Methodology for benchmarking MPLS protection mechanisms
draft-ietf-bmwg-protection-meth-09.txt

Abstract

This draft describes the methodology for benchmarking MPLS Protection mechanisms for link and node protection as defined in [MPLS-FRR-EXT]. This document provides test methodologies and testbed setup for measuring failover times while considering all dependencies that might impact faster recovery of real-time applications bound to MPLS based traffic engineered tunnels. The benchmarking terms used in this document are defined in [TERM-ID].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 28, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.
Table of Contents

1. Introduction .. 5
2. Document Scope ... 6
3. Existing Definitions and Requirements 6
4. General Reference Topology 7
5. Test Considerations 8
 5.1. Failover Events [TERM-ID] 8
 5.2. Failure Detection [TERM-ID] 9
 5.3. Use of Data Traffic for MPLS Protection benchmarking 9
 5.4. LSP and Route Scaling 10
 5.5. Selection of IGP 10
 5.6. Restoration and Reversion [TERM-ID] 10
 5.7. Offered Load 11
 5.8. Tester Capabilities 11
6. Reference Test Setup 12
 6.1. Link Protection 12
 6.1.1. Link Protection - 1 hop primary (from PLR) and 1 hop backup TE tunnels 12
 6.1.2. Link Protection - 1 hop primary (from PLR) and 2 hop backup TE tunnels 13
 6.1.3. Link Protection - 2+ hop (from PLR) primary and 1 hop backup TE tunnels 13
 6.1.4. Link Protection - 2+ hop (from PLR) primary and 2 hop backup TE tunnels 14
 6.2. Node Protection 14
 6.2.1. Node Protection - 2 hop primary (from PLR) and 1 hop backup TE tunnels 14
 6.2.2. Node Protection - 2 hop primary (from PLR) and 2 hop backup TE tunnels 15
 6.2.3. Node Protection - 3+ hop primary (from PLR) and 1 hop backup TE tunnels 16
 6.2.4. Node Protection - 3+ hop primary (from PLR) and 2 hop backup TE tunnels 17
7. Test Methodology ... 17
 7.1. MPLS FRR Forwarding Performance 18
 7.1.1. Headend PLR Forwarding Performance 18
 7.1.2. Mid-Point PLR Forwarding Performance 19
 7.1.3. Egress PLR Forwarding Performance 20
 7.2. Headend PLR with Link Failure 21
 7.3. Mid-Point PLR with Link Failure 23
 7.4. Headend PLR with Node Failure 24
 7.5. Mid-Point PLR with Node Failure 26
8. Reporting Format .. 27
9. Security Considerations 29
10. IANA Considerations 29
11. Acknowledgements 30
12. References ... 30
1. Introduction

This draft describes the methodology for benchmarking MPLS based protection mechanisms. The new terminology that this document introduces is defined in [TERM-ID].

MPLS based protection mechanisms provide fast recovery of real-time services from a planned or an unplanned link or node failures. MPLS protection mechanisms are generally deployed in a network infrastructure where MPLS is used for provisioning of point-to-point traffic engineered tunnels (tunnel). MPLS based protection mechanisms promise to improve service disruption period by minimizing recovery time from most common failures.

Network elements from different manufacturers behave differently to network failures, which impacts the network’s ability and performance for failure recovery. It therefore becomes imperative for service providers to have a common benchmark to understand the performance behaviors of network elements.

There are two factors impacting service availability: frequency of failures and duration for which the failures persist. Failures can be classified further into two types: correlated and uncorrelated. Correlated and uncorrelated failures may be planned or unplanned.

Planned failures are predictable. Network implementations should be able to handle both planned and unplanned failures and recover gracefully within a time frame to maintain service assurance. Hence, failover recovery time is one of the most important benchmark that a service provider considers in choosing the building blocks for their network infrastructure.

A correlated failure is the simultaneous occurrence of two or more failures. A typical example is failure of a logical resource (e.g. layer-2 links) due to a dependency on a common physical resource (e.g. common conduit) that fails. Within the context of MPLS protection mechanisms, failures that arise due to Shared Risk Link Groups (SRLG) [MPLS-FRR-EXT] can be considered as correlated failures. Not all correlated failures are predictable in advance, for example, those caused by natural disasters.

MPLS Fast Re-Route (MPLS-FRR) allows for the possibility that the Label Switched Paths can be re-optimized in the minutes following Failover. IP Traffic would be re-routed according to the preferred path for the post-failure topology. Thus, MPLS-FRR includes an additional step to the General model:
(1) Failover Event - Primary Path (Working Path) fails

(2) Failure Detection - Failover Event is detected

(3)
 a. Failover - Working Path switched to Backup path
 b. Re-Optimization of Working Path (possible change from Backup Path)

(4) Restoration - Primary Path recovers from a Failover Event

(5) Reversion (optional) - Working Path returns to Primary Path

2. Document Scope

This document provides detailed test cases along with different topologies and scenarios that should be considered to effectively benchmark MPLS protection mechanisms and failover times on the Data Plane. Different Failover Events and scaling considerations are also provided in this document.

All benchmarking testcases defined in this document apply to both facility backup and local protection enabled in detour mode. The test cases cover all possible failure scenarios and the associated procedures benchmark the performance of the Device Under Test (DUT) to recover from failures. Data plane traffic is used to benchmark failover times.

Benchmarking of correlated failures is out of scope of this document. Protection from Bi-directional Forwarding Detection (BFD) is outside the scope of this document.

As described above, MPLS-FRR may include a Re-optimization of the Working Path, with possible packet transfer impairments. Characterization of Re-optimization is beyond the scope of this memo.

3. Existing Definitions and Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14, RFC 2119 [Br97]. RFC 2119 defines the use of these key words to help make the
intent of standards track documents as clear as possible. While this document uses these keywords, this document is not a standards track document.

The reader is assumed to be familiar with the commonly used MPLS terminology, some of which is defined in [MPLS-FRR-EXT].

This document uses much of the terminology defined in [TERM-ID]. This document also uses existing terminology defined in other BMWG work. Examples include, but are not limited to:

Throughput [Ref.[Br91], section 3.17]
Device Under Test (DUT) [Ref.[Ma98], section 3.1.1]
System Under Test (SUT) [Ref.[Ma98], section 3.1.2]
Out-of-order Packet [Ref.[Po06], section 3.3.2]
Duplicate Packet [Ref.[Po06], section 3.3.3]

4. General Reference Topology

Figure 1 illustrates the basic reference testbed and is applicable to all the test cases defined in this document. The Tester is comprised of a Traffic Generator (TG) & Test Analyzer (TA). A Tester is directly connected to the DUT. The Tester sends and receives IP traffic to the tunnel ingress and performs signaling protocol emulation to simulate real network scenarios in a lab environment. The Tester may also support MPLS-TE signaling to act as the ingress node to the MPLS tunnel.
5. Test Considerations

This section discusses the fundamentals of MPLS Protection testing:

1. The types of network events that causes failover
2. Indications for failover
3. the use of data traffic
4. Traffic generation
5. LSP Scaling
6. Reversion of LSP
7. IGP Selection

5.1. Failover Events [TERM-ID]

The failover to the backup tunnel is primarily triggered by either link or node failures observed downstream of the Point of Local repair (PLR). Some of these failure events are listed below.

Link Failure Events
- Interface Shutdown on PLR side with POS Alarm
- Interface Shutdown on remote side with POS Alarm
- Interface Shutdown on PLR side with RSVP hello enabled
- Interface Shutdown on remote side with RSVP hello enabled
- Interface Shutdown on PLR side with BFD
- Interface Shutdown on remote side with BFD
- Fiber Pull on the PLR side (Both TX & RX or just the TX)
- Fiber Pull on the remote side (Both TX & RX or just the RX)
- Online insertion and removal (OIR) on PLR side
- OIR on remote side
- Sub-interface failure (e.g. shutting down of a VLAN)
- Parent interface shutdown (an interface bearing multiple sub-interfaces

Node Failure Events

- A System reload initiated either by a graceful shutdown or by a power failure.
- A system crash due to a software failure or an assert.

5.2. Failure Detection [TERM-ID]

Link failure detection time depends on the link type and failure detection protocols running. For SONET/SDH, the alarm type (such as LOS, AIS, or RDI) can be used. Other link types have layer-two alarms, but they may not provide a short enough failure detection time. Ethernet based links do not have layer 2 failure indicators, and therefore relies on layer 3 signaling for failure detection. However for directly connected devices, remote fault indication in the ethernet auto-negotiation scheme could be considered as a type of layer 2 link failure indicator.

MPLS has different failure detection techniques such as BFD, or use of RSVP hellos. These methods can be used for the layer 3 failure indicators required by Ethernet based links, or for some other non-Ethernet based links to help improve failure detection time.

The test procedures in this document can be used for a local failure or remote failure scenarios for comprehensive benchmarking and to evaluate failover performance independent of the failure detection techniques.

