
Proposed WebRTC Security Architecture

IETF 82

Eric Rescorla

ekr@rtfm.com

IETF 82 WebRTC Security Architecture 1



Trust Model

• Browser acts as the Trusted Computing Base (TCB)

– Only piece of the system user can really trust

– Job is to enforce user’s desired security policies

• Authenticated entities

– Identity is checked by the browser (sometimes transitively)

• Unauthenticated entities

– Random other network elements who send and receive traffic

IETF 82 WebRTC Security Architecture 2



Authenticated Entities

• Examples:

– Calling services (known origin)

– Identity providers

– Other users (when cryptographically verified)

– Sometimes network elements with the right topology (e.g.,

behind our firewall)

• Authenticated 6= trusted: Dr. Evil is still evil even if I know it’s

him

– But authentication is the basis of trust decisions

– And maybe I want to call Dr. Evil after all...

IETF 82 WebRTC Security Architecture 3



Unauthenticated Entities

• Pretty much anyone else

– Generally cannot be trusted

• But can still be used when behavior can be verified

– ICE reachability testing

– Transit data which is cryptographically verified

IETF 82 WebRTC Security Architecture 4



Basic Design Principle: As good a job as we can

• It’s always safe to browse the Web

– Even to malicious sites

• Calls are encrypted wherever possible

– At minimum between WebRTC clients unless the site takes

direct action [Open issue warning]

• When available directly verify the far side

– Minimizes required trust in calling site

– Be compatible with as many identity providers as possible

IETF 82 WebRTC Security Architecture 5



Overall Topology

Signaling

Server

Alice’s

Browser

Bob’s

Browser

HTTPS

(R
OAP?)

HTTPS
(ROAP?)

JS API JS API

Media

(DTLS-SRTP)

Identity

Provider

Identity

Provider

Get Assertion Get Assertion
Verify AssertionVerify Assertion

IETF 82 WebRTC Security Architecture 6



Call Flow (I)

Alice’s
IdP

Alice
Signaling

Server
Bob

Calling Appoo Calling App //

[Call Bob]

//Get Assertionoo
Offer + Assertion // Offer + Assertion //

//Check Assertionoo

[Alice is Calling... Answer phone?]

• Bob knows Alice is calling [verified with IdP]

– Browser can display trusted UI for Alice’s identity

– If in address book, maybe name, picture, etc.

• If no IdP, Bob knows signaling service claims Alice is calling

IETF 82 WebRTC Security Architecture 7



Call Flow (II)

Alice
Signaling

Server
Bob

Bob’s
IdP

[Bob Answers]

oo Get Assertion //
Answer + Assertionoo Answer + Assertionoo
oo Check Assertion //
oo ICE Checks //
oo Media

(DTLS-SRTP)
//

• Alice knows Bob has answered

– Verified with Bob’s identity provider

• Alice and Bob know media is not flowing to innocent third parties

(media consent)

• Alice and Bob know they have a secure call with each other

– Security details displayed via trusted UI

IETF 82 WebRTC Security Architecture 8



Permissions Models

• One-time camera/microphone access [MUST]

• Permanent camera/microphone access (scoped to origin) [MUST]

• User-based permissions [SHOULD]

– Allow calls to this verified user

– Allow calls to any verified user in my system address book (on

some set of sites?)

• Data channels MAY be created without user consent

IETF 82 WebRTC Security Architecture 9



Permissions API

• MUST provide a mechanism to distinguish permissions type

– E.g.,

new PeerConnection({permission:’PERMANENT’, ...})

– Allows the browser to display different UIs for each permissions

level

• MUST provide a mechanism to relinquish any media stream access

– E.g., via MediaStream.record()

– Allows a site to commit not to observing your data

– Needs to be reflected in a trusted UI

IETF 82 WebRTC Security Architecture 10



Who “owns” the permissions”

• Question: which operation triggers the permissions check?

– mediaStream creation

– peerConnection.addStream()

– peerConnection.setLocalDescription()

– peerConnection.setRemoteDescription()

• This has UI and programmer implications

• An even bigger issue if API doesn’t work in terms of SDP at all

IETF 82 WebRTC Security Architecture 11



Permissions UI

• MUST clearly indicate when the camera/microphone are in use

• SHOULD stop camera and microphone when UI indicator would

be masked

– E.g., window overlap

• SHOULD provide a distinctive UI when user’s identities are

directly verifiable

IETF 82 WebRTC Security Architecture 12



Why HTTP origins are a problem
• Assumption: I’ve authorized http://www.example.com

• I’m in an Internet Cafe and visit any URL

– Attacker injects IFRAME pretending to be PokerWeb

– But calls go to him

www.slashdot.org

pokerweb.example.org

new PeerConnection() {

...

});

• Result: attacker has bugged your computer

• Violates the Web security model

IETF 82 WebRTC Security Architecture 13



Web Security Issues

• MUST treat HTTP and HTTPS origins as different permissions

domains

– e.g., http://example.com/ and https://example.com/ are

different

• Active mixed content MUST NOT be treated as if it were the

HTTPS origin

– [OPEN ISSUE]: How do we do this exactly?

