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Trust Model

• Browser acts as the Trusted Computing Base (TCB)

– Only piece of the system user can really trust

– Job is to enforce user’s desired security policies

• Authenticated entities

– Identity is checked by the browser (sometimes transitively)

• Unauthenticated entities

– Random other network elements who send and receive traffic
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Authenticated Entities

• Examples:

– Calling services (known origin)

– Identity providers

– Other users (when cryptographically verified)

– Sometimes network elements with the right topology (e.g.,

behind our firewall)

• Authenticated 6= trusted: Dr. Evil is still evil even if I know it’s

him

– But authentication is the basis of trust decisions

– And maybe I want to call Dr. Evil after all...
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Unauthenticated Entities

• Pretty much anyone else

– Generally cannot be trusted

• But can still be used when behavior can be verified

– ICE reachability testing

– Transit data which is cryptographically verified
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Basic Design Principle: As good a job as we can

• It’s always safe to browse the Web

– Even to malicious sites

• Calls are encrypted wherever possible

– At minimum between WebRTC clients unless the site takes

direct action [Open issue warning]

• When available directly verify the far side

– Minimizes required trust in calling site

– Be compatible with as many identity providers as possible
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Overall Topology
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Call Flow (I)

Alice’s
IdP

Alice
Signaling

Server
Bob

Calling Appoo Calling App //

[Call Bob]

//Get Assertionoo
Offer + Assertion // Offer + Assertion //

//Check Assertionoo

[Alice is Calling... Answer phone?]

• Bob knows Alice is calling [verified with IdP]

– Browser can display trusted UI for Alice’s identity

– If in address book, maybe name, picture, etc.

• If no IdP, Bob knows signaling service claims Alice is calling
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Call Flow (II)

Alice
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Bob

Bob’s
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[Bob Answers]

oo Get Assertion //
Answer + Assertionoo Answer + Assertionoo
oo Check Assertion //
oo ICE Checks //
oo Media
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//

• Alice knows Bob has answered

– Verified with Bob’s identity provider

• Alice and Bob know media is not flowing to innocent third parties

(media consent)

• Alice and Bob know they have a secure call with each other

– Security details displayed via trusted UI
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Permissions Models

• One-time camera/microphone access [MUST]

• Permanent camera/microphone access (scoped to origin) [MUST]

• User-based permissions [SHOULD]

– Allow calls to this verified user

– Allow calls to any verified user in my system address book (on

some set of sites?)

• Data channels MAY be created without user consent
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Permissions API

• MUST provide a mechanism to distinguish permissions type

– E.g.,

new PeerConnection({permission:’PERMANENT’, ...})

– Allows the browser to display different UIs for each permissions

level

• MUST provide a mechanism to relinquish any media stream access

– E.g., via MediaStream.record()

– Allows a site to commit not to observing your data

– Needs to be reflected in a trusted UI
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Who “owns” the permissions”

• Question: which operation triggers the permissions check?

– mediaStream creation

– peerConnection.addStream()

– peerConnection.setLocalDescription()

– peerConnection.setRemoteDescription()

• This has UI and programmer implications

• An even bigger issue if API doesn’t work in terms of SDP at all
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Permissions UI

• MUST clearly indicate when the camera/microphone are in use

• SHOULD stop camera and microphone when UI indicator would

be masked

– E.g., window overlap

• SHOULD provide a distinctive UI when user’s identities are

directly verifiable
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Why HTTP origins are a problem
• Assumption: I’ve authorized http://www.example.com

• I’m in an Internet Cafe and visit any URL

– Attacker injects IFRAME pretending to be PokerWeb

– But calls go to him

www.slashdot.org

pokerweb.example.org

new PeerConnection() {

...

});

• Result: attacker has bugged your computer

• Violates the Web security model
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Web Security Issues

• MUST treat HTTP and HTTPS origins as different permissions

domains

– e.g., http://example.com/ and https://example.com/ are

different

• Active mixed content MUST NOT be treated as if it were the

HTTPS origin

– [OPEN ISSUE]: How do we do this exactly?
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Web Security and State Machine in JS

• Proposal is to split up state machine logic

– ICE in browser

– SDP/Media negotiation in JS

– Develop a library to assist in SDP/Media negotiation

• Where to JS libraries come from?