5.3. Use of Data Traffic for MPLS Protection benchmarking

Currently end customers use packet loss as a key metric for Failover Time [TERM-ID]. Failover Packet Loss [TERM-ID] is an externally observable event and has direct impact on application performance. MPLS protection is expected to minimize the packet loss in the event
of a failure. For this reason it is important to develop a standard router benchmarking methodology for measuring MPLS protection that uses packet loss as a metric. At a known rate of forwarding, packet loss can be measured and the failover time can be determined. Measurement of control plane signaling to establish backup paths is not enough to verify failover. Failover is best determined when packets are actually traversing the backup path.

An additional benefit of using packet loss for calculation of failover time is that it allows use of a black-box test environment. Data traffic is offered at line-rate to the device under test (DUT) an emulated network failure event is forced to occur, and packet loss is externally measured to calculate the convergence time. This setup is independent of the DUT architecture.

In addition, this methodology considers the packets in error and duplicate packets that could have been generated during the failover process. The methodologies consider lost, out-of-order, and duplicate packets to be impaired packets that contribute to the Failover Time.

5.4. LSP and Route Scaling

Failover time performance may vary with the number of established primary and backup tunnel label switched paths (LSP) and installed routes. However the procedure outlined here should be used for any number of LSPs (L) and number of routes protected by PLR(R). The amount of L and R must be recorded.

5.5. Selection of IGP

The underlying IGP could be ISIS-TE or OSPF-TE for the methodology proposed here. See [IGP-METH] for IGP options to consider and report.

5.6. Restoration and Reversion [TERM-ID]

Fast Reroute provides a method to return or restore an original primary LSP upon recovery from the failure (Restoration) and to switch traffic from the Backup Path to the restored Primary Path (Reversion). In MPLS-FRR, Reversion can be implemented as Global Reversion or Local Reversion. It is important to include Restoration and Reversion as a step in each test case to measure the amount of packet loss, out of order packets, or duplicate packets that is produced.

Note: In addition to restoration and reversion, re-optimization can take place while the failure is still not recovered but it depends on
5.7. Offered Load

It is suggested that there be one or more traffic streams as long as there is a steady and constant rate of flow for all the streams. In order to monitor the DUT performance for recovery times, a set of route prefixes should be advertised before traffic is sent. The traffic should be configured towards these routes.

At least 16 flows should be used, and more if possible. Prefix-dependency behaviors are key in IP and tests with route-specific flows spread across the routing table will reveal this dependency. Generating traffic to all of the prefixes reachable by the protected tunnel (probably in a Round-Robin fashion, where the traffic is destined to all the prefixes but one prefix at a time in a cyclic manner) is not recommended. The reason why traffic generation is not recommended in a Round-Robin fashion to all the prefixes, one at a time is that if there are many prefixes reachable through the LSP the time interval between 2 packets destined to one prefix may be significantly high and may be comparable with the failover time being measured which does not aid in getting an accurate failover measurement.

5.8. Tester Capabilities

It is RECOMMENDED that the Tester used to execute each test case have the following capabilities:

1. Ability to establish MPLS-TE tunnels and push/pop labels.

2. Ability to produce Failover Event [TERM-ID].

3. Ability to insert a timestamp in each data packet’s IP payload.

4. An internal time clock to control timestamping, time measurements, and time calculations.

5. Ability to disable or tune specific Layer-2 and Layer-3 protocol functions on any interface(s).

6. Ability to react upon the receipt of path error from the PLR

The Tester MAY be capable to make non-data plane convergence observations and use those observations for measurements.
6. Reference Test Setup

In addition to the general reference topology shown in figure 1, this section provides detailed insight into various proposed test setups that should be considered for comprehensively benchmarking the failover time in different roles along the primary tunnel.

This section proposes a set of topologies that covers all the scenarios for local protection. All of these topologies can be mapped to the reference topology shown in Figure 1. Topologies provided in this section refer to the testbed required to benchmark failover time when the DUT is configured as a PLR in either Headend or midpoint role. Provided with each topology below is the label stack at the PLR. Penultimate Hop Popping (PHP) MAY be used and must be reported when used.

Figures 2 thru 9 use the following convention:

a) HE is Headend
b) TE is Tail-End
c) MID is Mid point
d) MP is Merge Point
e) PLR is Point of Local Repair
f) PRI is Primary Path
g) BKP denotes Backup Path and Nodes

6.1. Link Protection

6.1.1. Link Protection - 1 hop primary (from PLR) and 1 hop backup TE tunnels

```
+-------+  +--------+    +--------+  
|  R1   |  |   R2   | PRI|   R3   |  
TG-|  HE   |--|  MID   |----|    TE  |-TA  
|       |  |  PLR   |----|        |  
+-------+  +--------+ BKP+--------+  
```

Figure 2.

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Num of Labels before failure</th>
<th>Num of labels after failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP TRAFFIC (P-P)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Layer3 VPN (PE-PE)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Layer3 VPN (PE-P)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Layer2 VC (PE-PE)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Layer2 VC (PE-P)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
6.1.2. Link Protection - 1 hop primary (from PLR) and 2 hop backup TE tunnels

Traffic	Num of Labels before failure	Num of labels after failure
IP TRAFFIC (P-P) | 0 | 1
Layer3 VPN (PE-PE) | 1 | 2
Layer3 VPN (PE-P) | 2 | 3
Layer2 VC (PE-PE) | 1 | 2
Layer2 VC (PE-P) | 2 | 3
Mid-point LSPs | 0 | 1

6.1.3. Link Protection - 2+ hop (from PLR) primary and 1 hop backup TE tunnels

Traffic	Num of Labels before failure	Num of labels after failure
IP TRAFFIC (P-P) | 0 | 1
Layer3 VPN (PE-PE) | 1 | 2
Layer3 VPN (PE-P) | 2 | 3
Layer2 VC (PE-PE) | 1 | 2
Layer2 VC (PE-P) | 2 | 3
Mid-point LSPs | 0 | 1
6.1.4. Link Protection - 2+ hop (from PLR) primary and 2 hop backup TE tunnels

![Link Protection Diagram](image)

Figure 5.

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Num of Labels before failure</th>
<th>Num of labels after failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP TRAFFIC (P-P)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Layer3 VPN (PE-PE)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Layer3 VPN (PE-P)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Layer2 VC (PE-PE)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Layer2 VC (PE-P)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Mid-point LSPs</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

6.2. Node Protection

6.2.1. Node Protection - 2 hop primary (from PLR) and 1 hop backup TE tunnels

![Node Protection Diagram](image)
Figure 6.

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Num of Labels before failure</th>
<th>Num of labels after failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP TRAFFIC (P-P)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Layer3 VPN (PE-PE)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Layer3 VPN (PE-P)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Layer2 VC (PE-PE)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Layer2 VC (PE-P)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Mid-point LSPs</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

6.2.2. Node Protection - 2 hop primary (from PLR) and 2 hop backup TE tunnels

![Figure 7. Diagram](attachment:image.png)
Traffic	Num of Labels	Num of labels
IP TRAFFIC (P-P) | 1 | 1
Layer3 VPN (PE-PE) | 2 | 2
Layer3 VPN (PE-P) | 3 | 3
Layer2 VC (PE-PE) | 2 | 2
Layer2 VC (PE-P) | 3 | 3
Mid-point LSPs | 1 | 1

6.2.3. Node Protection - 3+ hop primary (from PLR) and 1 hop backup TE tunnels

Figure 8.
6.2.4. Node Protection - 3+ hop primary (from PLR) and 2 hop backup TE tunnels

<table>
<thead>
<tr>
<th>Traffic</th>
<th>Num of Labels before failure</th>
<th>Num of labels after failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP TRAFFIC (P-P)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Layer3 VPN (PE-PE)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Layer3 VPN (PE-P)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Layer2 VC (PE-PE)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Layer2 VC (PE-P)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Mid-point LSPs</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

7. Test Methodology

The procedure described in this section can be applied to all the 8 base test cases and the associated topologies. The backup as well as the primary tunnels are configured to be alike in terms of bandwidth usage. In order to benchmark failover with all possible label stack depth applicable as seen with current deployments, it is RECOMMENDED to perform all of the test cases provided in this section. The forwarding performance test cases in section 7.1 MUST be performed prior to performing the failover test cases.

The considerations of Section 4 of [RFC2544] are applicable when evaluating the results obtained using these methodologies as well.
7.1. MPLS FRR Forwarding Performance

Benchmarking Failover Time [TERM-ID] for MPLS protection first requires baseline measurement of the forwarding performance of the test topology including the DUT. Forwarding performance is benchmarked by the Throughput as defined in [MPLS-FWD] and measured in units pps. This section provides two test cases to benchmark forwarding performance. These are with the DUT configured as a Headend PLR, Mid-Point PLR, and Egress PLR.

