   immediately. B and C respond with a HANDSHAKE and HAVE messages.  D
   sends just a HANDSHAKE and omits HAVE messages as a way of choking A.

   6.3.1.2. Exchanging Chunks

   In response to B and C, A sends new RTP packets to B and C with HINTs
   for disjunct sets of chunks. B and C respond with the requested
   chunks in the payload and HAVE messages, updating their chunk
   availability. Upon receipt, A sends HAVE for the chunks received and
   new HINT messages to B and C. When e.g. C finds that A obtained a
   chunk (from B) that C did not yet have, C’s response includes a HINT
   for that chunk.

   D does not send HAVE messages, instead if D decides to unchoke peer
   A, it sends an RTP packet with HAVE messages to inform A of its
   current availability. If B or C decide to choke A they stop sending
   HAVE and DATA messages and A should then rerequest from other peers.
   They may continue to send HINT messages, or exponentially slowing
   KEEPALIVE messages such that A keeps sending them HAVE messages.
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   Once A has received all content (video-on-demand use case) it stops
   sending messages to all other peers that have all content (a.k.a.
   seeders).

   6.3.1.3. Leaving a Swarm

   Peers can implicitly leave a swarm by stopping to respond to
   messages. Sending peers should remove these peers from the current
   peer list. This mechanism works for both graceful and ungraceful
   leaves (i.e., peer crashes or disconnects). When leaving gracefully,
   a peer should deregister from the tracker following the PPSP tracker
   protocol.

   More explicit graceful leaves could be implemented using RTCP. In
   particular, a peer could send a RTCP BYE on the RTCP port that is
   derivable from a peer’s RTP port for all peers in its current peer
   list. However, to prevent malicious peers from sending BYEs a form of
   peer authentication is required (e.g. using public keys as peer IDs
   [PERMIDS].)

   6.3.1.4. Discussion

   Using swift as an RTP profile requires a change to the content
   integrity protection scheme (see Sec. 3.5). The fields in the RTP
   header, such as the timestamp and PT fields, must be protected by the
   Merkle tree hashing scheme to prevent malicious alterations.
   Therefore, the Merkle tree is no longer constructed from pure content
   chunks, but from the complete RTP packet for a chunk as it would be
   transmitted (minus the non-DATA swift messages). In other words, the
   hash of the leaves in the tree is the hash over the Authenticated
   Portion of the RTP packet as defined by SRTP, illustrated in the
   following figure (extended from [RFC3711]). There is no need for the
   RTP packets to be fixed size, as the hashing scheme can deal with
   variable-sized leaves.
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        0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+
     |V=2|P|X|  CC   |M|     PT      |       sequence number         | |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
     |                           timestamp                           | |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
     |           synchronization source (SSRC) identifier            | |
     +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ |
     |            contributing source (CSRC) identifiers             | |
     |                               ....                            | |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
     |                   RTP extension (OPTIONAL)                    | |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
     |                          payload  ...                         | |
     |                               +-------------------------------+ |
     |                               | RTP padding   | RTP pad count | |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<+
     ˜                     swift non-DATA messages (REQUIRED)        ˜ |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
     |                 length of swift messages (REQUIRED)           | |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
                                                                       |
                                              Authenticated Portion ---+

           Figure: The format of an RTP-Swift packet.

   As a downside, with variable-sized payloads the automatic content
   size detection of Section 4 no longer works, so content length MUST
   be explicit in the metadata. In addition, storage on disk is more
   complex with out-of-order, variable-sized packets. On the upside,
   carrying RTP over swift allow decryption-less caching.

   As with UDP, another matter is how much data is carried inside each
   packet. An important swift-specific factor here is the resulting
   number of hash calculations per second needed to verify chunks.
   Experiments should be conducted to ensure they are not excessive for,
   e.g., mobile hardware.

   At present, Peer IDs are not required in this design.

6.3.2. PPSP Requirements

   6.3.2.1. Basic Requirements

   - PPSP.REQ-1: The swift PEX message can also be used as the basis for
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   a tracker protocol, to be discussed elsewhere.

   - PPSP.REQ-2: This draft preserves the properties of RTP.

   - PPSP.REQ-3: This draft does not place requirements on peer IDs,
   IP+port is sufficient.

