IPv4 Residual Deployments Unified Packet Format for Stateless solutions (4rd-U)

draft-despres-softwire-4rd-u-01

4rd-U vs. Translation and Encapsulation vs.

Why it is useful?

- Current O&M tools of IPv6-only domains use port fields of IPv6
 packets to do access control (ACLs). Having them ready for
 encapsulated IPv4 packets MAY take a long time
 - advantage to Double-translation
- 3. Web redirection in IPv6-only domains MAY require valid TCP checksums in IPv6 payloads
 - advantage to Double-translation
- 1. IPv4 and IPv6 treat fragmentation differently so that the IPv4 DF bit MAY be lost in Translation
 - advantage to Encapsulation
- 4. If IPv6-domain traversal by IPv4 packets is subject to its own IPv6 traffic class, the IPv4 TOS MAY be lost
 - advantage to Encapsulation

Why it is possible?

- 1. IPv6 packets have an optional Fragment header.
- 2. In this header, the packet ID field has 32 bits more than that of IPv4 headers
- 3. Only 9 bits of IPv4 headers are missing for end-to-end transparency in case of translation (DF bit and TOS octet)
- 4. Checksum validity of UDP/TCP can be ensured in 4rd-U packets without any change in IP payload (using for this the 16 last bits of IPv6 addresses)

How it works – (1) From IPv4 to IPv6

HEADER-FIELDS

- 7 are constant
- 7 are COPIED(DF and TOS in packet ID)
- 1 is /MODIFIED/ by adding a constant
- 2 *ADDRESS MAPPINGS*

How it works – (2) From IPv6 to IPv4

HEADER-FIELDS

- 3 are constant
- 7 are COPIED
- 1 is /MODIFIED/ by adding a constant
- 2 are *ADDRESS MAPPING* derived
- 1 is "COMPUTED" (header checksum)

A checksum-neutral Address-Mapping (CE address)

A checksum-neutral Address-Mapping (BR address)

4rd-U in the global picture

	Possibility of :	MAP Trans	MAP Encap	Stateless DS-lite	4rd-U
1	Direct CE-CE routes	Y	Y	N	Y
2	Full IPv4 Transparency	N	Y	Y	Υ
3	Use of IPv6 O&M tools and Web redirect	Y	N	N	Y
4	Changing IPv4 pool and/or sharing ratio without IPv6 renumbering	Y (TBD)	Y (TBD)	Y (TBD)	Y (TBD)
5	Operation on IPv4-only networks of the NAT444 model	Y (4rd-T /6rd)	Y (4rd-E /6rd)	Y (*) (SDNAT /RFC1918)	Y (4rd-U /6rd)

(*) No IPv6 service

Additional feature (not in draft)

Avoid fragment processing in BR from non-shared-address CEs

- In BRs, fragmented packets from shared-address CEs need some reassembly processing to check ports of all fragments
- If BRs don't know whether source CEs have a shared address or not, they do this processing even if not needed
- CE sources can indicate whether they have shared or non-shared addresses in one of the 7 remaining free bits in IPv6 fragment headers.

Conclusion

The 4rd-U design is a proposed for stateless IPv4 residual deployments across IPv6-capable domains as basis of a **unique standard**