7.1.1. Headend PLR Forwarding Performance

Objective:
To benchmark the maximum rate (pps) on the PLR (as headend) over primary LSP and backup LSP.

Test Setup:

A. Select any one topology out of the 8 from section 6.

B. Select overlay technologies (e.g. IGP, VPN, or VC) with DUT as Headend PLR.

C. The DUT will also have 2 interfaces connected to the traffic Generator/analyzer. (If the node downstream of the PLR is not a simulated node, then the Ingress of the tunnel should have one link connected to the traffic generator and the node downstream to the PLR or the egress of the tunnel should have a link connected to the traffic analyzer).

Procedure:

1. Establish the primary LSP on R2 required by the topology selected.

2. Establish the backup LSP on R2 required by the selected topology.

3. Verify primary and backup LSPs are up and that primary is protected.

4. Verify Fast Reroute protection is enabled and ready.
5. Setup traffic streams as described in section 5.7.

6. Send MPLS traffic over the primary LSP at the Throughput supported by the DUT.

7. Record the Throughput over the primary LSP.

8. Trigger a link failure as described in section 5.1.

9. Verify that the offered load gets mapped to the backup tunnel and measure the Additive Backup Delay.

10. 30 seconds after Failover, stop the offered load and measure the Throughput, Packet Loss, Out-of-Order Packets, and Duplicate Packets over the Backup LSP.

11. Adjust the offered load and repeat steps 6 through 10 until the Throughput values for the primary and backup LSPs are equal.

12. Record the Throughput. This is the offered load that will be used for the Headend PLR failover test cases.

7.1.2. Mid-Point PLR Forwarding Performance

Objective:

To benchmark the maximum rate (pps) on the PLR (as mid-point) over primary LSP and backup LSP.

Test Setup:

A. Select any one topology out of the 9 from section 6.

B. Select overlay technologies (e.g. IGP, VPN, or VC) with DUT as Mid-Point PLR.

C. The DUT will also have 2 interfaces connected to the traffic generator.

Procedure:

1. Establish the primary LSP on R1 required by the topology selected.
2. Establish the backup LSP on R2 required by the selected topology.

3. Verify primary and backup LSPs are up and that primary is protected.

4. Verify Fast Reroute protection is enabled and ready.

5. Setup traffic streams as described in section 5.7.

6. Send MPLS traffic over the primary LSP at the Throughput supported by the DUT.

7. Record the Throughput over the primary LSP.

8. Trigger a link failure as described in section 5.1.

9. Verify that the offered load gets mapped to the backup tunnel and measure the Additive Backup Delay.

10. 30 seconds after Failover, stop the offered load and measure the Throughput, Packet Loss, Out-of-Order Packets, and Duplicate Packets over the Backup LSP.

11. Adjust the offered load and repeat steps 6 through 10 until the Throughput values for the primary and backup LSPs are equal.

12. Record the Throughput. This is the offered load that will be used for the Mid-Point PLR failover test cases.

7.1.3. Egress PLR Forwarding Performance

Objective:

To benchmark the maximum rate (pps) on the PLR (as egress) over primary LSP and backup LSP.

Test Setup:

A. Select any one topology out of the 8 from section 6.

B. Select overlay technologies (e.g. IGP, VPN, or VC) with DUT as Egress PLR.
C. The DUT will also have 2 interfaces connected to the traffic generator.

Procedure:

1. Establish the primary LSP on R1 required by the topology selected.
2. Establish the backup LSP on R2 required by the selected topology.
3. Verify primary and backup LSPs are up and that primary is protected.
4. Verify Fast Reroute protection is enabled and ready.
5. Setup traffic streams as described in section 5.7.
6. Send MPLS traffic over the primary LSP at the Throughput supported by the DUT.
7. Record the Throughput over the primary LSP.
8. Trigger a link failure as described in section 5.1.
9. Verify that the offered load gets mapped to the backup tunnel and measure the Additive Backup Delay.
10. 30 seconds after Failover, stop the offered load and measure the Throughput, Packet Loss, Out-of-Order Packets, and Duplicate Packets over the Backup LSP.
11. Adjust the offered load and repeat steps 6 through 10 until the Throughput values for the primary and backup LSPs are equal.
12. Record the Throughput. This is the offered load that will be used for the Egress PLR failover test cases.

7.2. Headend PLR with Link Failure

Objective:

To benchmark the MPLS failover time due to link failure events described in section 5.1 experienced by the DUT which is the Headend PLR.
Test Setup:

A. Select any one topology out of the 8 from section 6.

B. Select overlay technology for FRR test (e.g. IGP, VPN, or VC).

C. The DUT will also have 2 interfaces connected to the traffic Generator/Analyzer. (If the node downstream of the PLR is not a simulated node, then the Ingress of the tunnel should have one link connected to the traffic generator and the node downstream to the PLR or the egress of the tunnel should have a link connected to the traffic analyzer).

Test Configuration:

1. Configure the number of primaries on R2 and the backups on R2 as required by the topology selected.

2. Configure the test setup to support Reversion.

3. Advertise prefixes (as per FRR Scalability Table described in Appendix A) by the tail end.

Procedure:

Test Case "7.1.1. Headend PLR Forwarding Performance" MUST be completed first to obtain the Throughput to use as the offered load.

1. Establish the primary LSP on R2 required by the topology selected.

2. Establish the backup LSP on R2 required by the selected topology.

3. Verify primary and backup LSPs are up and that primary is protected.

4. Verify Fast Reroute protection is enabled and ready.
5. Setup traffic streams for the offered load as described in section 5.7.

6. Provide the offered load from the tester at the Throughput [Br91] level obtained from test case 7.1.1.

7. Verify traffic is switched over Primary LSP without packet loss.

8. Trigger a link failure as described in section 5.1.

9. Verify that the offered load gets mapped to the backup tunnel and measure the Additive Backup Delay.

10. 30 seconds after Failover [TERM-ID], stop the offered load and measure the total Failover Packet Loss [TERM-ID].

11. Calculate the Failover Time [TERM-ID] benchmark using the selected Failover Time Calculation Method (TBLM, PLBM, or TBM) [TERM-ID].

12. Restart the offered load and restore the primary LSP to verify Reversion [TERM-ID] occurs and measure the Reversion Packet Loss [TERM-ID].

13. Calculate the Reversion Time [TERM-ID] benchmark using the selected Failover Time Calculation Method (TBLM, PLBM, or TBM) [TERM-ID].

14. Verify Headend signals new LSP and protection should be in place again.

It is RECOMMENDED that this procedure be repeated for each of the link failure triggers defined in section 5.1.

7.3. Mid-Point PLR with Link Failure

Objective:

To benchmark the MPLS failover time due to link failure events described in section 5.1 experienced by the DUT which is the Mid-Point PLR.

Test Setup:
A. Select any one topology out of the 8 from section 6.

B. Select overlay technology for FRR test as Mid-Point LSPs.

C. The DUT will also have 2 interfaces connected to the traffic generator.

Test Configuration:

1. Configure the number of primaries on R1 and the backups on R2 as required by the topology selected.

2. Configure the test setup to support Reversion.

3. Advertise prefixes (as per FRR Scalability Table described in Appendix A) by the tail end.

Procedure:

Test Case "7.1.2. Mid-Point PLR Forwarding Performance" MUST be completed first to obtain the Throughput to use as the offered load.

1. Establish the primary LSP on R1 required by the topology selected.

2. Establish the backup LSP on R2 required by the selected topology.

3. Perform steps 3 through 14 from section 7.2 Headend PLR with Link Failure.

 IT is RECOMMENDED that this procedure be repeated for each of the link failure triggers defined in section 5.1.

7.4. Headend PLR with Node Failure

 Objective:

 To benchmark the MPLS failover time due to Node failure events described in section 5.1 experienced by the DUT which is the Headend PLR.

 Test Setup:
A. Select any one topology from section 6.

B. Select overlay technology for FRR test (e.g. IGP, VPN, or VC).

C. The DUT will also have 2 interfaces connected to the traffic generator/analyzer.

Test Configuration:

1. Configure the number of primaries on R2 and the backups on R2 as required by the topology selected.

2. Configure the test setup to support Reversion.

3. Advertise prefixes (as per FRR Scalability Table described in Appendix A) by the tail end.

Procedure:

Test Case "7.1.1. Headend PLR Forwarding Performance" MUST be completed first to obtain the Throughput to use as the offered load.

1. Establish the primary LSP on R2 required by the topology selected.

2. Establish the backup LSP on R2 required by the selected topology.

3. Verify primary and backup LSPs are up and that primary is protected.

5. Setup traffic streams for the offered load as described in section 5.7.

6. Provide the offered load from the tester at the Throughput [Br91] level obtained from test case 7.1.1.
7. Verify traffic is switched over Primary LSP without packet loss.

8. Trigger a node failure as described in section 5.1.

9. Perform steps 9 through 14 in 7.2 Headend PLR with Link Failure.

IT is RECOMMENDED that this procedure be repeated for each of the node failure triggers defined in section 5.1.

