Export of Application Information in IPFIX

IETF-82, Nov 2011

<draft-claise-export-application-info-in-ipfix-03.txt>

N. Ben-Dvora, P. Aitken, B. Claise
Application Information

• Application information is required
• What about Application Data Modeling?
 – IANA L3 is easy -> can refer to the IANA registry
 – IANA L4 is easy -> can refer to the IANA registry
 – What about IANA L7?
 • No IANA registry
 • Can we have one? No because some reverse engineering is sometimes required
 – Which implies that we post the signature along with the entry
 – Which implies a common language for protocol signature
 Neither of the two will happen
 • Conclusion: we need a way to export the application without a signature
 – What about L2?
 • Not everything is etherType based. So same issue
Export of Application Tag in IPFIX

“Registry”:
IANA-L3
IANA-L4
L7
L2

Selector:
IANA-L3 -> protocol
IANA-L4 -> port
L7 -> have to assign one per app
L2 -> have to assign one per app

• Encoded as a variable length
Export of Application Information in IPFIX

• Informational RFC
 – With CANA-L2 and CANA-L7 registries posted on www.cisco.com
 – Note: CANA = Cisco Assigned Number Authority
• Advantages:
 – Report the application, not the destination port because port 80 might not be HTTP
 – Report the IANA-I3, IANA-L4 consistently across the industry
• 3 new Information Elements:
 – applicationDescription, 94
 – applicationTag, 95
 – applicationName, 96
Export of Application Information in IPFIX

• This I.E. value represents the HTTP application, regardless of the port it runs on: 80, 8080 or 23
• If you want to know the protocol/port, must export the protocol and destinationTransportPort Information Elements
Export of Application Information in IPFIX

• An Options Template Record to export the mapping
 – SCOPE: applicationTag,
 – NON-SCOPE: applicationName, applicationDescription

• Resolving IANA L4 port collisions
 – 10 different entries in IANA-L4 for UDP versus TCP. Some more between TCP and SCTP
 – we define that the L4 application is always TCP related, by convention. So, whenever the collector has a conflict in looking up IANA, it would choose the TCP choice
 – Then the UDP and SCTP collisions would be defined in CANA-L7
New: Grouping the Applications with the 6 new attributes IEs:

- ApplicationCategoryName,
- ApplicationSubCategoryName,
- ApplicationGroupName,
- p2pTechnology (yes, no, unassigned),
- encryptedTechnology (yes, no, unassigned),
- tunnelTechnology (yes, no, unassigned)

Note: an Options Template Record with this information
Notes

• The IEs have been assigned already in IANA or the range <128
• Already implemented by Cisco and some collectors
• DPI vendor feedback:
 – Two vendors on the IPFIX mailing list
• ITU-T:
 – SG13/Q17 (Future Networks: Packet forwarding and deep packet inspection for multiple services in packet-based networks and NGN environment) standardizes DPI
 – Refers to IPFIX and this application encoding
• Chris Inacio might be hosting the application id assignments, as an attempt the get an industry consensus
Feedback Received

• Could divide the L2 registry into specific registries
 – Ethertype: http://www.iana.org/assignments/ethernet-numbers
 – 802.1 16 functional address (for example, for LLDP). Note: there is no 1:1 mapping between ethertype and functional addresses
 – Everything else

• Note: an editorial mistake removed the Sub-Category. Inserted back in the newly posted version.
Conclusions

• Standardizing the app id format is important for the industry, even if we can’t assign all applications in existing registries (ex: IANA)
• Then, asking for AD sponsor support to publish this draft as Informational RFC