DCON (Distributed Conferencing) BOF @ IETF 82

Feasibility analysis

Lorenzo Miniero

Taipei, Taiwan, November 14, 2011

DCON feasibility analysis

- Proof-of-concept prototype realized by extending the Meetecho platform
- Focus on scalability
- Exploits XMPP Server-to-Server (S2S) channels for the overlay newtork
 - Spreading of conferences information and events
 - Dispatching of centralized protocols (e.g., BFCP)
- Leverages presence information for focus discovery
- BFCP-driven local mixing

DCON layering structure

DCON layers interaction

Proof-of-concept implementation

Performance assessment: Centralized case

- Monitored parameter: CPU load of the focus/foci
- Each user requests and obtains the audio floor

FocusCallsCPU load (%)Main180≈100

- 180 as the peak value in the presence of BFCP functionality
- Might be quite restrictive
- A benchmark for the following tests

Performance assessment: 2 islands case

Focus	Calls	CPU load (%)	
Main	90	34.0	
Remote	90	31.6	

Performance assessment: 3 islands case

Focus	Calls	CPU load (%)	
Main	60	21	
Remote 1	60	20	
Remote 2	60	20	

Focus	Calls	CPU load (%)	
Main	90	34.4	
Remote 1	45	13	
Remote 2	45	13	

Scalability: figures in summary

Islands	Local users	Remote users	Main focus CPU load	Remote focus 1 CPU load	Remote focus 2 CPU load
1	180	ı	≈100%	-	-
2	90	90	34%	31.6%	-
3	60	120	21%	20%	20%
3	90	90	34.4%	13%	13%

- Migration towards a distributed paradigm allows for a huge reduction in the load of the primary focus
- The sum of the CPU levels of all involved foci is less than the CPU level of the single focus in the centralized case
- Given a fixed number of local users, remote users distribution among multiple islands adds negligible overhead to the main focus

Considerations

- Distribution of components brings to a considerable improvement in terms of CPU load
- The study we presented just focused on scalability, but...
- ...what about other functionality?
 - Load balancing:
 - Fairly (and transparently) distribute users among a set of available conference servers
 - Resiliency:
 - Transparently migrate users to a new server should the one they are currently exploiting experience a fault
 - Federation:
 - Allow for heterogeneous servers (i.e. belonging to different vendors/organizations) to smoothly interoperate