Key Management for Pairwise Routing Protocol

draft-mahesh-karp-rkmp-00

Mahesh Jethanandani, Brian Weis, Keyur Patel, Dacheng Zhang, Sam Hartman

IETF 82, Nov. 2011, Taipei, Taiwan
Introduction

- A combination of “draft-mahesh-karp-kmgrp-00” and “draft-zhang-karp-rkmp-00”

- Aims to generate an automatic key management for pairwise routing protocols
 - Cooperate with RKMP to make a integrated KMP Solution for routing protocols
 - The initial exchanges will be adopted by RKMP

- Takes advantage of the work of IKEv2 as much as possible, but generalize it to support different routing protocols
RKMP State Machine

Neighbor Session Mgmt. says key with peer needed

RP_INIT

Pairwise Base Keys

RP_AUTH

Pairwise RP Keys

Key Replacement Required

Need More Keys

Deliver keys

Key/policy DB Mgmt.
Exchanges

- **RP_INIT:**
 - Allows the network devices to negotiate cryptographic algorithms, exchange nonce, and do a Diffe-Hellman agreement
 - Based on IKEv2's IKE_SA_INIT exchange

- **RP_AUTH:**
 - Used to generate RKMP_SAs and protocol master keys
 - Based on the IKE_SA_AUTH exchange in IKEv2
 - Expected to support various routing protocols
RKMP Exchanges

- **RP_ADD**
 - Similar to IKEv2 CREATE_CHILD exchange
 - Used to do a re-key or to negotiate key material information for new protocol
 - Routing protocol security association (SA) payloads are identical to RP_AUTH exchange

- **Information message**
 - Useful for deleting specific SA and/or sending status information
Security Association Payload

- SA payload contains one or more proposals and transforms
- Proposal Substructure covers the following
 - Protocol id of protocols under negotiation
 - TCP AO
 - LDP Discovery Key
 - RKMP
 - Transform substructures which describe particular sets of cryptographic policy choices. For instance, a TCP AO transform covers
 - SendID – TCP-AO KeyID
 - Authentication Algorithm – HMAC-SHA-1-96, AES
 - Key Derivation function (KDF) – HMAC-SHA-1-96, AES
 - Flags to indicate TCP options for TCP AO
Traffic Selector Payload

- The Traffic Selector (TS) payload definition is the same as defined in Section 3.13 of IKEv2 [RFC5996].
- A traffic selector contains the routing protocol id under negotiation

<table>
<thead>
<tr>
<th>Routing (RT) Protocol</th>
<th>Protocol ID</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>1</td>
<td>RFC 4271</td>
</tr>
<tr>
<td>LDP</td>
<td>2</td>
<td>RFC 5036</td>
</tr>
<tr>
<td>MSDP</td>
<td>3</td>
<td>RFC 3618</td>
</tr>
<tr>
<td>PIM PORT</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PCEP</td>
<td>5</td>
<td>RFC 5440</td>
</tr>
</tbody>
</table>

Routing Protocol
RKMP Operation

- Routing protocols control KMP through Key Management Data Base (KMDB)
- Routing protocols could end up with multiple keys with RKMP
RKMP Key Management Data Base (KMDB)

- KMDB stores
 - Entries locally created by Client Routing Protocols
 - Key related information received from RKMP sessions

- Notifies client routing protocols about key related information updates

- Initiates sessions with RKMP neighbors whenever a local key related information is changed
RKMP Operation

- Routing protocol initiates point to point RKMP neighbor session as part of
 - Neighbor adjacency configuration changes
 - Local rekey policy decision

- A local entry is created in RKMP database (KMDB) that consists of the following
 - Security Algorithm
 - Key specific information
 - Routing protocol client
 - Routing protocol neighbor
RKMP Operation (cont.)

- Upon a successful RKMP neighbor session creation, RP_INIT and RP_AUTH exchanges are done
 - Key material information is exchanged as part of RP_AUTH exchange

- RKMP neighbor session is disconnected post the key material information exchange
Questions?