– Standard procedure is to download from a CDN

– E.g.,

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.0/jquery.min.js">

– At minimum you want HTTPS (not all CDNs do this)

– CDN is now inside security boundary

• Not clear how different this is

– Lots of sites use JQuery, underscore, etc. anyway
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Communications Consent

• All direct communications MUST be verified via ICE

• The ICE stack MUST be constructed so that the JS cannot obtain

the transaction id

– This means that at minimum STUN must in browser

• Implementations MUST verify continuing consent at least every

30 (?) seconds

• OPEN ISSUE: How to verify continuing consent?

– ICE keepalives are STUN Binding Indications (one-way)

– Proposal: use STUN Binding Requests instead
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IP Location Privacy

• Setting up a direct connection leaks an agent’s IP address

– And hence information about its location

• API MUST allow suppression of ICE negotiation until the user

accepts session

• API MUST provide a mechanism to do TURN-only candidates

– SHOULD allow conversion to non-TURN once peer identity is

verified [Jesup]

• No need to have browser enforce user consent

– A malicious site can get your IP address anyway

– If you are running Tor, you want the browser to do media

through Tor, though
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Communications Security: Implementation

Requirements (Proposed)

• MUST implement DTLS-SRTP (for media) and DTLS (for data)

• MAY implement RTP(?) and SDES(??) for backward

compatibility purposes

• Security MUST be default state

– Implementations MUST offer DTLS and/or DTLS-SRTP for

every channel

– MUST accept DTLS and/or DTLS-SRTP whenever offered ∗

∗Somewhat harder with a low-level API, but still possible with the right design.
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Communications Security: API Requirements

• Implementations MUST support PFS modes

• Implementations MUST allow JS to force new long-term key

generation

– E.g.,

new PeerConnection({new_authentication_key:true,...})

– This allows unlinkability

• Implementations SHOULD allow JS to set authentication key

lifetime

– This allows key continuity

• When DTLS is used, API MUST NOT provide access to the

traffic keying material
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Communications Security: UI [based on

draft-kaufman-rtcweb-security-ui]

• MUST provide a security inspector interface in browser chrome

• Up-front items

– Security characteristics of incoming stream

– Security characteristics of outgoing A/V

– Whether the transmission keys were pairwise derived or

provided by a server

– Verified far endpoint identity if available

• With drill-down

– Cipher suites

– PFS yes or no

– Out-of-band verification mechanism such as fingerprint or SAS
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Example IdP Interaction: BrowserId
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Example ROAP OFFER with BrowserID
{

"messageType":"OFFER",

"callerSessionId":"13456789ABCDEF",

"seq": 1

"sdp":"

v=0\n

...

4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB\n",

"identity":{

"identityType":"browserid",

"assertion": {

"digest":"<hash of fingerprint and session IDs>",

"audience": "[TBD]"

"valid-until": 1308859352261,

}, // signed using user’s key

"certificate": {

"email": "rescorla@gmail.com",

"public-key": "<ekrs-public-key>",

"valid-until": 1308860561861,

} // certificate is signed by gmail.com

}

}
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Example JSEP Transport Info with BrowserID

{

"name":"audio",

"fingerprint":{

"algorithm":"SHA-1",

"digest":"4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB"

},

"identity":{

"identityType":"browserid",

"assertion": {

"digest":"<hash of fingerprint>",

"audience": "[TBD]"

"valid-until": 1308859352261,

}, // signed using user’s key

"certificate": {

"email": "rescorla@gmail.com",

"public-key": "<ekrs-public-key>",

"valid-until": 1308860561861,

} // certificate is signed by gmail.com

},

"candidates:[...]

}
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Generic Third-Party Identity Assertions [Warning:

hard-hat area]

• We don’t want to be tied to any identity provider or protocol

• Best case scenario: accomodate BrowserID, OAuth, OpenID, etc.

– Without changing browser code

• Basic idea

– Generic fixed downward interface from PeerConnection

– IdPs provide adaptation layers to their own protocols

– Potential avenues:

∗ Load JS from a defined place on the site

∗ Web intents

• Still working on this part (lots of help from Mozilla guys)
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Questions?
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