CDNI Metadata Interface
(draft-ma-cdni-metadata-01)

Kevin J. Ma
kevin.ma@azukisystems.com
CDNI Metadata Requirements

• Metadata Push (META-3, META-4)
• Metadata Modify/Remove (META-7, META-8)
• Hierarchical Metadata and Metadata Grouping (META-9, META-10, META-11, META-12)
• CDNI Defined Metadata (META-15)
 – Content Acquisition (META-5, META-6)
 – Delivery Restrictions (META-14)
 – Request Authorization (META-17)
• Opaque Metadata (META-16)
• Metadata Rejection (META-13)
Data Model and API

- Domain create/modify (POST), retrieval (GET), and removal (DELETE)
 - Domains provide information about and group Agents and Metadata.
- Agent create/modify (POST), retrieval (GET), and removal (DELETE)
 - Agents provide basic access control differentiation for Metadata.
- Metadata create/modify (POST), retrieval (GET), and removal (value="")
 - Metadata is stored as opaque name/value pairs, grouped by URI.
 - Metadata is indexed by domain, agent, and URL (BaseAddr + URI).
 - Metadata has a flag to force rejection of metadata that cannot be enforced.
 - Metadata values support any semantic representation.
 - Metadata is removed by clearing the value field.
Opaque Metadata Distribution

• Opaque representation in the data model provides support for both well-known and unknown metadata which may be encountered:
 – Opaque distribution does not prevent specifying rich semantics; nor does it increase complexity or workload for specifying individual metadata semantics; Opaque representation in the data model simply adds a layer of abstraction.
 – Opaque distribution supports extensibility for future metadata.
• Opaque representation in the data model separates metadata semantics from basic elements of generic metadata distribution:
 – Name/Value: The semantics of the metadata contained in ‘value’ are associated with the metadata ‘name’, but independent of the URI, Mandatory Flag, and TTL which apply to all metadata objects.
 – BaseAddr/URI: Metadata is associated with request URIs and BaseAddrs. URI wildcards define hierarchical sets of content.
 – Mandatory Flag: Handling of unenforceable metadata must be deterministic. The mandatory flag specifies when to reject unknown and/or unsupported metadata (i.e., mandatory metadata must either be enforced or rejected).
 – TTL: Metadata may be automatically invalidated via an optional TTL.
Opaque Metadata Examples

• Some metadata may only require simple string values:
 – Acquisition Base URL
 • <value>http://origin.csp.com/</value>
 – Content Activation Time:
 • <value>2011-11-16T01:00:00.00Z</value>
 – Content Deactivation Time:
 • <value>2011-11-16T03:30:00.00Z</value>
• Other metadata may require more complex object representations:
 – URL Hash:
 • <value>
 <hash_param_name>h</hash_param_name>
 <timestamp_param_name>e</timestamp_param_name>
 <timeout>5000</timeout>
 <timestamp_format>epoch</timestamp_format>
 <shared_secret>XXX</shared_secret>
 <secret_position>prepend</secret_position>
 <hash_algorithm>md5</hash_algorithm>
 </value>
Metadata Interface Security

- Attacks against the metadata interface poses risks to content delivery:
 - Inability to retrieve content acquisition metadata, or the altering of content acquisition metadata may prevent content acquisition and delivery.
 - Inability to distribute security metadata, or the altering of security metadata may allow content to be delivered insecurely or otherwise violate distribution licensing or media rights.
 - Insertion of bogus request filters or other mandatory metadata may prevent content delivery.
 - Insertion of bogus mandatory metadata may prevent request delegation.
 - Impersonation of a dCDN may allow unauthorized access to content.
- Spoofing of valid CDNs may be prevented using mutual authentication or host filtering, however, segregation of metadata between multiple valid dCDNs requires association of authentication credentials with metadata.
 - The agent associated with each metadata object provides this abstraction.
 - Only metadata intended for the requesting agent should be returned.
 - Only agents with proper credentials should be able to modify metadata.
 - Need to verify agent name relationship to authentication credentials.
Next Steps: WG Feedback

• There are multiple metadata interface drafts currently being discussed:
 – draft-ma-cdni-metadata focuses on the distribution aspects of the metadata interface.
 – draft-ma-cdni-metadata includes some basic metadata definitions, but does not contain the level of detail wrt core metadata as draft-caulfield-cdni-metadata-core or draft-jenkins-cdni-metadata.
 – Metadata distribution and the definition of core metadata are both important complementary components of the metadata interface.

• Questions for the Working Group:
 – Does the WG feel that this proposal meets the needs as defined in the requirements document and/or are those requirements sufficient?
 – Does the WG feel that there is merit in continuing to work on this particular proposal?
 – Does the WG feel that there are any particular aspects of this proposal that should be pursued and/or should be abandoned?