7.5. Mid-Point PLR with Node Failure

Objective:

To benchmark the MPLS failover time due to Node failure events described in section 5.1 experienced by the DUT which is the Mid-Point PLR.

Test Setup:

A. Select any one topology from section 6.1 to 6.2.

B. Select overlay technology for FRR test as Mid-Point LSPs.

C. The DUT will also have 2 interfaces connected to the traffic generator.

Test Configuration:

1. Configure the number of primaries on R1 and the backups on R2 as required by the topology selected.

2. Configure the test setup to support Reversion.

3. Advertise prefixes (as per FRR Scalability Table described in Appendix A) by the tail end.

Procedure:

Test Case "7.1.1. Mid-Point PLR Forwarding Performance" MUST be completed first to obtain the Throughput to use as the offered load.
1. Establish the primary LSP on R1 required by the topology selected.

2. Establish the backup LSP on R2 required by the selected topology.

3. Verify primary and backup LSPs are up and that primary is protected.

5. Setup traffic streams for the offered load as described in section 5.7.

6. Provide the offered load from the tester at the Throughput [Br91] level obtained from test case 7.1.1.

7. Verify traffic is switched over Primary LSP without packet loss.

8. Trigger a node failure as described in section 5.1.

9. Perform steps 9 through 14 in 7.2 Headend PLR with Link Failure.

It is RECOMMENDED that this procedure be repeated for each of the node failure triggers defined in section 5.1.

8. Reporting Format

For each test, it is recommended that the results be reported in the following format.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGP used for the test</td>
<td>ISIS-TE/ OSPF-TE</td>
</tr>
<tr>
<td>Interface types</td>
<td>Gige,POS,ATM,VLAN etc.</td>
</tr>
<tr>
<td>Packet Sizes offered to the DUT</td>
<td>Bytes (at layer 3)</td>
</tr>
<tr>
<td>Offered Load</td>
<td>packets per second</td>
</tr>
</tbody>
</table>
IGP routes advertised Number of IGP routes
Penultimate Hop Popping Used/Not Used
RSVP hello timers Milliseconds
Number of Protected tunnels Number of tunnels
Number of VPN routes installed on the Headend Number of VPN routes
Number of VC tunnels Number of VC tunnels
Number of mid-point tunnels Number of tunnels
Number of Prefixes protected by Primary Number of LSPs
Topology being used Section number, and figure reference
Failover Event Event type
Re-optimization Yes/No

Benchmarks (to be recorded for each test case):

Failover-
Failover Time seconds
Failover Packet Loss packets
Additive Backup Delay seconds
Out-of-Order Packets packets
Duplicate Packets packets
Failover Time Calculation Method Method Used

Reversion-
Reversion Time seconds
Reversion Packet Loss packets
Additive Backup Delay seconds
Out-of-Order Packets packets
Duplicate Packets packets
Failover Time Calculation Method Method Used

Failover Time suggested above is calculated using one of the following three methods
1. Packet-Loss Based method (PLBM): (Number of packets dropped/packets per second * 1000) milliseconds. This method could also be referred as Loss-Derived method.

2. Time-Based Loss Method (TBLM): This method relies on the ability of the Traffic generators to provide statistics which reveal the duration of failure in milliseconds based on when the packet loss occurred (interval between non-zero packet loss and zero loss).

3. Timestamp Based Method (TBM): This method of failover calculation is based on the timestamp that gets transmitted as payload in the packets originated by the generator. The Traffic Analyzer records the timestamp of the last packet received before the failover event and the first packet after the failover and derives the time based on the difference between these 2 timestamps. Note: The payload could also contain sequence numbers for out-of-order packet calculation and duplicate packets.

The timestamp based method method would be able to detect Reversion impairments beyond loss, thus it is RECOMMENDED method as a Failover Time method.

9. Security Considerations

Benchmarking activities as described in this memo are limited to technology characterization using controlled stimuli in a laboratory environment, with dedicated address space and the constraints specified in the sections above.

The benchmarking network topology will be an independent test setup and MUST NOT be connected to devices that may forward the test traffic into a production network, or misroute traffic to the test management network.

Further, benchmarking is performed on a "black-box" basis, relying solely on measurements observable external to the DUT/SUT.

Special capabilities SHOULD NOT exist in the DUT/SUT specifically for benchmarking purposes. Any implications for network security arising from the DUT/SUT SHOULD be identical in the lab and in production networks.

10. IANA Considerations

This draft does not require any new allocations by IANA.
11. Acknowledgements

We would like to thank Jean Philip Vasseur for his invaluable input to the document, Curtis Villamizar for his contribution in suggesting text on definition and need for benchmarking Correlated failures and Bhavani Parise for his textual input and review. Additionally we would like to thank Al Morton, Arun Gandhi, Amrit Hanspal, Karu Ratnam, Raveesh Janardan, Andrey Kiselev, and Mohan Nanduri for their formal reviews of this document.

12. References

12.1. Informative References

12.2. Normative References

Appendix A. Fast Reroute Scalability Table

This section provides the recommended numbers for evaluating the scalability of fast reroute implementations. It also recommends the typical numbers for IGP/VPNv4 Prefixes, LSP Tunnels and VC entries. Based on the features supported by the device under test (DUT), appropriate scaling limits can be used for the test bed.

A1. FRR IGP Table

<table>
<thead>
<tr>
<th>No. of Headend TE Tunnels</th>
<th>IGP Prefixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>100</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>500</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>1000</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>2000</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>5000</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>2000</td>
<td>2000</td>
</tr>
</tbody>
</table>
A2. FRR VPN Table

<table>
<thead>
<tr>
<th>No. of Headend TE Tunnels</th>
<th>VPNv4 Prefixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
</tr>
<tr>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>1</td>
<td>20000</td>
</tr>
<tr>
<td>1</td>
<td>Max</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>100</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>500</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>1000</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>2000</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>5000</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>10000</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>20000</td>
</tr>
<tr>
<td>2 (Load Balance)</td>
<td>Max</td>
</tr>
</tbody>
</table>

A3. FRR Mid-Point LSP Table

No of Mid-point TE LSPs could be configured at recommended levels - 100, 500, 1000, 2000, or max supported number.

A2. FRR VC Table
<table>
<thead>
<tr>
<th>No. of Headend TE Tunnels</th>
<th>VC entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>Max</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>2000</td>
<td>2000</td>
</tr>
</tbody>
</table>

Appendix B. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD</td>
<td>Bidirectional Fault Detection</td>
</tr>
<tr>
<td>BGP</td>
<td>Border Gateway protocol</td>
</tr>
<tr>
<td>CE</td>
<td>Customer Edge</td>
</tr>
<tr>
<td>DUT</td>
<td>Device Under Test</td>
</tr>
<tr>
<td>FRR</td>
<td>Fast Reroute</td>
</tr>
<tr>
<td>IGP</td>
<td>Interior Gateway Protocol</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>LSP</td>
<td>Label Switched Path</td>
</tr>
<tr>
<td>MP</td>
<td>Merge Point</td>
</tr>
<tr>
<td>MPLS</td>
<td>Multi Protocol Label Switching</td>
</tr>
<tr>
<td>N-Nhop</td>
<td>Next - Next Hop</td>
</tr>
<tr>
<td>Nhop</td>
<td>Next Hop</td>
</tr>
<tr>
<td>OIR</td>
<td>Online Insertion and Removal</td>
</tr>
<tr>
<td>P</td>
<td>Provider</td>
</tr>
<tr>
<td>PE</td>
<td>Provider Edge</td>
</tr>
<tr>
<td>PHP</td>
<td>Penultimate Hop Popping</td>
</tr>
<tr>
<td>PLR</td>
<td>Point of Local Repair</td>
</tr>
<tr>
<td>RSVP</td>
<td>Resource reSerVation Protocol</td>
</tr>
<tr>
<td>SRLG</td>
<td>Shared Risk Link Group</td>
</tr>
<tr>
<td>TA</td>
<td>Traffic Analyzer</td>
</tr>
<tr>
<td>TE</td>
<td>Traffic Engineering</td>
</tr>
<tr>
<td>TG</td>
<td>Traffic Generator</td>
</tr>
<tr>
<td>VC</td>
<td>Virtual Circuit</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
</tbody>
</table>
Authors’ Addresses

Rajiv Papneja
Huawei Technologies
2330 Central Expressway
Santa Clara, CA 95050
USA

Email: rajiv.papneja@huawei.com

Samir Vapiwala
Cisco Systems
300 Beaver Brook Road
Boxborough, MA 01719
USA

Email: svapiwal@cisco.com

Jay Karthik
Cisco Systems
300 Beaver Brook Road
Boxborough, MA 01719
USA

Email: jkarthik@cisco.com

Scott Poretsky
Allot Communications
USA

Email: sporetsky@allot.com

Shankar Rao
5005 E. Dartmouth Ave.
Denver, CO 80222
USA

Email: srao@du.edu
Jean-Louis Le Roux
France Telecom
2 av Pierre Marzin
22300 Lannion
France

Email: jeanlouis.leroux@francetelecom.com
This Internet-Draft, draft-ietf-bmwg-sip-bench-meth-03.txt, has expired, and has been deleted from the Internet-Drafts directory. An Internet-Draft expires 185 days from the date that it is posted unless it is replaced by an updated version, or the Secretariat has been notified that the document is under official review by the IESG or has been passed to the RFC Editor for review and/or publication as an RFC. This Internet-Draft was not published as an RFC.

