
OAuth 2.0 and Internet Standard 

ProtocolsProtocols

Torsten Lodderstedt

Deutsche Telekom AG



What shall we aim for?

“… make OAuth the authorization framework of 
choice for any internet standard protocol, such as 
WebDAV, IMAP, SMTP or SIP.”

http://www.ietf.org/mail-archive/web/oauth/current/msg07758.html

• Why? Because it is• Why? Because it is

– Secure

– Easy to use

– Scalable

– General purpose (and by no means limited to 3rd 
party delegation)



OAuth 2.0 Adoption

• A lot of productive implementations exist ☺

• Standard protocols using OAuth 2.0
– OpenId Connect

– OpenSocial

– Open Mobile Alliance RESTful APIs– Open Mobile Alliance RESTful APIs

– UMA

– …

• BUT perception of OAuth seems to be: best-
suited for protecting deployment-specific APIs

Is there anything missing?



Life of a client – A Walkthrough



Example

• Access documents on a Website 

https://www.example.com/

• using

– CURL and– CURL and

– Web Browser

• BEARER authentication scheme



(1) discover the environment

1. End-user runs curl with some URL referring to his documents

curl https://www.example.com/documents/

2. Web server answers

HTTP/1.1 401 Authorization RequiredHTTP/1.1 401 Authorization Required

WWW-Authenticate: BEARER 
realm="https://www.example.com/documents"

• What‘s next? 
– How does the client (gets to) know the authorization servers endpoint

URLs?

– How does the client learn the authorization server‘s capabilities?



(1) discover the environment (contd.)

• Discover the authorization server (Options)

1. Resource‘s HTTP response may directly carry
information

2. Application protocol specific discovery

3. Domain-specific discovery protocols3. Domain-specific discovery protocols

4. Full-fledged, generic discovery protocol

• Discover the authorization server‘s capabilities

– endpoint URLs

– supported extensions (e.g. revocation or registration)

– supported grant types



(1) discover the environment (contd.)

• Assumptions:

– authorization: https://as.example.com/authz

– token: https://as.example.com/tokens

– grant types: resource owner password credentials– grant types: resource owner password credentials

and authorization code



What‘s missing?

• Discover authorization server



(2) Introduce client to server

• Anonymous client is the only available option
currently
– acceptable for resource owner password credentials

(CURL)

– but what about authorization code or implicit typically
used by native and browser apps?used by native and browser apps?

• Assuming the user now tries to access the
documents using a browser, the user consent
would look like

Some anonymous client is asking for permission
to access your files at

https://www.example.com/documents/

?



(2) Introduce client to server (contd.)

• User must be supported in co-relating

application usage and authorization process, 

e.g.

FirefoxFirefoxFirefoxFirefox is asking for permission to
access your files at

https://www.example.com/documents/



(2) Introduce client to server (contd.)

• Required data: name, URL, …

• How to publish this data? Some options:

1. Dynamic client registration

• would also allow to setup client id and secret (or• would also allow to setup client id and secret (or

other credential)

2. Authorization request parameters

• comparable to user agent header

3. …



What‘s missing?

• Discover authorization server

• Publish client meta data



(3) request authorization

GET /authz?response_type=code&client_id=abc&
state=xyz &redirect_uri=cust://oauth&scope=???
Host: as.example.com

• What would be an appropriate scope value? 

scope=„GET“ or scope=„HTTP_GET“ or scope=„WebDAV_GET“?scope=„GET“ or scope=„HTTP_GET“ or scope=„WebDAV_GET“?

• Would be consistent with today‘s standard practice! 
– Most implementations handle resources implictly, scopes represent API 

types, permissions, and/or operations

– Viable option for single service providers and environments operating a 
single service per API/protocol type

• But what about web servers? (or mail servers, file servers, …)

• Moreover, it does not allow to control access to (sub)sets of resources, 
such as directories



(3) request authorization (contd.)

• What about this?

scope= https://www.example.com/documents/#GET

• Respective authorization request:• Respective authorization request:

GET /authz?response_type=code&client_id=abc&
state=xyz&redirect_uri=cust://oauth&scope=https%3A%2F%2
Fwww.example.com%2Fdocuments%2F%23GET
Host: as.example.com



(3) request authorization (contd.)

• Need to come up with a sustainable concept

of how to use scopes (Options)

1. Best practices document

2. Design guideline2. Design guideline

3. Standard track document defining scope scheme

for HTTP-based resources

4. …



What‘s missing?

• Discover authorization server

• Publish client meta data

• Scope design guideline



(4) Access resources

• Let‘s go now … but wait, can the client really
trust in www.example.com?

• How does it know this server is the legitimate
consumer of the access token?consumer of the access token?

• What if it is a counterfeit resource server?
http://tools.ietf.org/html/draft-ietf-oauth-v2-threatmodel-01#section-4.6.4

• Threat prevention through well-known
addresses and HTTPS server authentication no
longer viable



(4) Access resources (contd.)

• Alternative threat prevention needed
(Options)

1. Put actual resource server‘s URL into token and
validate on legitimate server

2. Proof of possession (e.g. MAC)2. Proof of possession (e.g. MAC)

3. Auth server might verify resource server URL 
and, if required, refuse request

4. Authz server might announce to the client the
valid resource server endpoints

5. …



What‘s missing?

• Discover authorization server

• Publish client meta data

• Scope design guideline

• Countermeasure against counterfeit resource• Countermeasure against counterfeit resource

servers