   - PPSP.REQ-4: The content is identified by its root hash (video-on-
   demand) or a public key (live streaming).

   - PPSP.REQ-5: The content is partitioned by the streaming
   application.

   - PPSP.REQ-6: Each chunk is identified by a bin number (and its
   cryptographic hash.)

   - PPSP.REQ-7: The protocol is carried over UDP because RTP is.

   - PPSP.REQ-8: The protocol has been designed to allow meaningful data
   transfer between peers as soon as possible and to avoid unnecessary
   round-trips. It supports small and variable chunk sizes, and its
   content integrity protection enables wide scale caching.

   6.3.2.2. Peer Protocol Requirements

   - PPSP.PP.REQ-1: A GET_HAVE would have to be added to request which
   chunks are available from a peer, if the proposed push-based HAVE
   mechanism is not sufficient.

   - PPSP.PP.REQ-2: A set of HAVE messages satisfies this.

   - PPSP.PP.REQ-3: The PEX_REQ message satisfies this. Care should be
   taken with peer address exchange in general, as the use of such
   hearsay is a risk for the protocol as it may be exploited by
   malicious peers (as a DDoS attack mechanism). A secure tracking /
   peer sampling protocol like [PUPPETCAST] may be needed to make peer-
   address exchange safe.

   - PPSP.PP.REQ-4: HAVE messages convey current availability via a push
   model.

   - PPSP.PP.REQ-5: Bin numbering enables a compact representation of
   chunk availability.

   - PPSP.PP.REQ-6: A new PPSP specific Peer Report message would have
   to be added to RTCP.
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   - PPSP.PP.REQ-7: Transmission and chunk requests are integrated in
   this protocol.

   6.3.2.3. Security Requirements

   - PPSP.SEC.REQ-1: An access control mechanism like Closed Swarms
   [CLOSED] would have to be added.

   - PPSP.SEC.REQ-2: As RTP is carried verbatim over swift, RTP
   encryption can be used. Note that just encrypting the RTP part will
   allow for caching servers that are part of the swarm but do not need
   access to the decryption keys. They just need access to the swift
   HASHES in the postfix to verify the packet’s integrity.

   - PPSP.SEC.REQ-3: RTP encryption or IPsec [RFC4303] can be used, if
   the swift messages must also be encrypted.

   - PPSP.SEC.REQ-4: The Merkle tree hashing scheme prevents the
   indirect spread of corrupt content, as peers will only forward chunks
   to others if their integrity check out. Another protection mechanism
   is to not depend on hearsay (i.e., do not forward other peers’
   availability information), or to only use it when the information
   spread is self-certified by its subjects.

   Other attacks, such as a malicious peer claiming it has content but
   not replying, are still possible. Or wasting CPU and bandwidth at a
   receiving peer by sending packets where the DATA doesn’t match the
   HASHes.

   - PPSP.SEC.REQ-5: The Merkle tree hashing scheme allows a receiving
   peer to detect a malicious or faulty sender, which it can
   subsequently ignore. Spreading this knowledge to other peers such
   that they know about this bad behavior is hearsay.

   - PPSP.SEC.REQ-6: A risk in peer-to-peer streaming systems is that
   malicious peers launch an Eclipse [ECLIPSE] attack on the initial
   injectors of the content (in particular in live streaming). The
   attack tries to let the injector upload to just malicious peers which
   then do not forward the content to others, thus stopping the
   distribution. An Eclipse attack could also be launched on an
   individual peer. Letting these injectors only use trusted trackers
   that provide true random samples of the population or using a secure
   peer sampling service [PUPPETCAST] can help negate such an attack.
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   - PPSP.SEC.REQ-7: swift supports decentralized tracking via PEX or
   additional mechanisms such as DHTs [SECDHTS], but self-certification
   of addresses is needed. Self-certification means For example, that
   each peer has a public/private key pair [PERMIDS] and creates self-
   certified address changes that include the swarm ID and a timestamp,
   which are then exchanged among peers or stored in DHTs. See also
   discussion of PPSP.PP.REQ-3 above. Content distribution can continue
   as long as there are peers that have it available.

