IEEE 1588/802.1AS Synchronisation for RTP Streams

Aidan Williams aidan.williams@audinate.com

Outline

- What is this all about?
- Technical needs
- Audio Video Bridging (AVB)
- IEEE 1733 anatomy
- How to proceed

What's this all about?

- High performance audio and video signal distribution over IP / Ethernet
- "High performance" means:
 - ±1μs time alignment between network devices
 - Millisecond or lower latency thru network
 - Hundreds of channels
 - Rapid switching (10ms) between streams
- Replacing analogue AV cabling with networks
 - Without loss of performance..

Technical needs

- All devices in the system share a reference clock
 - Media clocks locked to shared time
 - Media clocks locked to a shared signal
 - Analogous to word clock, genlock, .. but via the network.
- Wall clock timestamp accuracy is critical for time alignment and for minimising buffering delay
 - Solved: IEEE 1588 locks quickly and works well in LANs
 - But: Need to know wall clock timestamps can be compared meaningfully in the transport layer
 - Am I using NTP, 1588v2, 802.1AS, or what?
- QoS setup
 - We'll talk about AVB shortly...

AVB in 25 words or less...

- New IEEE 802 standards:
 - 802.1AS An L2-only 1588v2 profile
 - 802.1Qav Credit based traffic shaping
 - 802.1Qat Admission control
- Qat+Qav combined provide a latency bound
- Transport standards
 - IEEE 1722 Firewire encapsulated in L2 Ethernet
 - IEEE 1733 RTCP packet type

IEEE 1733 anatomy

```
|V=2|P| subtype=0|
                   length=9
    SSRC/CSRC
         name (ASCII)
    qmTimeBaseIndicator
                            "Clock
    domain"
           gmClockIdentity (EUI-64)
    stream_id (64 bits)
QoS data
             as timestamp
                            Media time
                            alignment
             rtp timestamp
```

Figure 1: IEEE 1733 / AVB RTCP packet format

Issues with IEEE 1733

- Non-NTP format timestamp..
 - Different from RTCP SR
 - Different from RFC 6051
- QoS data should really be signaled at flow setup time via SDP
- Wall clock source / domain is not well defined
- Requires RTCP packets to be sent and processed before time alignment is known
 - Slow switching..

Where to from here...

- The current draft shows one way to do it..
- However an alternative approach is:
 - Use NTP format timestamps
 - Can use RFC 6051 for timing metadata
 - Develop SDP description of clock domains
 - Text already exists in IDMS and this draft
 - Develop SDP signaling for AVB QoS
 - Probably as part of a draft describing how to use RTP with AVB, referring to the above documents