Anti-spoofing beyond the local link - possible enhancement to RPF?

Jun Bi
Tsinghua Univ./CERNET
IETF 82 SAVI Meeting at Taipei
2011.11.15
Content

• Introduction
• Intra-AS scenario
• Inter-AS scenario
• Discussion on possible enhancements
Introduction(1)

• It is just to **trigger** the discussion at IETF82, not make decision. Deeper discussion will be continued at IETF83

• This PPT tries to analyze in inter-AS and intra-AS scenarios
 – From the viewpoint of deplorers (enterprise net owner vs. ISP)
 – Intra-AS has one administrator to control
 • Intra-AS here means “inside a campus network or enterprise network”
 • When local link SAVI can not be 100% deployed at all local links, shall we deploy sth at IGP router or layer 3 switches
 • feasible to be fixed with a global view of paths in an AS
 – Inter-AS (the whole Internet level) is tougher
 • No single administration, asymmetric flows are more common, harder to have global view of paths in the whole Internet

• Fred Baker prefers to analyzing by different routing algorithm types (Link-state and Distance vector)
 – It is also reasonable. He will comment it later
• Currently SAVI prevents IP spoofing within the local link.
• Ingress filtering with RPF is the only practical solution for anti-spoofing beyond local link.
• RPF [bcp84] has five modes
 – Ingress Access Lists: to manually filter
 – Strict RPF: using FIB entry+ reverse direction to filter
 – Feasible RPF: using RIB entry+ reverse direction to filter
 – Loose RPF: using FIB entry to filter (lost direction info)
 – Loose RPF ignoring default route: using FIB entry (without default entry) to filter (lost direction info and default info.)
Introduction (3)

- RPF works well in most cases
- RPF still has problems in some situations
 - False positive (FP) in some asymmetric routing cases
 - Inter-AS: asymmetric flows are common
 - Intra-AS: better, but sometimes still has asymmetric flows
 - False negative (FN)
 - If deployment ratio is low, then FN for spoofing flows at the same direction
 - Loose mode only check prefixes existence, high FN
- How to make RPF work better?
 - Practice guidelines
 - Enhancing routing algorithms
 - Routing protocol revision or other methods
Content

• Introduction
• **Intra-AS scenario**
• Inter-AS scenario
• Discussion on possible enhancements
Intra-AS Scenario (1)

• Asymmetric link cost
 – For a link-state routing protocol, a link may have different costs in different directions (e.g. for TE)
 – Dijkstra algorithm is a greedy algorithm that only fast compute the shortest path into RIB
 – Thus two routers S and D use different paths towards each other, which makes RPF with FP

• Possible enhancement
 – Enhancing SPF algorithm to calculate “reverse path tree” with all reverse paths into RIB

The cost of (S, R2) is evaluated differently by S and R2, so is (D, R1). S and D will choose different path towards each other, thus asymmetry.
Intra-AS Scenario (2)

- **ECMP**
 - In some topology, it may have many ECMPs (e.g. 20) between S and D. All ECMPs may be used.
 - FIB entries of IGP router is limited (today most of IGP routers in campus/enterprise are layer 3 switches with limited hardware), usually only limited number (e.g. 8) of ECMPs entries are loaded into FIB.
 - S and D may respectively load different 8 ECMPs into FIB among all 20 ECMPs, generate asymmetric FIB, then FP

- **IGP fast route**
 - Commented by Joel Halpern, RPF may cause difficulties with IGP fast route
Content

• Introduction
• Intra-AS scenario
• **Inter-AS scenario**
• Discussion on possible enhancements
Inter-AS Scenario (1)

- Asymmetric Routing
 - Due to complexity of BGP policy, hot potato...asymmetric flows are more common than intra-AS.
 - E.g. Prefix Aggregation
 - C’s prefix is aggregated by P1
 - Due to LPM, D chooses P2
 - C prefers P1 to P2
 - Reason of FP
 - local preference is not announce by BGP
 - LPM at RPF implantation
 - More complicated cases to cause asymmetric flows
Inter-AS Scenario (2)

- Commented by Joel Halpern, hot-potato routing wherein each ISP chooses to hand off traffic to peers/transit/customers as quickly as possible makes more asymmetric traffic.
Inter-AS Scenario (3)

• Deployment Incentive
 – ASes are operated by different ISPs, who always want to maximize benefits with lowest deployment cost. So a method is incentive only when it can protect deployers.
 – It is also desirable for a method to protect deployer from being spoofed by others
 – A and B deployed RPF, but B can still be spoofed by C to attack A (inter-AS is big, there are always lots of not deployed AS like D between deployed AS)
Content

• Introduction
• Intra-AS scenario
• Inter-AS scenario
• Discussion on possible enhancements
Discussion on Possible Solutions

• Intra-AS
 – Easier because the same administration, global view of path in an AS is possible
 – Possible enhancement
 • Guidelines on practical operations
 • Revise routing algorithms
 • Extend routing protocols
 • New approaches, like generate filtering entries in a central server
Discussion on Possible Solutions

• Inter-AS
 – Hope FP=0 with acceptable FN
 – Deployment Incentive in incomplete deployment environment is important for inter-AS case, because no central administration
 • Source Address Validation Alliance?
 – protect alliance members from Beijing spoofed inside the alliance of ASes.
Thanks!