   - PPSP.SEC.REQ-8: The verification of data via hashes obtained from a
   trusted source is well-established in the BitTorrent protocol
   [BITTORRENT]. The proposed Merkle tree scheme is a secure extension
   of this idea. Self-certification and not using hearsay are other
   lessons learned from existing distributed systems.

   - PPSP.SEC.REQ-9: Swift has built-in content integrity protection via
   self-certified naming of content, see SEC.REQ-5 and Sec. 3.5.1.

6.4. HTTP (as PPSP)

   In this section we sketch how swift can be carried over HTTP
   [RFC2616] to form the PPSP running over TCP. The general idea is to
   encode a swift datagram in HTTP GET and PUT requests and their
   replies by transmitting all the non-DATA messages such as HINTs and
   HAVEs as headers and send DATA messages in the body. This idea
   follows the atomic datagram principle for each request and reply. So
   a receiving peer can autonomously verify the message as carrying
   correct data, thus preventing the spread of corrupt data (see
   requirement PPSP.SEC-REQ-4).

   A problem with HTTP is that it is a client/server protocol. To
   overcome this problem, a peer A uses a PUT request instead of a GET
   request if the peer B has indicated in a reply that it wants to
   retrieve a chunk from A. In cases where peer A is no longer
   interested in receiving requests from B (described below) B may need
   to establish a new HTTP connection to A to quickly download a chunk,
   instead of waiting for a convenient time when A sends another
   request. As an alternative design, two HTTP connections could be used
   always., but this is inefficient.

6.4.1. Design

   6.4.1.1. Joining a Swarm

   To commence a PPSP download a peer A must have the swarm ID of the
   stream and a list of one or more tracker contact points, as above.
   The swarm ID as earlier also consists of the swift root hash of the
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   content, divided in chunks by the streaming application (e.g. fixed-
   size chunks of 1 kilobyte for video-on-demand).

   Peer A now registers with the PPSP tracker following the tracker
   protocol [I-D.ietf-ppsp-reqs] and receives the IP address and HTTP
   port of peers already in the swarm, say B, C, and D. Peer A now
   establishes persistent HTTP connections with B, C, D and sends GET
   requests with the Request-URI set to /<encoded roothash>. Optionally
   A could include a HINT message in some requests if it wants to start
   receiving content immediately. A HINT is encoded as a Range header
   with a new "bins" unit [RFC2616,$14.35].

   B and C respond with a 200 OK reply with header-encoded HAVE
   messages.  A HAVE message is encoded as an extended Accept-Ranges:
   header [RFC2616,$14.5] with the new bins unit and the possibility of
   listing the set of accepted bins. If no HINT/Range header was present
   in the request, the body of the reply is empty. D sends just a 200 OK
   reply and omits the HAVE/Accept-Ranges header as a way of choking A.

   6.4.1.2. Exchanging Chunks

   In response to B and C, A sends GET requests with Range headers,
   requesting disjunct sets of chunks. B and C respond with 206 Partial
   Content replies with the requested chunks in the body and Accept-
   Ranges headers, updating their chunk availability. The HASHES for the
   chunks are encoded in a new Content-Merkle header and the Content-
   Range is set to identify the chunk [RFC2616,$14.16]. A new
   "multipart-bin ranges" equivalent to the "multipart-bytes ranges"
   media type may be used to transmit multiple chunks in one reply.

   Upon receipt, A sends a new GET request with a HAVE/Accept-Ranges
   header for the chunks received and new HINT/Range headers to B and C.
   Now when e.g. C finds that A obtained a chunk (from B) that C did not
   yet have, C’s response includes a HINT/Range for that chunk. In this
   case, A’s next request to C is not a GET request, but a PUT request
   with the requested chunk sent in the body.

   Again, working around the fact that HTTP is a client/server protocol,
   peer A periodically sends HEAD requests to peer D (which was
   virtually choking A) that serve as keepalives and may contain
   HAVE/Accept-Ranges headers. If D decides to unchoke peer A, it
   includes an Accept-Ranges header in the "200 OK" reply to inform A of
   its current chunk availability.

   If B or C decide to choke A they start responding with 204 No Content
   replies without HAVE/Accept-Ranges headers and A should then re-
   request from other peers. However, if their replies contain
   HINT/Range headers A should keep on sending PUT requests with the
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   desired data (another client/server workaround). If not, A should
   slowly send HEAD requests as keepalive and content availability
   update.