Internet-Drafts are not archival documents, and copies of Internet-Drafts that have been deleted from the directory are not available. The Secretariat does not have any information regarding the future plans of the authors or working group, if applicable, with respect to this deleted Internet-Draft. For more information, or to request a copy of the document, please contact the authors directly.

Draft Authors:
Carol Davids<davids@iit.edu>
Vijay Gurbani<vkg@bell-labs.com>
Scott Poretsky<sporetsky@allot.com>
This Internet-Draft, draft-ietf-bmwg-sip-bench-term-03.txt, has expired, and has been deleted from the Internet-Drafts directory. An Internet-Draft expires 185 days from the date that it is posted unless it is replaced by an updated version, or the Secretariat has been notified that the document is under official review by the IESG or has been passed to the RFC Editor for review and/or publication as an RFC. This Internet-Draft was not published as an RFC.

Internet-Drafts are not archival documents, and copies of Internet-Drafts that have been deleted from the directory are not available. The Secretariat does not have any information regarding the future plans of the authors or working group, if applicable, with respect to this deleted Internet-Draft. For more information, or to request a copy of the document, please contact the authors directly.

Draft Authors:
Carol Davids<davids@iit.edu>
Vijay Gurbani<vkg@bell-labs.com>
Scott Poretsky<sporetsky@allot.com>
Abstract

BGP is widely deployed and used by several service providers as the default Inter AS routing protocol. It is of utmost importance to ensure that when a BGP peer or a downstream link of a BGP peer fails, the alternate paths are rapidly used and routes via these alternate paths are installed. This document provides the basic BGP Benchmarking Methodology using existing BGP Convergence Terminology, RFC 4098.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 27, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Table of Contents

1. Introduction ... 4
 1.1. Precise Benchmarking Definition 4
 1.2. Purpose of BGP FIB (Data Plane) Convergence 4
 1.3. Control Plane Convergence 5
 1.4. Benchmarking Testing 5
2. Existing Definitions and Requirements 5
3. Test Topologies ... 6
 3.1. General Reference Topologies 6
4. Test Considerations 8
 4.1. Number of Peers 9
 4.2. Number of Routes per Peer 9
 4.3. Policy Processing/Reconfiguration 9
 4.4. Configured Parameters (Timers, etc..) 9
 4.5. Interface Types 11
 4.6. Measurement Accuracy 11
 4.7. Measurement Statistics 11
 4.8. Authentication 12
 4.9. Convergence Events 12
 4.10. High Availability 12
5. Test Cases .. 12
 5.1. Basic Convergence Tests 12
 5.1.1. RIB-IN Convergence 13
 5.1.2. RIB-OUT Convergence 14
 5.1.3. eBGP Convergence 16
 5.1.4. iBGP Convergence 16
 5.1.5. eBGP Multihop Convergence 16
 5.2. BGP Failure/Convergence Events 18
 5.2.1. Physical Link Failure on DUT End 18
 5.2.2. Physical Link Failure on Remote/Emulator End ... 19
 5.2.3. ECMP Link Failure on DUT End 19
 5.3. BGP Adjacency Failure (Non-Physical Link Failure) on
 Emulator ... 19
 5.4. BGP Hard Reset Test Cases 21
 5.4.1. BGP Non-Recovering Hard Reset Event on DUT 21
 5.5. BGP Soft Reset 22
 5.6. BGP Route Withdrawal Convergence Time 23
 5.7. BGP Path Attribute Change Convergence Time 25
 5.8. BGP Graceful Restart Convergence Time 26
6. Reporting Format ... 28
7. IANA Considerations 31
8. Security Considerations 31
9. References ... 31
 9.1. Normative References 31
 9.2. Informative References 32
Authors’ Addresses ... 32
1. Introduction

This document defines the methodology for benchmarking data plane FIB convergence performance of BGP in router and switches for simple topologies of 3 or 4 nodes. The methodology proposed in this document applies to both IPv4 and IPv6 and if a particular test is unique to one version, it is marked accordingly. For IPv6 benchmarking the device under test will require the support of Multi-Protocol BGP (MP-BGP) [RFC4760, RFC2545].

The scope of this companion document is limited to basic BGP protocol FIB convergence measurements. BGP extensions outside of carrying IPv6 in (MP-BGP) [RFC4760, RFC2545] are outside the scope of this document. Interaction with IGP (IGP interworking) is outside the scope of this document.

1.1. Precise Benchmarking Definition

Since benchmarking is science of precision, let us restate the purpose of this document in benchmarking terms. This document defines methodology to test

- data plane convergence on a single BGP device that supports the BGP [RFC4271] functionality

- in test topology of 3 or 4 nodes

- using Basic BGP

Data plane convergence is defined as the completion of all FIB changes so that all forwarded traffic now takes the new proposed route. RFC 4098 defines the terms BGP device, FIB and the forwarded traffic. Data plane convergence is different than control plane convergence within a node.

Basic BGP is defined as RFC 4271 functional with Multi-Protocol BGP (MP-BGP) [RFC4760, RFC2545] for IPv6. The use of other extensions of BGP to support layer-2, layer-3 virtual private networks (VPN) are out of scope of this document.

The terminology used in this document is defined in [RFC4098]. One additional term is defined in this draft: FIB (Data plane) BGP Convergence.

1.2. Purpose of BGP FIB (Data Plane) Convergence

In the current Internet architecture the Inter-Autonomous System (inter-AS) transit is primarily available through BGP. To maintain a
reliable connectivity within intra-domains or across inter-domains, fast recovery from failures remains most critical. To ensure minimal traffic losses, many service providers are requiring BGP implementations to converge the entire Internet routing table within sub-seconds at FIB level.

Furthermore, to compare these numbers amongst various devices, service providers are also looking at ways to standardize the convergence measurement methods. This document offers test methods for simple topologies. These simple tests will provide a quick high-level check, of the BGP data plane convergence across multiple implementations.

1.3. Control Plane Convergence

The convergence of BGP occurs at two levels: RIB and FIB convergence. RFC 4098 defines terms for BGP control plane convergence. Methodologies which test control plane convergence are out of scope for this draft.

1.4. Benchmarking Testing

In order to ensure that the results obtained in tests are repeatable, careful setup of initial conditions and exact steps are required.

This document proposes these initial conditions, test steps, and result checking. To ensure uniformity of the results all optional parameters SHOULD be disabled and all settings SHOULD be changed to default, these may include BGP timers as well.

2. Existing Definitions and Requirements

RFC 1242, "Benchmarking Terminology for Network Interconnect Devices" [RFC1242] and RFC 2285, "Benchmarking Terminology for LAN Switching Devices" [RFC2285] SHOULD be reviewed in conjunction with this document. WLAN-specific terms and definitions are also provided in Clauses 3 and 4 of the IEEE 802.11 standard [802.11]. Commonly used terms may also be found in RFC 1983 [RFC1983].

For the sake of clarity and continuity, this document adopts the general template for benchmarking terminology set out in Section 2 of RFC 1242. Definitions are organized in alphabetical order, and grouped into sections for ease of reference. The following terms are assumed to be taken as defined in RFC 1242 [RFC1242]: Throughput, Latency, Constant Load, Frame Loss Rate, and Overhead Behavior. In addition, the following terms are taken as defined in [RFC2285]: Forwarding Rates, Maximum Forwarding Rate, Loads, Device Under Test.
(DUT), and System Under Test (SUT).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Test Topologies

This section describes simple test setups for use in BGP benchmarking tests measuring convergence of the FIB (data plane) after the BGP updates has been received.

These simple test nodes have 3 or 4 nodes with the following configuration:

1. Basic Test Setup
2. Three node setup for iBGP or eBGP convergence
3. Setup for eBGP multihop test scenario
4. Four node setup for iBGP or eBGP convergence

Individual tests refer to these topologies.

Figures 1-4 use the following conventions

- AS-X: Autonomous System X
- Loopback Int: Loopback interface on the BGP enabled device
- R2: Helper router

3.1. General Reference Topologies

Emulator acts as 1 or more BGP peers for different test cases.
Figure 1 Basic Test Setup

Figure 2 Three Node Setup for eBGP and iBGP Convergence
4. Test Considerations

The test cases for measuring convergence for iBGP and eBGP are different. Both iBGP and eBGP use different mechanisms to advertise, install and learn the routes. Typically, an iBGP route on the DUT is installed and exported when the next-hop is valid. For eBGP the
route is installed on the DUT with the remote interface address as
the next-hop with the exception of the multihop case.

