
Applying RFC 6313:
Comments on Structured Data and

the Semantics of IPFIX Records
by a frustrated collector implementor

B. Trammell
(with thanks to H. Kaplan, who brought this up a while ago…)

IETF 82 – Taipei, Taiwan, 17 November 2011

IPFIX per 5101 (-bis)

�  Types specify data encoding.
�  typedef uint32_t ip4addr_t; // big-endian !

�  Information elements (IEs) specify the semantic
meaning of a specific field of a record.
�  ipaddr_t sourceIPv4Address; !

�  Templates are ordered lists of IEs specifying the
structure of a record.
�  struct flow_st { … !

�  Easy to understand, easy to implement…

17 November 2011 IETF 82 Taipei - applying 6313

2

From Templates to Structures

�  Example: twoflow
�  flow by address pair for capacity planning purposes

�  typedef uint32_t time_t; // epoch sec !
typedef uint32_t ip4addr_t; // big endian !

�  struct twoflow_st { !
 time_t flowStartSeconds; !
 time_t flowEndSeconds; !

"ip4addr_t sourceIPv4Address; !
"ip4addr_t destinationIPv4Address; !

 uint64_t deltaPacketCount; !
} !

"!

17 November 2011 IETF 82 Taipei - applying 6313

3

Problems with 5101 (-bis)

�  Templates are great if all your records look the same.

�  But…
�  Poor handling of multiplicity
�  Poor handling of subordinate structures
�  Poor handling of type alternation

�  e.g. identification of an link by interface/prefix/MAC/etc.

�  Template explosion for certain applications
�  e.g. packet/flow decode in DPI

�  Structured data (RFC 6313) to the rescue!

17 November 2011 IETF 82 Taipei - applying 6313

4

What's new in 6313

�  New basicList type
�  variable length array of a single IE

�  New subTemplateList type
�  variable-length array of a subordinate structure

�  New subTemplateMultiList type
�  variable-length array of subordinate structures of varying types
�  Or: an entire IPFIX Message Body embedded within a single Data

Record.

�  Powerful semantics attached to each of these types
�  oneOf, oneOrMoreOf, allOf, noneOf, ordered !

�  New generic IEs for each of these new types

17 November 2011 IETF 82 Taipei - applying 6313

5

Applying 6313

�  Example: aggregate twoflows by disjoint sets of source IP
addresses
�  Replace sourceIPv4Address with a basicList that

contains sourceIPv4Address and oneOf semantics. !

�  struct twoflow_st { !
 time_t flowStartSeconds; !
 time_t flowEndSeconds; !

"basicList_t basicList; !
"ip4addr_t destinationIPv4Address; !

 uint64_t deltaPacketCount; !
} !
!

�  Here's where the problems begin.

17 November 2011 IETF 82 Taipei - applying 6313

6

IPFIX per 6313

�  Information elements (IEs) specify the semantic
meaning of a specific field of a record.
�  Unless they are generic.
�  Semantic meaning of generic IEs determined by content.

�  Templates are ordered lists of IEs specifying the
structure of a record.
�  Unless they contain generic IEs.
�  Record structure information with generic IEs unavailable

until record parse is completed.

�  Decisions about record type and structure must be
deferred to record parse time with 6313 generic IEs.

17 November 2011 IETF 82 Taipei - applying 6313

7

Why is this bad?

�  Muddles IPFIX self-description: instead of templates
describing data, now data describes data too.

�  Demux on Template ID at collector impossible

�  Record validation severely complicated
�  What does a twoflow collector do with a record containing

a basicList of octetDeltaCount?
�  I don't know either — but it has to parse the whole record

to decide.

17 November 2011 IETF 82 Taipei - applying 6313

8

What I really, really want…

�  struct twoflow_st { !
"time_t flowStartSeconds; !
"time_t flowEndSeconds; !
"std::vector<ipv4addr_t> sourceIPv4Addresses;!
"ip4addr_t destinationIPv4Address; !
"uint64_t deltaPacketCount; !

} !
!

�  Separate structure from encoding

�  Ability to label/differentiate structured data IEs in a
template

�  (And I want all this for free without burning new SetIDs)

17 November 2011 IETF 82 Taipei - applying 6313

9

Solutions

�  Solutions? I'm just here to complain…

�  Non-generic basicList and subTemplateList IEs
might help
�  e.g. sourceAddressList!
�  + enables demux on template ID
�  + makes Structured Data properly self-describing again
�  – leads to IE explosion, which 6313 meant to avoid
�  – introduces new runtime constraints at the collector

�  + which exist in reality anyway
�  need to define representation for allowable list contents

�  subTemplateMultiList is an entirely separate beast.

17 November 2011 IETF 82 Taipei - applying 6313

10