   Once A has received all content (video-on-demand use case) it closes
   the persistent connections to all other peers that have all content
   (a.k.a. seeders).

   6.4.1.3. Leaving a Swarm

   Peers can explicitly leave a swarm by closing the connection. This
   mechanism works for both graceful and ungraceful leaves (i.e., peer
   crashes or disconnects). When leaving gracefully, a peer should
   deregister from the tracker following the PPSP tracker protocol.

   6.4.1.4. Discussion

   As mentioned earlier, this design suffers from the fact that HTTP is
   a client/server protocol. A solution where a peer establishes two
   HTTP connections with every other peer may be more elegant, but
   inefficient. The mapping of swift messages to headers remains the
   same:

        HINT = Range
        HAVE = Accept-Ranges
        HASH = Content-Merkle
        PEX = e.g. extended Content-Location

   The Content-Merkle header should include some parameters to indicate
   the hash function and chunk size (e.g. SHA1 and 1K) used to build the
   Merkle tree.

6.4.2. PPSP Requirements

   6.4.2.1. Basic Requirements

   - PPSP.REQ-1: The HTTP-based BitTorrent tracker protocol [BITTORRENT]
   can be used as the basis for a tracker protocol, to be discussed
   elsewhere.

   - PPSP.REQ-2: This draft preserves the properties of HTTP, but extra
   mechanisms may be necessary to protect against faulty or malicious
   peers.

   - PPSP.REQ-3: This draft does not place requirements on peer IDs,
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   IP+port is sufficient.

   - PPSP.REQ-4: The content is identified by its root hash (video-on-
   demand) or a public key (live streaming).

   - PPSP.REQ-5: The content is partitioned into chunks by the streaming
   application (see 6.4.1.1.)

   - PPSP.REQ-6: Each chunk is identified by a bin number (and its
   cryptographic hash.)

   - PPSP.REQ-7: The protocol is carried over TCP because HTTP is.

   6.4.2.2. Peer Protocol Requirements

   - PPSP.PP.REQ-1: A HEAD request can be used to find out which chunks
   are available from a peer, which returns the new Accept-Ranges
   header.

   - PPSP.PP.REQ-2: The new Accept-Ranges header satisfies this.

   - PPSP.PP.REQ-3: A GET with a request-URI requesting the peers of a
   resource (e.g. /<encoded roothash>/peers) would have to be added to
   request known peers from a peer, if the proposed push-based
   PEX/˜Content-Location mechanism is not sufficient. Care should be
   taken with peer address exchange in general, as the use of such
   hearsay is a risk for the protocol as it may be exploited by
   malicious peers (as a DDoS attack mechanism). A secure tracking /
   peer sampling protocol like [PUPPETCAST] may be needed to make peer-
   address exchange safe.

   - PPSP.PP.REQ-4: HAVE/Accept-Ranges headers convey current
   availability.

   - PPSP.PP.REQ-5: Bin numbering enables a compact representation of
   chunk availability.

   - PPSP.PP.REQ-6: A new PPSP specific Peer-Report header would have to
   be added.

   - PPSP.PP.REQ-7: Transmission and chunk requests are integrated in
   this protocol.
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   6.4.2.3. Security Requirements

   - PPSP.SEC.REQ-1: An access control mechanism like Closed Swarms
   [CLOSED] would have to be added.

   - PPSP.SEC.REQ-2: As swift is carried over HTTP, HTTPS encryption can
   be used instead. Alternatively, just the body could be encrypted. The
   latter allows for caching servers that are part of the swarm but do
   not need access to the decryption keys (they need access to the swift
   HASHES in the headers to verify the packet’s integrity).

   - PPSP.SEC.REQ-3: HTTPS encryption or the content encryption
   facilities of HTTP can be used.

   - PPSP.SEC.REQ-4: The Merkle tree hashing scheme prevents the
   indirect spread of corrupt content, as peers will only forward
   content to others if its integrity checks out. Another protection
   mechanism is to not depend on hearsay (i.e., do not forward other
   peers’ availability information), or to only use it when the
   information spread is self-certified by its subjects.

