
TCP and SCTP RTO Restart���
���

draft-hurtig-tcpm-rtorestart-01	



Per Hurtig, Andreas Petlund, Michael Welzl	


perhurt@kau.se, apetlund@ifi.uio.no, michawe@ifi.uio.no	





Motivation	


•  In some cases TCP/SCTP must use RTO for 

loss recovery	


–  e.g., if a connection has 2 outstanding packets and 1 is lost	



•  Some solutions exist, but they are not always 
applicable	


– Limited Transmit (RFC 3042)	



•  requires: unsent data, no ack loss	


– Early Retransmit (RFC 5827)	



•  requires: 2 outstanding segments, no ack loss, no 
reordering	





Motivation	


•  Thus, some flows have to use 

RTO for loss recovery	


•  However, the effective RTO often 

becomes RTO = RTO + t	


–  Where t ≈ RTT [+delACK]	



•  The reason is that the timer is 
restarted on each incoming ACK 
(RFC 6298)	



Sender	

 Receiver	



RTO Restart	



RTO	



t	





Impact	


•  The extra RTT could lead to performance problems for 

short-lived (e.g. web) and thin streams	


–  Thin streams are flows that only use a fraction of the available 

bandwidth (e.g. online games, chat, VoIP, …)	


–  IETF 78: http://www.ietf.org/proceedings/78/slides/iccrg-4.pdf ���
	



•  80% of all web flows typically contain 7-8 segments or less 
[1], which is similar to general TCP flow lengths [2]	


–  2-3 RTTs in slow-start	


–  RTO ≈ 4 RTTs (Linux and Windows) [3]���
	



•  It has previously been shown that web flows use RTOs 
frequently to recover lost packets [4]	



[1] Dukkipati et al., “An argument for increasing TCP's initial congestion window”, ACM CCR, July 2010.	


[2] Qian et al., “TCP Revisited: A Fresh Look at TCP in the Wild”, In Proc. of IMC 2009.	


[3] Rewaskar et al., “A Performance Study of Loss Detection/Recovery in Real-world TCP Implementations”, In Proc. of ICNP 2007	


[4] Balakrishnan et al., “TCP Behavior of a Busy Web Server: Analysis and Improvements", In Proc. of INFOCOM 1998.	





Impact	



•  Standard approach no problem when 
congestion window is large	



•  Actually, it is beneficial	


–  lower risk for spurious RTOs	


– gives FR more time to detect loss	



•  smaller congestion window reduction using FR	



•  This is not the case for short-lived/thin flows	


– congestion window low anyhow	





TCP and SCTP RTO Restart	



•  To allow retransmissions after exactly RTO 
seconds, the timer is restarted as:	


– RTO = RTO - t	



•  The modified restart is only used when	


–  the number of outstanding segments < 4;	


– and there is no unsent data ready for transmission. 	



•  Thus, only flows incapable of FR can use the 
modified RTO restart	





Costs vs. Benefits	



•  Benefits	


–  reduces RTOs with approximately one RTT for 

flows incapable of FR	


–  isn’t more aggressive than allowed by RFC 6298	



•  Costs	


– more aggressive than the current algorithm	


–  requires an extra variable per outstanding segment	





The future	



•  We have implemented the algorithm in 
FreeBSD/Linux	



•  Should this be a WG item?	


–  the goal for the draft is experimental	