4.1. Number of Peers

Number of Peers is defined as the number of BGP neighbors or sessions
the DUT has at the beginning of the test. The peers are established
before the tests begin. The relationship could be either, iBGP or
eBGP peering depending upon the test case requirement.

The DUT establishes one or more BGP sessions with one or more emulated
routers or helper nodes. Additional peers can be added based on the
testing requirements. The number of peers enabled during the testing
should be well documented in the report matrix.

4.2. Number of Routes per Peer

Number of Routes per Peer is defined as the number of routes
advertized or learnt by the DUT per session or through neighbor
relationship with an emulator or helper node. The tester, emulating
as neighbor MUST advertise at least one route per peer.

Each test run must identify the route stream in terms of route
packing, route mixture, and number of routes. This route stream must
be well documented in the reporting stream. RFC 4098 defines these
terms.

It is RECOMMENDED that the user may consider advertizing the entire
current Internet routing table per peering session using an Internet
route mixture with unique or non-unique routes. If multiple peers
are used, it is important to precisely document the timing sequence
between the peer sending routes (as defined in RFC 4098).

4.3. Policy Processing/Reconfiguration

The DUT MUST run one baseline test where policy is Minimal policy as
defined in RFC 4098. Additional runs may be done with policy set-up
before the tests begin. Exact policy settings should be documented
as part of the test.

4.4. Configured Parameters (Timers, etc..)

There are configured parameters and timers that may impact the
measured BGP convergence times.

The benchmark metrics MAY be measured at any fixed values for these
configured parameters.
It is RECOMMENDED these configure parameters have the following settings: a) default values specified by the respective RFC; b) platform-specific default parameters and c) values as expected in the operational network. All optional BGP settings MUST be kept consistent across iterations of any specific tests.

Examples of the configured parameters that may impact measured BGP convergence time include, but are not limited to:

1. Interface failure detection timer
2. BGP Keepalive timer
3. BGP Holdtime
4. BGP update delay timer
5. ConnectRetry timer
6. TCP Segment Size
7. Minimum Route Advertisement Interval (MRAI)
8. MinASOriginInterval (MAOI)
9. Route Flap Dampening parameters
10. TCP MD5
11. Maximum TCP Window Size
12. MTU

The basic-test settings for the parameters should be:

1. Interface failure detection timer (0 ms)
2. BGP Keepalive timer (1 min)
3. BGP Holdtime (3 min)
4. BGP update delay timer (0 s)
5. ConnectRetry timer (1 s)
6. TCP Segment Size (4096)
7. Minimum Route Advertisement Interval (MRAI) (0 s)
8. MinASOriginatingInterval (MAOI) (0 s)
9. Route Flap Dampening parameters (off)
10. TCP MD5 (off)

4.5. Interface Types

The type of media dictate which test cases may be executed, each interface type has unique mechanism for detecting link failures and the speed at which that mechanism operates will influence the measurement results. All interfaces MUST be of the same media and throughput for each test case.

4.6. Measurement Accuracy

Since observed packet loss is used to measure the route convergence time, the time between two successive packets offered to each individual route is the highest possible accuracy of any packet-loss based measurement. When packet jitter is much less than the convergence time, it is a negligible source of error and hence it will be treated as within tolerance.

Other options to measure convergence are the Time-Based Loss Method (TBLM) and Timestamp Based Method (TBM) [MPLSProt]

An exterior measurement on the input media (such Ethernet) is defined by this specification.

4.7. Measurement Statistics

The benchmark measurements may vary for each trial, due to the statistical nature of timer expirations, CPU scheduling, etc. It is recommended to repeat the test multiple times. Evaluation of the test data must be done with an understanding of generally accepted testing practices regarding repeatability, variance and statistical significance of a small number of trials.

For any repeated tests that are averaged to remove variance, all parameters MUST remain the same.
4.8. Authentication

Authentication in BGP is done using the TCP MD5 Signature Option [RFC5925]. The processing of the MD5 hash, particularly in devices with a large number of BGP peers and a large amount of update traffic, can have an impact on the control plane of the device. If authentication is enabled, it SHOULD be documented correctly in the reporting format.

4.9. Convergence Events

Convergence events or triggers are defined as abnormal occurrences in the network, which initiate route flapping in the network, and hence forces the re-convergence of a steady state network. In a real network, a series of convergence events may cause convergence latency operators desire to test.

These convergence events must be defined in terms of the sequences defined in RFC 4098. This basic document begins all tests with a router initial set-up. Additional documents will define BGP data plane convergence based on peer initialization.

The convergence events may or may not be tied to the actual failure. A Soft Reset (RFC 4098) does not clear the RIB or FIB tables. A Hard reset clears the BGP peer sessions, the RIB tables, and FIB tables.

4.10. High Availability

Due to the different Non-Stop-Routing (sometimes referred to High-Availability) solutions available from different vendors, it is RECOMMENDED that any redundancy available in the routing processors should be disabled during the convergence measurements.

5. Test Cases

All tests defined under this section assume the following:

a. BGP peers should be brought to BGP Peer established state

b. Furthermore the traffic generation and routing should be verified in the topology

5.1. Basic Convergence Tests

These test cases measure characteristics of a BGP implementation in non-failure scenarios like:
1. RIB-IN Convergence
2. RIB-OUT Convergence
3. eBGP Convergence
4. iBGP Convergence

5.1.1. RIB-IN Convergence

Objective:
This test measures the convergence time taken to receive and install a route in RIB using BGP

Reference Test Setup:
This test uses the setup as shown in figure 1

Procedure:

A. All variables affecting Convergence should be set to a basic test state (as defined in section 4-4).
B. Establish BGP adjacency between DUT and peer x of Emulator.
C. To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test.
D. Start the traffic from the Emulator peer-x towards the DUT targeted at a routes specified in route mixture (ex. route A) Initially no traffic SHOULD be observed on the egress interface as the route A is not installed in the forwarding database of the DUT.
E. Advertise route A from the Peer-x to the DUT and record the time.

This is Tup(EMx,Rt-A) also named ‘XMT-Rt-time’.
F. Record the time when the route-A from Peer-x is received at the DUT.

This Tup(DUT,Rt-A) also named ‘RCV-Rt-time’.

G. Record the time when the traffic targeted towards route A is received by Emulator on appropriate traffic egress interface.

This is TR(TDr,Rt-A). This is also named DUT-XMT-Data-Time.

H. The difference between the Tup(DUT,RT-A) and traffic received time (TR (TDr, Rt-A)) is the FIB Convergence Time for route-A in the route mixture. A full convergence for the route update is the measurement between the 1st route (Route-A) and the last route (Rt-last).

Route update convergence is

TR(TDr, RT-last) - Tup(DUT, Rt-A) or

(DUT-XMT-Data-Time - RCV-Rt-Time)(Rt-A)

Note: It is recommended that a single test with the same route mixture be repeated several times. A report should provide the Stand Deviation of all tests and the Average.

Running tests with a varying number of routes and route mixtures is important to get a full characterization of a single peer.

5.1.2. RIB-OUT Convergence

Objective:

This test measures the convergence time taken by an implementation to receive, install and advertise a route using BGP

Reference Test Setup:

This test uses the setup as shown in figure 2

Procedure:

A. The Helper node (HLP) run same version of BGP as DUT.
B. All devices MUST be synchronized using NTP or some local reference clock.

C. All configuration variables for HLP, DUT, and Emulator SHOULD be set to the same values. These values MAY be basic-test or a unique set completely described in the test set-up.

D. Establish BGP adjacency between DUT and Emulator.

E. Establish BGP adjacency between DUT and Helper Node.

F. To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test.

G. Start the traffic from the Emulator towards the Helper Node targeted at a specific route say route A. Initially no traffic SHOULD be observed on the egress interface as the route-A is not installed in the forwarding database of the DUT.

H. Advertise routeA from the Emulator to the DUT and note the time.
 This is Tup(EMx, Route-A). (also named EM-XMT-Rt-Time)

I. Record when Route-A is received by DUT.
 This is Tup(DUTr, Route-A). (also named DUT-RCV-Rt-Time)

J. Record the time when the ROUTE is forwarded by DUT towards the Helper node.
 This is Tup(DUTx, Route-A). (also named DUT-XMT-Rt-Time)

K. Record the time when the traffic targeted towards route-A is received on the Route Egress Interface. This is TR(EMr, Route-A). (also named DUT-XMT-Data Time).