   Other attacks such as a malicious peer claiming it has content, but
   not replying are still possible. Or wasting CPU and bandwidth at a
   receiving peer by sending packets where the body doesn’t match the
   HASH/Content-Merkle headers.

   - PPSP.SEC.REQ-5: The Merkle tree hashing scheme allows a receiving
   peer to detect a malicious or faulty sender, which it can
   subsequently close its connection to and ignore. Spreading this
   knowledge to other peers such that they know about this bad behavior
   is hearsay.

   - PPSP.SEC.REQ-6: A risk in peer-to-peer streaming systems is that
   malicious peers launch an Eclipse [ECLIPSE] attack on the initial
   injectors of the content (in particular in live streaming). The
   attack tries to let the injector upload to just malicious peers which
   then do not forward the content to others, thus stopping the
   distribution. An Eclipse attack could also be launched on an
   individual peer. Letting these injectors only use trusted trackers
   that provide true random samples of the population or using a secure
   peer sampling service [PUPPETCAST] can help negate such an attack.

   - PPSP.SEC.REQ-7: swift supports decentralized tracking via PEX or
   additional mechanisms such as DHTs [SECDHTS], but self-certification
   of addresses is needed. Self-certification means For example, that
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   each peer has a public/private key pair [PERMIDS] and creates self-
   certified address changes that include the swarm ID and a timestamp,
   which are then exchanged among peers or stored in DHTs. See also
   discussion of PPSP.PP.REQ-3 above. Content distribution can continue
   as long as there are peers that have it available.

   - PPSP.SEC.REQ-8: The verification of data via hashes obtained from a
   trusted source is well-established in the BitTorrent protocol
   [BITTORRENT]. The proposed Merkle tree scheme is a secure extension
   of this idea. Self-certification and not using hearsay are other
   lessons learned from existing distributed systems.

   - PPSP.SEC.REQ-9: Swift has built-in content integrity protection via
   self-certified naming of content, see SEC.REQ-5 and Sec. 3.5.1.

7. Security Considerations

   As any other network protocol, the swift faces a common set of
   security challenges. An implementation must consider the possibility
   of buffer overruns, DoS attacks and manipulation (i.e. reflection
   attacks). Any guarantee of privacy seems unlikely, as the user is
   exposing its IP address to the peers. A probable exception is the
   case of the user being hidden behind a public NAT or proxy.

8. Extensibility

8.1. 32 bit vs 64 bit

   While in principle the protocol supports bigger (>1TB) files, all the
   mentioned counters are 32-bit. It is an optimization, as using
   64-bit numbers on-wire may cost ˜2% practical overhead. The 64-bit
   version of every message has typeid of 64+t, e.g. typeid 68 for
   64-bit hash message:
      44 000000000000000E 01234567890ABCDEF1234567890ABCDEF1234567

8.2. IPv6

   IPv6 versions of PEX messages use the same 64+t shift as just
   mentioned.

8.3. Congestion Control Algorithms

   Congestion control algorithm is left to the implementation and may
   even vary from peer to peer. Congestion control is entirely
   implemented by the sending peer, the receiver only provides clues,
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   such as hints, acknowledgments and timestamps. In general, it is
   expected that servers would use TCP-like congestion control schemes
   such as classic AIMD or CUBIC [CUBIC]. End-user peers are expected to
   use weaker-than-TCP (least than best effort) congestion control, such
   as [LEDBAT] to minimize seeding counter-incentives.

8.4. Piece Picking Algorithms

   Piece picking entirely depends on the receiving peer. The sender peer
   is made aware of preferred pieces by the means of HINT messages. In
   some scenarios it may be beneficial to allow the sender to ignore
   those hints and send unrequested data.

8.5. Reciprocity Algorithms

   Reciprocity algorithms are the sole responsibility of the sender
   peer. Reciprocal intentions of the sender are not manifested by
   separate messages (as BitTorrent’s CHOKE/UNCHOKE), as it does not
   guarantee anything anyway (the "snubbing" syndrome).

8.6. Different crypto/hashing schemes

   Once a flavor of swift will need to use a different crypto scheme
   (e.g., SHA-256), a message should be allocated for that. As the root
   hash is supplied in the handshake message, the crypto scheme in use
   will be known from the very beginning. As the root hash is the
   content’s identifier, different schemes of crypto cannot be mixed in
   the same swarm; different swarms may distribute the same content
   using different crypto.