IETF 82 WebRTC Security Architecture 14



Web Security and State Machine in JS

• Proposal is to split up state machine logic

– ICE in browser

– SDP/Media negotiation in JS

– Develop a library to assist in SDP/Media negotiation

• Where to JS libraries come from?

– Standard procedure is to download from a CDN

– E.g.,

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.0/jquery.min.js">

– At minimum you want HTTPS (not all CDNs do this)

– CDN is now inside security boundary

• Not clear how different this is

– Lots of sites use JQuery, underscore, etc. anyway

IETF 82 WebRTC Security Architecture 15



Communications Consent

• All direct communications MUST be verified via ICE

• The ICE stack MUST be constructed so that the JS cannot obtain

the transaction id

– This means that at minimum STUN must in browser

• Implementations MUST verify continuing consent at least every

30 (?) seconds

• OPEN ISSUE: How to verify continuing consent?

– ICE keepalives are STUN Binding Indications (one-way)

– Proposal: use STUN Binding Requests instead

IETF 82 WebRTC Security Architecture 16



IP Location Privacy

• Setting up a direct connection leaks an agent’s IP address

– And hence information about its location

• API MUST allow suppression of ICE negotiation until the user

accepts session

• API MUST provide a mechanism to do TURN-only candidates

– SHOULD allow conversion to non-TURN once peer identity is

verified [Jesup]

• No need to have browser enforce user consent

– A malicious site can get your IP address anyway

– If you are running Tor, you want the browser to do media

through Tor, though

IETF 82 WebRTC Security Architecture 17



Communications Security: Implementation

Requirements (Proposed)

• MUST implement DTLS-SRTP (for media) and DTLS (for data)

• MAY implement RTP(?) and SDES(??) for backward

compatibility purposes

• Security MUST be default state

– Implementations MUST offer DTLS and/or DTLS-SRTP for

every channel

– MUST accept DTLS and/or DTLS-SRTP whenever offered ∗

∗Somewhat harder with a low-level API, but still possible with the right design.

IETF 82 WebRTC Security Architecture 18



Communications Security: API Requirements

• Implementations MUST support PFS modes

• Implementations MUST allow JS to force new long-term key

generation

– E.g.,

new PeerConnection({new_authentication_key:true,...})

– This allows unlinkability

• Implementations SHOULD allow JS to set authentication key

lifetime

– This allows key continuity

• When DTLS is used, API MUST NOT provide access to the

traffic keying material

IETF 82 WebRTC Security Architecture 19



Communications Security: UI [based on

draft-kaufman-rtcweb-security-ui]

• MUST provide a security inspector interface in browser chrome

• Up-front items

– Security characteristics of incoming stream

– Security characteristics of outgoing A/V

– Whether the transmission keys were pairwise derived or

provided by a server

– Verified far endpoint identity if available

• With drill-down

– Cipher suites

– PFS yes or no

– Out-of-band verification mechanism such as fingerprint or SAS

IETF 82 WebRTC Security Architecture 20



Example IdP Interaction: BrowserId

Alice’s Brower

WebRTC JS Code

Peer Connection

BrowserID

Signer

Fingerprint
Signed

Fingerprint

Identity

Provider

Get Certificate

Bob’s Brower

WebRTC JS Code

Peer Connection

BrowserID

Verifier

Signed

Fingerprint
’Alice’

Offer

Check Certifi
cate

IETF 82 WebRTC Security Architecture 21



Example ROAP OFFER with BrowserID
{

"messageType":"OFFER",

"callerSessionId":"13456789ABCDEF",

"seq": 1

"sdp":"

v=0\n

...

4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB\n",

"identity":{

"identityType":"browserid",

"assertion": {

"digest":"<hash of fingerprint and session IDs>",

"audience": "[TBD]"

"valid-until": 1308859352261,

}, // signed using user’s key

"certificate": {

"email": "rescorla@gmail.com",

"public-key": "<ekrs-public-key>",

"valid-until": 1308860561861,

} // certificate is signed by gmail.com

}

}

IETF 82 WebRTC Security Architecture 22



Example JSEP Transport Info with BrowserID

{

"name":"audio",

"fingerprint":{

"algorithm":"SHA-1",

"digest":"4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB"

},

"identity":{

"identityType":"browserid",

"assertion": {

"digest":"<hash of fingerprint>",

"audience": "[TBD]"

"valid-until": 1308859352261,

}, // signed using user’s key

"certificate": {

"email": "rescorla@gmail.com",

"public-key": "<ekrs-public-key>",

"valid-until": 1308860561861,

} // certificate is signed by gmail.com

},

"candidates:[...]

}

IETF 82 WebRTC Security Architecture 23



Generic Third-Party Identity Assertions [Warning:

hard-hat area]

• We don’t want to be tied to any identity provider or protocol

• Best case scenario: accomodate BrowserID, OAuth, OpenID, etc.

– Without changing browser code

• Basic idea

– Generic fixed downward interface from PeerConnection

– IdPs provide adaptation layers to their own protocols

– Potential avenues:

∗ Load JS from a defined place on the site

∗ Web intents

• Still working on this part (lots of help from Mozilla guys)

IETF 82 WebRTC Security Architecture 24



Questions?

IETF 82 WebRTC Security Architecture 25