 FIB convergence = (DUT-RCV-Rt-Time - DUT-XMT-Data-Time)
 RIB convergence = (DUT-RCV-Rt-Time - DUT-XMT-Rt-Time)

Convergence for a route stream is characterized by
a) Individual route convergence for FIB, RIB
b) All route convergence of

FIB-convergence = DUT-RCV-Rt-Time(A) - DUT-XMT-Data-Time(last)

RIB-convergence = DUT-RCV-Rt-Time(A) - DUT-XMT-Rt-Time(last)

5.1.3. eBGP Convergence

Objective:

This test measures the convergence time taken by an implementation to receive, install and advertise a route in an eBGP Scenario

Reference Test Setup:

This test uses the setup as shown in figure 2 and the scenarios described in RIB-IN and RIB-OUT are applicable to this test case.

5.1.4. iBGP Convergence

Objective:

This test measures the convergence time taken by an implementation to receive, install and advertise a route in an iBGP Scenario

Reference Test Setup:

This test uses the setup as shown in figure 2 and the scenarios described in RIB-IN and RIB-OUT are applicable to this test case.

5.1.5. eBGP Multihop Convergence

Objective:

This test measures the convergence time taken by an implementation to receive, install and advertise a route in an eBGP Multihop Scenario

Reference Test Setup:

This test uses the setup as shown in figure 3. DUT is used along with a helper node.

Procedure:
A. The Helper Node (HLP) runs the same BGP version as DUT

B. All devices to be synchronized using NTP

C. All variables affecting Convergence like authentication, policies, timers should be set to basic-settings

D. All 3 devices, DUT, Emulator and Helper Node are configured with different Autonomous Systems

E. Loopback Interfaces are configured on DUT and Helper Node and connectivity is established between them using any config options available on the DUT

F. Establish BGP adjacency between DUT and Emulator

G. Establish BGP adjacency between DUT and Helper Node

H. To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test

I. Start the traffic from the Emulator towards the DUT targeted at a specific route say routeA

J. Initially no traffic SHOULD be observed on the egress interface as the routeA is not installed in the forwarding database of the DUT

K. Advertise routeA from the Emulator to the DUT and note the time (Tup(EMx,RouteA) also named (Route-Tx-time))

L. Record the time when the route is received by the DUT. This is Tup(EMr,DUT) named (Route-Rcv-time)

M. Record the time when the traffic targeted towards routeA is received from Egress Interface of DUT on emulator. This is Tup(EMd,DUT) named (Data-Rcv-time)

N. Record the time when the routeA is forwarded by DUT towards the Helper node. This is Tup(EMf,DUT) also named (Route-Fwd-time)

\[
\text{FIB Convergence} = (\text{Data-Rcv-time} - \text{Route-Rcv-time})
\]

\[
\text{RIB Convergence} = (\text{Route-Fwd-time} - \text{Route-Rcv-time})
\]

Note: It is recommended that the test be repeated with varying number
of routes and route mixtures. With each set route mixture, the test should be repeated multiple times. The results should record average, mean, Standard Deviation

5.2. BGP Failure/Convergence Events

5.2.1. Physical Link Failure on DUT End

Objective:

This test measures the route convergence time due to local link failure event at DUT's Local Interface

Reference Test Setup:

This test uses the setup as shown in figure 1. Shutdown event is defined as an administrative shutdown event on the DUT

Procedure:

A. All variables affecting Convergence like authentication, policies, timers should be set to basic-test policy

B. Establish 2 BGP adjacencies from DUT to Emulator, one over the peer interface and the other using a second peer interface

C. Advertise the same route, route A over both the adjacencies and (Tx1)Interface to be the preferred next hop

D. To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test

E. Start the traffic from the Emulator towards the DUT targeted at a specific route say route A. Initially traffic would be observed on the best egress route (Emp1) instead of Trr2

F. Trigger the shutdown event of Best Egress Interface on DUT (Drr1)

G. Measure the Convergence Time for the event to be detected and traffic to be forwarded to Next-Best Egress Interface (rr2)

\[\text{Time} = \text{Data-detect}(rr2) - \text{Shutdown time} \]
H. Stop the offered load and wait for the queues to drain and Restart
I. Bring up the link on DUT Best Egress Interface
J. Measure the convergence time taken for the traffic to be rerouted from (rr2) to Best Interface (rr1)
 Time = Data-detect(rr1) - Bring Up time
K. It is recommended that the test be repeated with varying number of routes and route mixtures or with number of routes & route mixtures closer to what is deployed in operational networks

5.2.2. Physical Link Failure on Remote/Emulator End

Objective:

This test measures the route convergence time due to local link failure event at Tester’s Local Interface

Reference Test Setup:

This test uses the setup as shown in figure 1. Shutdown event is defined as shutdown of the local interface of Tester via logical shutdown event. The procedure used in 5.2.1 is used for the termination

5.2.3. ECMP Link Failure on DUT End

Objective:

This test measures the route convergence time due to local link failure event at ECMP Member. The FIB configuration and BGP is set to allow two ECMP routes to be installed. However, policy directs the routes to be sent only over one of the paths

Reference Test Setup:

This test uses the setup as shown in figure 1 and the procedure uses 5.2.1

5.3. BGP Adjacency Failure (Non-Physical Link Failure) on Emulator

Objective:
This test measures the route convergence time due to BGP Adjacency Failure on Emulator

Reference Test Setup:

This test uses the setup as shown in figure 1

Procedure:

A. All variables affecting Convergence like authentication, policies, timers should be basic-policy set

B. Establish 2 BGP adjacencies from DUT to Emulator, one over the Best Egress Interface and the other using the Next-Best Egress Interface

C. Advertise the same route, routeA over both the adjacencies and make Best Egress Interface to be the preferred next hop

D. To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test

E. Start the traffic from the Emulator towards the DUT targeted at a specific route say routeA. Initially traffic would be observed on the Best Egress interface

F. Remove BGP adjacency via a software adjacency down on the Emulator on the Best Egress Interface. This time is called BGPadj-down-time also termed BGPpeer-down

G. Measure the Convergence Time for the event to be detected and traffic to be forwarded to Next-Best Egress Interface. This time is TR2-traffic-on

Convergence = TR2-traffic-on - BGPpeer-down

H. Stop the offered load and wait for the queues to drain and Restart

I. Bring up BGP adjacency on the Emulator over the Best Egress Interface. This time is BGP-adj-up also called BGPpeer-up

J. Measure the convergence time taken for the traffic to be rerouted to Best Interface. This time is BGP-adj-up also called BGPpeer-up
5.4. BGP Hard Reset Test Cases

5.4.1. BGP Non-Recovering Hard Reset Event on DUT

Objective:

This test measures the route convergence time due to Hard Reset on the DUT

Reference Test Setup:

This test uses the setup as shown in figure 1

Procedure:

A. The requirement for this test case is that the Hard Reset Event should be non-recovering and should affect only the adjacency between DUT and Emulator on the Best Egress Interface

B. All variables affecting SHOULD be set to basic-test values

C. Establish 2 BGP adjacencies from DUT to Emulator, one over the Best Egress Interface and the other using the Next-Best Egress Interface

D. Advertise the same route, routeA over both the adjacencies and make Best Egress Interface to be the preferred next hop

E. To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test

F. Start the traffic from the Emulator towards the DUT targeted at a specific route say routeA. Initially traffic would be observed on the Best Egress interface

G. Trigger the Hard Reset event of Best Egress Interface on DUT

H. Measure the Convergence Time for the event to be detected and traffic to be forwarded to Next-Best Egress Interface

\[\text{Time of convergence} = \text{time-traffic flow} - \text{time-reset} \]
I. Stop the offered load and wait for the queues to drain and Restart

J. It is recommended that the test be repeated with varying number of routes and route mixtures or with number of routes & route mixtures closer to what is deployed in operational networks

K. When varying number of routes are used, convergence Time is measured using the Loss Derived method [IGPData]

L. Convergence Time in this scenario is influenced by Failure detection time on Tester, BGP Keep Alive Time and routing, forwarding table update time

5.5. BGP Soft Reset

Objective:

This test measures the route convergence time taken by an implementation to service a BGP Route Refresh message and advertise a route

Reference Test Setup:

This test uses the setup as shown in figure 2

Procedure:

A. The BGP implementation on DUT & Helper Node needs to support BGP Route Refresh Capability [RFC2918]

B. All devices to be synchronized using NTP

C. All variables affecting Convergence like authentication, policies, timers should be set to basic-test defaults

D. DUT and Helper Node are configured in the same Autonomous System whereas Emulator is configured under a different Autonomous System

E. Establish BGP adjacency between DUT and Emulator

F. Establish BGP adjacency between DUT and Helper Node
G. To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test

H. Configure a policy under BGP on Helper Node to deny routes received from DUT

I. Advertise routeA from the Emulator to the DUT

J. The DUT will try to advertise the route to Helper Node will be denied

K. Wait for 3 KeepAlives

L. Start the traffic from the Emulator towards the Helper Node targeted at a specific route say routeA. Initially no traffic would be observed on the Egress interface, as routeA is not present