9. Rationale

   Historically, the Internet was based on end-to-end unicast and,
   considering the failure of multicast, was addressed by different
   technologies, which ultimately boiled down to maintaining and
   coordinating distributed replicas. On one hand, downloading from a
   nearby well-provisioned replica is somewhat faster and/or cheaper; on
   the other hand, it requires to coordinate multiple parties (the data
   source, mirrors/CDN sites/peers, consumers). As the Internet
   progresses to richer and richer content, the overhead of peer/replica
   coordination becomes dwarfed by the mass of the download itself.
   Thus, the niche for multiparty transfers expands. Still, current,
   relevant technologies are tightly coupled to a single use case or
   even infrastructure of a particular corporation. The mission of our
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   project is to create a generic content-centric multiparty transport
   protocol to allow seamless, effortless data dissemination on the Net.

                       TABLE 1. Use cases.

         | mirror-based   peer-assisted        peer-to-peer
   ------+----------------------------------------------------
   data  | SunSITE        CacheLogic VelociX   BitTorrent
   VoD   | YouTube        Azureus(+seedboxes)  SwarmPlayer
   live  | Akamai Str.    Octoshape, Joost     PPlive

   The protocol must be designed for maximum genericity, thus focusing
   on the very core of the mission, contain no magic constants and no
   hardwired policies. Effectively, it is a set of messages allowing to
   securely retrieve data from whatever source available, in parallel.
   Ideally, the protocol must be able to run over IP as an independent
   transport protocol. Practically, it must run over UDP and TCP.

9.1.  Design Goals

   The technical focus of the swift protocol is to find the simplest
   solution involving the minimum set of primitives, still being
   sufficient to implement all the targeted usecases (see Table 1),
   suitable for use in general-purpose software and hardware (i.e. a web
   browser or a set-top box). The five design goals for the protocol
   are:

   1. Embeddable kernel-ready protocol.
   2. Embrace real-time streaming, in- and out-of-order download.
   3. Have short warm-up times.
   4. Traverse NATs transparently.
   5. Be extensible, allow for multitude of implementation over
      diverse mediums, allow for drop-in pluggability.

   The objectives are referenced as (1)-(5).

   The goal of embedding (1) means that the protocol must be ready to
   function as a regular transport protocol inside a set-top box, mobile
   device, a browser and/or in the kernel space. Thus, the protocol must
   have light footprint, preferably less than TCP, in spite of the
   necessity to support numerous ongoing connections as well as to
   constantly probe the network for new possibilities. The practical
   overhead for TCP is estimated at 10KB per connection [HTTP1MLN]. We
   aim at <1KB per peer connected. Also, the amount of code necessary to
   make a basic implementation must be limited to 10KLoC of C.
   Otherwise, besides the resource considerations, maintaining and
   auditing the code might become prohibitively expensive.
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   The support for all three basic usecases of real-time streaming,
   in-order download and out-of-order download (2) is necessary for the
   manifested goal of THE multiparty transport protocol as no single
   usecase dominates over the others.

   The objective of short warm-up times (3) is the matter of end-user
   experience; the playback must start as soon as possible. Thus any
   unnecessary initialization roundtrips and warm-up cycles must be
   eliminated from the transport layer.

   Transparent NAT traversal (4) is absolutely necessary as at least 60%
   of today’s users are hidden behind NATs. NATs severely affect
   connection patterns in P2P networks thus impacting performance and
   fairness [MOLNAT,LUCNAT].

   The protocol must define a common message set (5) to be used by
   implementations; it must not hardwire any magic constants, algorithms
   or schemes beyond that. For example, an implementation is free to use
   its own congestion control, connection rotation or reciprocity
   algorithms. Still, the protocol must enable such algorithms by
   supplying sufficient information. For example, trackerless peer
   discovery needs peer exchange messages, scavenger congestion control
   may need timestamped acknowledgments, etc.

