Anti-spoofing beyond the local link - possible enhancement to RPF?

Jun Bi
Tsinghua Univ./CERNET
IETF 82 SAVI Meeting at Taipei
2011.11.15

- Introduction
- Intra-AS scenario
- Inter-AS scenario
- Discussion on possible enhancements

Introduction(1)

- It is just to trigger the discussion at IETF82, not make decision. Deeper discussion will be continued at IETF83
- This PPT tries to analyze in inter-AS and intra-AS scenarios
 - From the viewpoint of deplorers (enterprise net owner vs. ISP)
 - Intra-AS has one administrator to control
 - Intra-AS here means "inside a campus network or enterprise network"
 - When local link SAVI can not be 100% deployed at all local links, shall we deploy sth at IGP router or layer 3 switches
 - feasible to be fixed with a global view of paths in an AS
 - Inter-AS (the whole Internet level) is tougher
 - No single administration, asymmetric flows are more common, harder to have global view of paths in the whole Internet
- Fred Baker prefers to analyzing by different routing algorithm types (Link-state and Distance vector)
 - It is also reasonable. He will comment it later

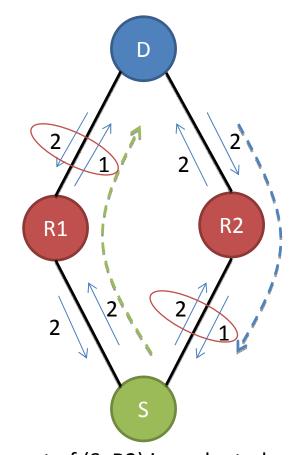
Introduction (2)

- Currently SAVI prevents IP spoofing within the local link.
- Ingress filtering with RPF is the only practical solution for anti-spoofing beyond local link
- RPF [bcp84] has five modes
 - Ingress Access Lists: to manually filter
 - Strict RPF: using FIB entry+ reverse direction to filter
 - Feasible RPF: using RIB entry+ reverse direction to filter
 - Loose RPF: using FIB entry to filter (lost direction info)
 - Loose RPF ignoring default route: using FIB entry (without default entry) to filter (lost direction info and default info.)

Introduction (3)

- RPF works well in most cases
- RPF still has problems in some situations
 - False positive (FP) in some asymmetric routing cases
 - Inter-AS: asymmetric flows are common
 - Intra-AS: better, but sometimes still has asymmetric flows
 - False negative (FN)
 - If deployment ratio is low, then FN for spoofing flows at the same direction
 - Loose mode only check prefixes existence, high FN
- How to make RPF work better?
 - Practice guidelines
 - Enhancing routing algorithms
 - Routing protocol revision or other methods

- Introduction
- Intra-AS scenario
- Inter-AS scenario
- Discussion on possible enhancements


Intra-AS Scenario (1)

Asymmetric link cost

- For a link-state routing protocol, a link may have different costs in different directions (e.g. for TE)
- Dijkstra algorithm is a greedy algorithm that only fast compute the shortest path into RIB
- Thus two routers S and D use different paths towards each other, which makes RPF with FP

Possible enhancement

 Enhancing SPF algorithm to calculate differently by S and R2, so is (D, R1). "reverse path tree" with all reverse paths into RIB

The cost of (S, R2) is evaluated S and D will choose different path towards each other, thus asymmetry.

Intra-AS Scenario (2)

ECMP

- In some topology, it may have many ECMPs (e.g. 20).
 between S and D. All ECMPs may be used.
- FIB entries of IGP router is limited (today most of IGP routers in campus/enterprise are layer 3 switches with limited hardware), usually only limited number (e.g. 8) of ECMPs entries are loaded into FIB.
- S and D may respectively load different 8 ECMPs into FIB among all 20 ECMPs, generate asymmetric FIB, then FP

IGP fast route

 Commented by Joel Halpern, RPF may cause difficulties with IGP fast route

- Introduction
- Intra-AS scenario
- Inter-AS scenario
- Discussion on possible enhancements

Inter-AS Scenario (1)

Asymmetric Routing

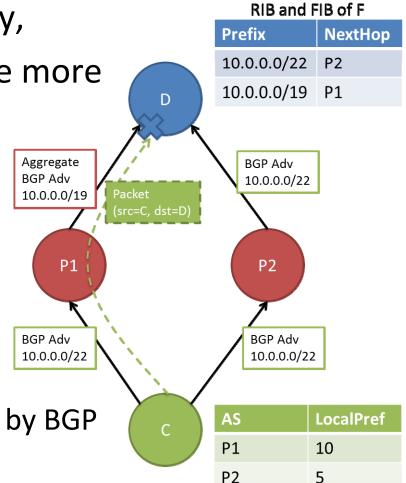
Due to complexity of BGP policy,
 hot potato...asymmetric flows are more

common than intra-AS.

E.g. Prefix Aggregation

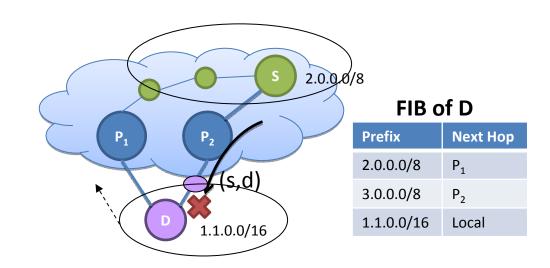
C's prefix is aggregated by P1

• Due to LPM, D chooses P2

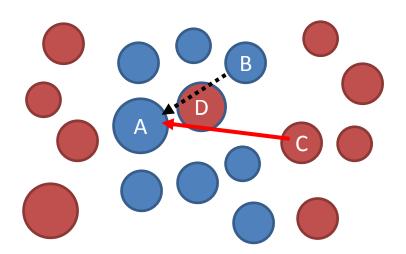

C prefers P1 to P2

Reason of FP

local preference is not announce by BGP


• LPM at RPF implantation

More complicated cases to cause asymmetric flows


Inter-AS Scenario (2)

 Commented by Joel Halpern, hot-potato routing wherein each ISP chooses to hand off traffic to peers/transit/customers as quickly as possible makes more asymmetric traffic

Inter-AS Scenario (3)

- Deployment Incentive
 - ASes are operated by different ISPs, who always want to maximize benefits with lowest deployment cost. So a method is incentive only when it can protect deployers.
 - It is also desirable for a method to protect deployer from being spoofed by others
 - A and B deloyed RPF, but B can still be spoofed by C to attack A (inter-AS is big, there are always lots of not deployed AS like D between deployed AS)

- Introduction
- Intra-AS scenario
- Inter-AS scenario
- Discussion on possible enhancements

Discussion on Possible Solutions

Intra-AS

- Easier because the same administration, global view of path in an AS is possible
- Possible enhancement
 - Guidelines on practical operations
 - Revise routing algorithms
 - Extend routing protocols
 - New approaches, like generate filtering entries in a central server

Discussion on Possible Solutions

- Inter-AS
 - Hope FP=0 with acceptable FN
 - Deployment Incentive in incomplete deployment environment is important for inter-AS case, because no central administration
 - Source Address Validation Alliance?
 - protect alliance members from beijing spoofed inside the alliance of ASes.

Thanks!