KARP KMP-Using IKEv2 with TCP-AO

draft-chunduri-karp-using-ikev2-with-tcp-ao-00

Uma Chunduri, Albert Tian
Ericsson Inc.
Joe Touch
USC/ISI

IETF 82, Taipei, Taiwan
November 13-18, 2011
Using IKEv2 with TCP-AO

For TCP based routing protocols BGP [RFC4271], PCEP [RFC5440], MSDP [RFC3618] and LDP [RFC5036] – to move away from existing MD5 based manual mechanism:

- RFC 5925: TCP-AO (Key agility, Algo. agility, replay protection etc.)
- RFC 5926: TCP-AO algs. (specific algs. and parameters)
- RFC 5996: IKEv2 Key Management protocol (flexible and yet strong KMP)
Using IKEv2 with TCP-AO

The Problem:

How to integrate TCP based pair wise routing protocols (BGP, LDP, MSDP, PCEP) with Key Management Protocol (KMP)?
Using IKEv2 with TCP-AO

Goals:

Minimize changes to all TCP based Routing Protocols to integrate with KMP
 - by Using TCP-AO’s infrastructure (MKTs)

Extending IKEv2 to negotiate RP SAs
 - to continuously benefit from new IKEv2 features
 E.g. Pre-shared key only and yet secure authentication
Using IKEv2 with TCP-AO (cont.)

1st Question on IKEv2: Which peer authentication is suitable for RPs?

- Symmetric Shared key based
 - Pre-shared key only options worked out by ipsecme WG

- Asymmetric (PKI)
 - RSA, DSS
 - ECDSA

- EAP Based (EAP Only - RFC5998)
 - Non Client/Server mode
 - PAX (RFC 4746)
 - EAP-pwd (RFC 5931)
 - EKE based (RFC 6124)
Using IKEv2 with TCP-AO (cont.)

What is needed from IKEv2

- WG: One peer authentication mechanism suitable for RPs

- Extensions to Security Association (SA) Payload for tcp based routing protocol SA
 - extensions required listed in the draft (non IPSec DOI)

- Simplified Traffic Selectors
Using IKEv2 with TCP-AO (cont.)

BGP Multisession Requirement

- Multiple TCP sessions between same peers per AFI/SAFI
 - ietf-idr-bgp-multisession-06
- Each TCP session can have different rekey lifetime
- Each session can be differentiated by different SIP
 - Multi-session draft tries to avoid the same
- Sessions must be differentiated by their transport information
 - Currently done by different IP addresses => undesirable
 - Could be done by different dest ports (services) => undesirable
 - Could be done by different source ports => requires code
 - Implies a separate TCP-AO MKT for each session
 - Source port needs to be fixed by BGP or in a library before MKT can be negotiated
Using IKEv2 with TCP-AO (cont.)

Crypto Key Tables

- It’s a database of all the keys and for all protocols (interfaces or more specific protocol info)
- It specifies the selection process (equivalent to Association lookup) once these are populated
Using IKEv2 with TCP-AO (cont.)

.....

- All routing protocols need to trigger KMP to get the SA
- All routing protocols need to maintain the same with the lifetime
- and rekey when lifetime expires

(Essentially complete SA management at each RP level)
Using IKEv2 with TCP-AO (cont.)

Solution

1. BGP/LDP sets configured Auth/KDF/lifetime info and initiate TCP connection
2. GK triggers KMP (IKEv2)
3. IKEv2 negotiate Master key
4. Master keys add to GK
5. GK converts IKEv2 keys into MKTs; revokes and/or retriggers IKE as needed
6. Use KDF to derive TCP-AO traffic-keys
7. TCP session protected
Using IKEv2 with TCP-AO (cont.)

What is needed from TCP-AO

- Transport-level differentiation of multisession BGP sessions
 - Socket pair must be unique
 - Currently use different IP addresses
 - Use different source ports => need code somewhere (BGP source, link library, OS)
- IKEv2-compatible keying support
 - IKEv2 assumes IPsec manages SA timers, triggers new SA requests
 - TCP-AO assumes external key management, incl. timers and rekey initiation
 - Need separate key timers, rekey initiation \(\Rightarrow \) Gatekeeper (GK) (see: Ghostbusters)
- Result
 - IKEv2 generates keys and parameters
 - GK triggers IKEv2 initial and rekeying, inserts info into TCP-AO, revokes keys
 - TCP-AO implements transport authentication based on given info.
Using IKEv2 with TCP-AO (cont.)

Advantages

- No TCP based routing protocol changes
 - Transparent to keys and KMP
 - Configuration can be *similar* to manual keys with TCP-AO
- No Extensions for TCP-AO (5925)
- Minimal Extensions for IKEv2 (5996) to negotiate non-IPSec SA for RPs
 - Simplified configuration for RPs
- Gatekeeper isolates how TCP-AO mimics IPsec to IKEv2
 - Manages the state/timers that IKEv2 expects IPsec to manage
- Leaves BGP source port lockdown as implementation issue
 - Many solutions, including rewrite BGP, relink to a shim library, revise OS
 - E.g., convert `connect(srcIP, *, dstIP, bgp-port, USE_AO)` to
 - `bind(srcIP, *, dstIP, bgp-port)` => source port selected at bind time
 - `getsockname(...)` => returns source port
 - `setsockopt(TCPAO, full socket info, keys, etc.)` => set MKT based on full socket pair
 - `connect(as usual)` => finish connect
Questions & Comments?

Thank You!