9.2.  Not TCP

   To large extent, swift’s design is defined by the cornerstone
   decision to get rid of TCP and not to reinvent any TCP-like
   transports on top of UDP or otherwise. The requirements (1), (4), (5)
   make TCP a bad choice due to its high per-connection footprint,
   complex and less reliable NAT traversal and fixed predefined
   congestion control algorithms. Besides that, an important
   consideration is that no block of TCP functionality turns out to be
   useful for the general case of swarming downloads. Namely,
     1. in-order delivery is less useful as peer-to-peer protocols
     often employ out-of-order delivery themselves and in either case
     out-of-order data can still be stored;
     2. reliable delivery/retransmissions are not useful because
     the same data might be requested from different sources; as
     in-order delivery is not required, packet losses might be
     patched up lazily, without stopping the flow of data;
     3. flow control is not necessary as the receiver is much less
     likely to be saturated with the data and even if so, that
     situation is perfectly detected by the congestion control;
     4. TCP congestion control is less useful as custom congestion
     control is often needed [LEDBAT].
   In general, TCP is built and optimized for a different usecase than
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   we have with swarming downloads. The abstraction of a "data pipe"
   orderly delivering some stream of bytes from one peer to another
   turned out to be irrelevant. In even more general terms, TCP
   supports the abstraction of pairwise _conversations_, while we need
   a content-centric protocol built around the abstraction of a cloud
   of participants disseminating the same _data_ in any way and order
   that is convenient to them.

   Thus, the choice is to design a protocol that runs on top of
   unreliable datagrams. Instead of reimplementing TCP, we create a
   datagram-based protocol, completely dropping the sequential data
   stream abstraction. Removing unnecessary features of TCP makes it
   easier both to implement the protocol and to verify it; numerous TCP
   vulnerabilities were caused by complexity of the protocol’s state
   machine. Still, we reserve the possibility to run swift on top of TCP
   or HTTP.

   Pursuing the maxim of making things as simple as possible but not
   simpler, we fit the protocol into the constraints of the transport
   layer by dropping all the transmission’s technical metadata except
   for the content’s root hash (compare that to metadata files used in
   BitTorrent). Elimination of technical metadata is achieved through
   the use of Merkle [MERKLE,ABMRKL] hash trees, exclusively single-file
   transfers and other techniques. As a result, a transfer is identified
   and bootstrapped by its root hash only.

   To avoid the usual layering of positive/negative acknowledgment
   mechanisms we introduce a scale-invariant acknowledgment system (see
   Sec 4.4). The system allows for aggregation and variable level of
   detail in requesting, announcing and acknowledging data, serves
   in-order and out-of-order retrieval with equal ease. Besides the
   protocol’s footprint, we also aim at lowering the size of a minimal
   useful interaction. Once a single datagram is received, it must be
   checked for data integrity, and then either dropped or accepted,
   consumed and relayed.

9.3.  Generic Acknowledgments

   Generic acknowledgments came out of the need to simplify the
   data addressing/requesting/acknowledging mechanics, which tends
   to become overly complex and multilayered with the conventional
   approach. Take the BitTorrent+TCP tandem for example:

   1. The basic data unit is a byte of content in a file.
   2. BitTorrent’s highest-level unit is a "torrent", physically a
   byte range resulting from concatenation of content files.
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   3. A torrent is divided into "pieces", typically about a thousand
   of them. Pieces are used to communicate progress to other
   peers. Pieces are also basic data integrity units, as the torrent’s
   metadata includes a SHA1 hash for every piece.
   4. The actual data transfers are requested and made in 16KByte
   units, named "blocks" or chunks.
   5. Still, one layer lower, TCP also operates with bytes and byte
   offsets which are totally different from the torrent’s bytes and
   offsets, as TCP considers cumulative byte offsets for all content
   sent by a connection, be it data, metadata or commands.
   6. Finally, another layer lower, IP transfers independent datagrams
   (typically around 1.5 kilobyte), which TCP then reassembles into
   continuous streams.

   Obviously, such addressing schemes need lots of mappings; from
   piece number and block to file(s) and offset(s) to TCP sequence
   numbers to the actual packets and the other way around. Lots of
   complexity is introduced by mismatch of bounds: packet bounds are
   different from file, block or hash/piece bounds. The picture is
   typical for a codebase which was historically layered.

   To simplify this aspect, we employ a generic content addressing
   scheme based on binary intervals, or "bins" for short.
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