Design Considerations for a DECADE SDT
draft-kutscher-decade-protocol-00

Dirk.Kutscher@neclab.eu
Martin Stiemerling@neclab.eu
Jan Seedorf@neclab.eu

IETF-82, Taipei
DECADE WG

Background

« DECADE architecture describes DECADE protocols
conceptually

— Assumption: will need one or more concrete protocol
specs at some point

e Standard Data Transport
— Conceptual data transport protocol

e DECADE Resource Control Protocol
— Resource tokens for authorization, resource control

DECADE Architecture Elements

Standard Data Transport: conceptual data transport
protocol

— Expected to leverage existing transport / application protocols

DECADE Resource Control Protocol: resource tokens for
authorization, resource control

— Not an actual protocol
— Intended to be used with an SDT instantiation

Naming
— Want to name resources globally uniquely
— Same name for all replicas of a resource (on different servers)

draft-kutscher-decade-protocol-00

 Some considerations on
— Conceptual DECADE protocols
— Naming — leveraging NI URI scheme
— Authentication and access control
— General SDT considerations
— CDMI as an SDT instantiation

 Distilled those into a list of recommendations in the
draft

* Motivation: have a basis for discussion and re-charting

Conceptual DECADE Protocols

SDT and DRP split

We assume that we would need exactly one DRP
scheme

— That can then be used for different (all) SDT
Instantiations

— Issue: some SDT candidates may be more amenable to
token-based approach than others

SDT: There should be one mandatory baseline
implementation

Naming

 DECADE architecture requirements:
— Globally unigue names
— Application-independent
— Name-content binding through hashes

* Proposing adoption of NI scheme
— Key function: representing object hashes, with hash identifier
— Support for different hash algorithms
— Extensibility mechanism for application-specific URI parameters
— Defined mapping from NI URIs to HTTP URIs

ni:///sha-256;B_K97zTtFuOhug27fked4_zgc4Myz4b_1zZNgsQjy6fkc

ni://example.com/sha-256;B_K97zTtFuOhug27fke4_zgc4Myz4b_1zNgsQjy6fkc?ct=1mage/jpeg

How to use NI Names in DECADE

e Equality testing works on algorithm identifier and
actual hash value

— All other elements (including authority) are not considered
— DECADE should not require an authority field

ni://example.com/sha-256;B_K97zTtFuOhug27fked4_zgc4Myz4b_1zNgsQjy6fkc

http://example.com/.well-known/ni/sha-256/B_K97zTtFuOhug27fke4_zgc4Myz4b_T1zZNgsQjy6fkc

* Mapping to HTTP
— NI defines one specific mapping
— Clearly only useful for HTTP-based SDTs
— May impose some constraints on server configurations

Other NI Functions for DECADE

e Locator specification
— Useful for referring client to a specific DECADE server

— Implementable using an extension parameter

ni:///sha-256;B_K97zTtFuOhug27fke4_zgc4Myz4b_1zZNgsQjy6fkc
?decade-loc=http://example.com/decade/NAME

* Content type: already in NI params spec

e Authentication token

ni:///sha-256;B_K97zTtFuOhug27fke4_zgc4Myz4b_1zZNgsQjy6fkc
?decade-auth=dhek4nd2kj2j

Other NI Functions for DECADE

e Locator specification
— Useful for referring client to a specific DECADE server

— Implementable using an extension parameter

ni:///sha-256;B_K97zTtFuOhug27fke4_zgc4Myz4b_1zZNgsQjy6fkc
?decade-loc=http://example.com/decade/NAME

* Content type: already in NI params spe

e Authentication token

ni:///sha-256;B_K97zTtFuOhug27fke4_zgc4Myz4b_1zZNgsQjy6fkc
?decade-auth=dhek4nd2kj2j

Authentication and Access Control

---------- > s | <------

2. Obtain / T ' \ 4. Request and
Token / \ Download Object
(DRP) / \ (DRP + SDT)

\% 1. App request \%

3. App response (token)

Authentication and Access Control

4. Request and
Download Object
(DRP + SDT)

3. App response (token)

* |In general, two options for carrying authentication tokens
— When referring a user to a DECADE server

1. Inthe native application protocol

2. Inthe object name
— Seems preferable, since protocol-independent

Authentication and Access Control

---------- > s | <------

2. Obtain / T ' \/ 4. Request and
Token / Download Object
(DRP) / (DRP + SDT)

\% 1. App request \%

3. App response (token)

 Downloading the object

— SDT-instantiation-specific embedding of token in
protocol fields

— E.g., OAuth in HTTP

Application Contexts, Resource Collections

Different servers, different file transfer protocols, and different remote file
system protocols may provide different capabilities for organizing
resources in hierarchical structures

— Collections, file system directories etc.

Question: should this be exposed in a DECADE SDT?
— For instance: collecting all chunks of a larger object into one collection

Our view: NO
— It's a server implementation thing — SDT does not want to know about
— DECADE has unique naming feature

— Can structure objects on application layer by listing them in an index file (think
torrent files)

This would imply that SDT does not need to support any operation on
collections

— Simpler implementations — better interoperability!

