GMPLS Signaling Extensions for the Evolving G.709 OTN Control

CCAMP WG, IETF 82nd, Taipei, Taiwan

draft-ietf-ccamp-gmpls-signaling-g709v3-01

Authors & Contributors

Changes from Version 00

- Added some text to describe new Switching Type in Generalized_Label_Request to make it consistent with [OTN-FWK] and [OTN-OSPF]
- Refined the descriptions about ODUflex formula including ODUflex(CBR) and ODUflex(GFP) in Traffic Parameters
- NMC field in Traffic Parameters has been deprecated and should be only used with RFC4328

Generalized Label Request

- New Switching Type for G.709v3 is introduced in [OTN-FWK] and [OTN-OSPF]
- Generalized Label Request Object also use this new Switching Type

Value	Туре
100	Time-Division-Multiplex Capable (TDM) (RFC4328)
101 (TBA)	OTN-TDM capable (OTN-TDM)

Traffic Parameters of ODUflex

NMC

- RFC4328: Indicate how many TS are requested for the LO ODUj
- Redundant information (since signal type or bit-rate is known, the number of TS can be deduced)
- May be different on different hops
- Deprecated and is only used with RFC4328 for backwards compatibility reasons

Bit_Rate

Describe the bit rate for ODUflex (CBR) and ODUflex(GFP)

Tolerance:

Describe the tolerance for ODUflex (CBR) (No need for ODUflex(GFP))

Traffic Parameters of ODUflex

- ODUflex (CBR) Traffic Parameters
 - The number of requested TS on HO ODUk link can be calculated by:

$$N = \text{Ceiling of } \frac{\text{ODUflex(CBR) nominal bit rate} \times (1 + \text{ODUflex(CBR) bit rate tolerance})}{\text{ODTUk.ts nominal bit rate} \times (1 - \text{HO OPUk bit rate tolerance})}$$

 ODUflex(CBR) bit rate is the client signal bit rate after applying the 239/238 factor and the transcoding factor T:

ODUflex(CBR) nominal bit rate = CBR client bit rate * (239/238) / T

- ODUflex (GFP) Traffic Parameters
 - G.709v3 Amd2 recommends that the ODUflex(GFP) will fill an integral number of tributary slots of the smallest HO ODUk path
 - Direct mapping between ODUflex (GFP) bit rate and number of requested TS

ODU type	Nominal bit-rate	Tolerance
ODUflex(GFP) of n TS, 1<=n<=8	n * ODU2.ts	+/-100 ppm
ODUflex(GFP) of n TS, 9<=n<=32	n * ODU3.ts	+/-100 ppm
ODUflex(GFP) of n TS, 33<=n<=80	n * ODU4.ts	+/-100 ppm

Discussion: ODU FA-LSP Creation(1)

 When creating ODUk FA-LSP (further used for ODUj client signals), how to choose appropriate link supporting the ODUj client?

Therefore, the client hierarchy information (ODU1->ODU3) should be carried in the signaling to create this ODU3-FA, which will be used to carry ODU1.

Note: If the client hierarchy information is ODU0->ODUk, it also implies that TSG 1.25G must be selected.

Discussion: ODU FA-LSP Creation(2)

TSG information is needed ONLY in case that AUTOpayloadtype is disabled in node B (AUTOpayloadtype =false), otherwise ODU1 does not care which TSG will be used (either 1.25G or 2.5G can be used) when AUTOpayloadtype =true.

Therefore, if auto-payload type is off, a further information related to TS granularity supported by the interface is needed, ie., when auto-payload = false, it needs TSG information to create ODUk (k=2,3) FA-LSP to carry ODUj(j<K &j!=0) besides the client hierarchy information.

Discussion: How to encode the info

How to encode the client ODU signal type & TSG information?

Candidate Solution	Reasons	Issues
Option1: Use G-PID to indicate the ODUj client & TSG	G-PID represents the adaption capability between the requested LSP and the client signal carried by that LSP	 Only for end points (not the penultimate node) If the LSP will carry different types of LO ODUj signals, how to carry multiple G-PIDs?
Option 2: Use Encoding Type to indicate TSG	The "Encoding Type" represents the nature of the LSP which has end-to-end meaning	 Intermediated nodes need to process this info How to indicate the LO ODUj client signal type of the FA-LSP? A new Object may be still needed
Option 3: Use New Object to indicate the ODUj client & TSG	Since Option 1&2 are not good enough, it may be needed to introduce another new Object	Define new rules for the processing of the new object

Next Steps

- Figure out how to encode the needed information including client hierarchy information and TSG information when creating ODUk FA LSP for carrying LO ODUj client signals
- Refine it according to the feedback from the meeting or mailing list