

MPLS Fast Re-route using extensions to LDP

draft-kini-mpls-frr-ldp-02

Authors: Sriganesh Kini & Srikanth Narayanan

IETF 82, Taipei, NOV 2011

Solution

- Recovery characteristsics similar to RSVP-TE FRR (sub 50msec recovery) for traffic on routed paths
- Local repair mechanism Only PLR reacts to the failure trigger to recover the traffic
- › Backup shortest path (BSP) LDP LSP setup before failure whenever LFA does not exist
- > 100% coverage for link, node and SRLG failure
- > BSP LSP starts at PLR and merges into shortest path LDP LSP tree.
 Merge point referred to as BSP-MP

Diff 01 and 02

- Simplified BSP LSP definition
 - BSP LSP is Shortest path LSP from PLR to the BSP Merge point
 - When there is no single shortest path, multiple shortest path LSPs are stitched together
- Backup Path Vector TLV differentiates BSP LSP related label exchanges from other FEC label exchanges
- Failure Element TLV and Tunneled FEC TLV are removed
- Defined capability TLVs

Backup Path Vector TLV

Backup Path Vector TLV – contains list of addresses of stitching LSRs

0 0 1 2 3 4 5 6 7 8	1 9 0 1 2 3 4 5	2 6 7 8 9 0 1 2 3	3 4 5 6 7 8 9 0 1
		+-+-+-+-+-	
0 0 Backup Path V	/ector (0xTBD)	Length	
+-+-+-	+-+-+-+-+-+	+-+-+-+-+-	+-+-+-+-+-+-+
Нор Туре		Address Family	
+-+-+-+-+-+-+-+	· +-+-+-+-+-+	+-+-+-+-+-	· +-+-+-+-+-+-+-+
Ī	Address		
•			•
+-+-+-+-+-+-+-+-	+-+-+-+-+-+	+-+-+-+-+-	
•			
•			
+-+-+-+-+-+-+-+	+-+-+-+-+	+-+-+-+-+-	
Hop Type		Address Family	
+-+-+-+-	+-+-+-+-+-+	+-+-+-+-+-	+
	Address		
•			•
+-+-+-+-+-+-+-+	+-+-+-+-+-+	+-+-+-+-+-+-	

Example

- Cost of link A-B is 100, rest is 1
- Failure of node E
- C is PLR
- \rightarrow BSP LSP = C A B G
- L:X-y Label assigned by Node X for FEC y
- Lb:X-y BSP Label assigned by Node X for FEC y

Operational details

- Per-nexthop protection can reduce number of BSP LSPs
- What happens when a single shortest-path LSP is not available for tunneling?
 - Shortest path LSPs are stitched together using simple extensions to LDP
- Protocol Extensions
 - Backup Path Vector TLV

Comparison with other approaches

> LDP over RSVP

- Less OpEx (managing one less protocol). Simplicity.
- Less protocol state
- Multi-path on backup

LFA & Not-via

- Full coverage
- Re-uses MPLS FRR infrastructure
- Simple

Questions/Comments

(Backup slides included with several examples)

Link failure protection example

- Protect link P-D failure
- For Destination <u>D</u>
 - P is PLR
 - N is merge point
 - N advertises label N-d to P for the backup shortest-path LSP
 - N-d is the shortest-path LDP LSP label at N for D
 - P uses shortest-path LSP from P to N to tunnel label
 N-d

Traffic flow over shortest path LSP

Link failure protection fast re-routed traffic

FRR traffic paths to **D** when link P-D fails

- → P, M, N, Q, <u>D</u>
- > S, P, M, N, Q, **D**
-) M, P, M, N, Q, D

For entire network

- No 'new' labels needed in the network
- 12 additional label advertisements needed

Node failure protection example

- Node N failure
- Destination **D**
- P is PLR
- R is merge point
- R advertises label R-d
 to P for the backup
 shortest-path LSP

Traffic flow over shortest path LSP

Node failure protection fast re-routed traffic

FRR traffic paths to **D** when node N fails

-) P, M, R, Q, **D**
- > S, P, M, R, Q, **D**
- » M, P, M, R, Q, **D**

For entire network

- No 'new' labels needed in the network
- 6 additional label advertisements needed

Fast re-routed traffic

SRLG failure protection example

- SRLG (link P-<u>D</u>, link R-<u>D</u>) failure
- Destination <u>D</u>
- P, R are PLRs
- S is merge point
- S advertises its shortest path LSP label (S-d) to P and R for failure against SRLG

Traffic flow over shortest path LSP

SRLG failure protection fast re-routed traffic

FRR traffic paths to **D** when SRLG fails

- > P, Q, M, S, N, **D**
-) Q, P, Q, M, S, N, <u>D</u>
-) Q, R, Q, M, S, N, **D**
-) M, Q, P, Q, M, S, N, **D**
- M, Q, R, Q, M, S, N, D

Fast re-routed traffic

Example - 2

Computation

- SPT for a destination
- Failure at PLR
- Nodes upstream of failure in the SPT is affected
- Nodes not upstream of failure in the SPT is not affected
- Compute SPT with "failure" excluded Exclude-SPT
- Alternate path from PLR to destination in Exclude-SPT merges back into SPT @ BSP-MP (not upstream of failure)
- > BSP LSP from PLR to BSP-MP protects the traffic under failure

SPT & Exclude-SPT