Server-to-Server

| DECADE | <——=mmmm - > | DECADE |
| Server | <-——=—————————— > | Server |

DECADE architecture has concept of server-to-server
communication

— Servers to redistribute objects to other servers

Would need an SDT mechanism
— Would like to specify a set of target servers

Caveat: HTTP-based servers do normally not support ,, DISTRIBUTE”
method

— Would be nice to find a way around this
— Would prefer not to loose interoperability with vanilla servers

CDMI as an SDT

* Goal: enable use of existing CDMI infrastructure in
DECADE

— Also: don‘t raise the bar too high for minimal DECADE
implementations

e CDMI in a nutshell
— RESTful HTTP-based access to cloud storage

— JSON as a representation format for describing resources,
configurations — also for object (optionally)

— Quite comprehensive, but with a profiling concept

— More: http://www.ietf.org/mail-
archive/web/decade/current/msg00598.html (David Slik)

CDMI Content Type Operations

 CDMI provides two alternative mechanisms for
uploading/downloading objects:

1. CDMI Content Type Operations

— Using JSON to encode objects (and meta data)
— Might be difficult for non CDMI clients

2. Non-CDMI Content Type Operations
— Objects in message bodies (vanilla HTTP-like)
— More efficient and better for backwards-compatibility

CDMI Content Type Operations

 CDMI provides two alternative mechanisms for
uploading/downloading objects:

1. CDMI Content Type Operations

— Using JSON to encode objects (and meta data)
— Might be difficult for non CDMI clients

2. Non-CDMI Content Type Operations
— Objects in message bodies (vanilla HTTP-like)

— More efficient and better for backwards-compatibility

17

Broad Range of CDMI Features

discovering capabilities of a cloud
storage provider;

creating a new container;
creating a new data object;
listing the contents of a container;

reading the contents of a data
object;

reading the value of a data object;
and

deleting a data object.

gueue object resource operations,
providing first-in, first-out access
for storing and retrieving data;

capability query operations,
allowing a client to find out about

the subset of CDMI features that a
server supports;

exporting (and configuring the exporting
of) data objects to other protocol domains
such as NFS, iSCSI, WebDAV etc.;

serialization and de-serialization of data;
configure access control through ACLs;
retention and hold management;

scope specifications to allow clients to
select data objects based on filter/search
expressions;

results specifications (to enable a client to
specify subsets of data objects to be
returned);

logging;

notification queues (for example for
notifying clients about changes to a file
system or to certain objects); and

guery queues (enabling clients to requests
data objects based on meta data or
content search expressions).

Broad Range of CDMI Features

discovering capabilities of a cloud * exporting (and configuring the exporting
storage provider; of) data obje_cts to other protocol domains

cre i :
cr data,'

i+ SDT only needs a small subset L
of * CDMI has modularity concept o
1 © DECADE should define a minimal profile

dk lient to
. /ée

queue ODject resource operations,

providing first-in, first-out access retu-rned),

for storing and retrieving data; * logging;

capability query operations, . notific_ation_ qgueues (for example for '
allowing a client to find out about notifying clients about changes to a file
the subset of CDMI features that a system or to certain objects); and

server supports; * query queues (enabling clients to requests

data objects based on meta data or

content search expressions).
19

CDMI Containers

e Quite a fundamental concept in CDMI
— Comprehensive support for operations on containers

— Required feature for cloud data management
— Not so for DECADE

 Naming scheme (see earlier discussion) and
DECADE SDT should be oblivious to structure,
hierarchy etc.

— Can be done on the application layer

— CDMI-SDT would use CDMI (largely) without using
containers

CDMI Object Identifiers (1)

 Fundamentally compatible to DECADE naming
ideas so far (globally unique, potentially
leveraging content hashes)

e Specific format not directly compatible to NI
format
— There may be ways to map names

http://decade.example.com/root/cdmi_objectid/647284746393

| 0 | 1| 2 | 3] 4 | 5 |1617] 8] 9]10]..]138]39]
|Reserved|Enterprise|Reserved|Length|CRC| opaque data |
| (zero) | Number | (zero) | | | |

CDMI Object Identifiers (2)

* Creating object identifiers in CDMI
— Done by the server

— In DECADE, it would be better (more efficient,
better workflow) if the client did it

— Have to find out about the options

Security

* Need to work on access control, token-based
authentication

e DoS attack vectors: server-to-server
communication can be a risk

* Name-content integrity: need to specify the
details (hash algorithms, requirements for
servers and clients)

— DECADE NI profile could perhaps do that

Conclusions

e NI URIsin DECADE
— Want to specify the DECADE NI profile
— With extensions for locators

 General SDT guideline: KISS

— Keep application layer features to application (re: collections)
— Try not to break interoperability with existing gear

 CDMI

— Goal: do not exclude leveraging CDMI by design — ideally requiring
only minimal changes

— SDT with CDMI can probably be done — have to do it carefully
— Quesition is whether this should be the baseline SDT spec

— Proposed way forward: enable SDT implementation leveraging
CDMI implementations