M. Remove the policy on Helper Node and issue a Route Refresh request towards DUT. Note the timestamp of this event. This is the RefreshTime

N. Record the time when the traffic targeted towards routeA is received on the Egress Interface. This is RecTime

O. The following equation represents the Route Refresh Convergence Time per route

\[
\text{Route Refresh Convergence Time} = (\text{RecTime} - \text{RefreshTime})
\]

5.6. BGP Route Withdrawal Convergence Time

Objective:

This test measures the route convergence time taken by an implementation to service a BGP Withdraw message and advertise the withdraw

Reference Test Setup:

This test uses the setup as shown in figure 2

Procedure:
A. This test consists of 2 steps to determine the Total Withdraw Processing Time

B. Step 1:

 (1) All devices to be synchronized using NTP

 (2) All variables should be set to basic-test parameters

 (3) DUT and Helper Node are configured in the same Autonomous System whereas Emulator is configured under a different Autonomous System

 (4) Establish BGP adjacency between DUT and Emulator

 (5) To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test

 (6) Start the traffic from the Emulator towards the DUT targeted at a specific route say routeA. Initially no traffic would be observed on the Egress interface as the routeA is not present on DUT

 (7) Advertise routeA from the Emulator to the DUT

 (8) The traffic targeted towards routeA is received on the Egress Interface

 (9) Now the Tester sends request to withdraw routeA to DUT, TRx(Awith) also called WdrawTime1

 (10) Record the time when no traffic is observed on the Egress Interface. This is the RouteRemoveTime1(A)

 WdrawConvTime1 = RouteRemoveTime1(A)

 (11) The difference between the RouteRemoveTime1 and WdrawTime1 is the WdrawConvTime1

C. Step 2:

 (1) Continuing from Step 1, re-advertise routeA back to DUT from Tester
(2) The DUT will try to advertise the routeA to Helper Node (assumption there exists a session between DUT and helper node)

(3) Start the traffic from the Emulator towards the Helper Node targeted at a specific route say routeA. Traffic would be observed on the Egress interface after routeA is received by the Helper Node

\[\text{WATime} = \text{time traffic first flows} \]

(4) Now the Tester sends a request to withdraw routeA to DUT. This is the WdrawTime2

\[\text{WAWtime-TRx(RouteA)} = \text{WdrawTime2} \]

(5) DUT processes the withdraw and sends it to Helper Node

(6) Record the time when no traffic is observed on the Egress Interface of Helper Node. This is

\[\text{TR-WAW(DUT,RouteA)} = \text{RouteRemoveTime2} \]

(7) Total withdraw processing time is

\[\text{TotalWdrawTime} = ((\text{RouteRemoveTime2} - \text{WdrawTime2}) - \text{WdrawConvTime1}) \]

5.7. BGP Path Attribute Change Convergence Time

Objective:

This test measures the convergence time taken by an implementation to service a BGP Path Attribute Change

Reference Test Setup:

This test uses the setup as shown in figure 1

Procedure:

A. This test only applies to Well-Known Mandatory Attributes like Origin, AS Path, Next Hop

B. In each iteration of test only one of these mandatory attributes need to be varied whereas the others remain the
same

C. All devices to be synchronized using NTP

D. All variables should be set to basic-test parameters

E. Advertise the route, routeA over the Best Egress Interface only, making it the preferred named Tbest

F. To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test

G. Start the traffic from the Emulator towards the DUT targeted at the specific route say routeA. Initially traffic would be observed on the Best Egress interface

H. Now advertise the same route routeA on the Next-Best Egress Interface but by varying one of the well-known mandatory attributes to have a preferred value over that interface. We call this Tbetter. The other values need to be same as what was advertised on the Best-Egress adjacency

\[TRx(P\text{ath-Change}) = \text{Path Change Event Time} \]

I. Measure the Convergence Time for the event to be detected and traffic to be forwarded to Next-Best Egress Interface

\[\text{DUT}(P\text{ath-Change}, \text{RouteA}) = \text{Path-switch time} \]

Convergence = Path-switch time - Path Change Event Time

J. Stop the offered load and wait for the queues to drain and Restart

K. Repeat the test for various attributes

5.8. BGP Graceful Restart Convergence Time

Objective:

This test measures the route convergence time taken by an implementation during a Graceful Restart Event

Reference Test Setup:
This test uses the setup as shown in figure 4

Procedure:

A. It measures the time taken by an implementation to service a BGP Graceful Restart Event and advertise a route

B. The Helper Nodes are the same model as DUT and run the same BGP implementation as DUT

C. The BGP implementation on DUT & Helper Node needs to support BGP Graceful Restart Mechanism [RFC4724]

D. All devices to be synchronized using NTP

E. All variables are set to basic-test values

F. DUT and Helper Node-1 (HLP1) are configured in the same Autonomous System whereas Emulator and Helper Node-2 (HLP2) are configured under different Autonomous Systems

G. Establish BGP adjacency between DUT and Helper Nodes

H. Establish BGP adjacency between Helper Node-2 and Emulator

I. To ensure adjacency establishment, wait for 3 KeepAlives from the DUT or a configurable delay before proceeding with the rest of the test

J. Configure a policy under BGP on Helper Node-1 to deny routes received from DUT

K. Advertise routeA from the Emulator to Helper Node-2

L. Helper Node-2 advertises the route to DUT and DUT will try to advertise the route to Helper Node-1 which will be denied

M. Wait for 3 KeepAlives

N. Start the traffic from the Emulator towards the Helper Node-1 targeted at the specific route say routeA. Initially no traffic would be observed on the Egress interface as the routeA is not present

O. Perform a Graceful Restart Trigger Event on DUT and note the time. This is the GREventTime
P. Remove the policy on Helper Node-1

Q. Record the time when the traffic targeted towards routeA is received on the Egress Interface

\[T^{RR}(DUT, \text{routeA}) \]. This is also called RecTime

R. The following equation represents the Graceful Restart Convergence Time

\[
\text{Graceful Restart Convergence Time} = (\text{RecTime} - \text{GREventTime}) - \text{RIB-IN})
\]

S. It is assumed in this test case that after a Switchover is triggered on the DUT, it will not have any cycles to process BGP Refresh messages. The reason for this assumption is that there is a narrow window of time where after switchover when we remove the policy from Helper Node -1, implementations might generate Route-Refresh automatically and this request might be serviced before the DUT actually switches over and reestablishes BGP adjacencies with the peers

6. Reporting Format

For each test case, it is recommended that the reporting tables below are completed and all time values SHOULD be reported with resolution as specified in [RFC4098]
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test case</td>
<td>Test case number</td>
</tr>
<tr>
<td>Test topology</td>
<td>1, 2, 3 or 4</td>
</tr>
<tr>
<td>Parallel links</td>
<td>Number of parallel links</td>
</tr>
<tr>
<td>Interface type</td>
<td>GigE, POS, ATM, other</td>
</tr>
<tr>
<td>Convergence Event</td>
<td>Hard reset, Soft reset, link failure, or other defined</td>
</tr>
<tr>
<td>eBGP sessions</td>
<td>Number of eBGP sessions</td>
</tr>
<tr>
<td>iBGP sessions</td>
<td>Number of iBGP sessions</td>
</tr>
<tr>
<td>eBGP neighbor</td>
<td>Number of eBGP neighbors</td>
</tr>
<tr>
<td>iBGP neighbor</td>
<td>Number of iBGP neighbors</td>
</tr>
<tr>
<td>Routes per peer</td>
<td>Number of routes</td>
</tr>
<tr>
<td>Total unique routes</td>
<td>Number of routes</td>
</tr>
<tr>
<td>Total non-unique routes</td>
<td>Number of routes</td>
</tr>
<tr>
<td>IGP configured</td>
<td>ISIS, OSPF, static, or other</td>
</tr>
<tr>
<td>Route Mixture</td>
<td>Description of Route mixture</td>
</tr>
<tr>
<td>Route Packing</td>
<td>Number of routes in an update</td>
</tr>
<tr>
<td>Policy configured</td>
<td>Yes, No</td>
</tr>
<tr>
<td>Packet size offered to the DUT</td>
<td>Bytes</td>
</tr>
<tr>
<td>Offered load</td>
<td>Packets per second</td>
</tr>
<tr>
<td>Packet sampling interval on tester</td>
<td>Seconds</td>
</tr>
<tr>
<td>Forwarding delay threshold</td>
<td>Seconds</td>
</tr>
<tr>
<td>Timer Values configured on DUT</td>
<td></td>
</tr>
<tr>
<td>Interface failure indication delay</td>
<td>Seconds</td>
</tr>
<tr>
<td>Hold time</td>
<td>Seconds</td>
</tr>
<tr>
<td>MinRouteAdvertisementInterval (MRAI)</td>
<td>Seconds</td>
</tr>
<tr>
<td>MinASOriginationInterval (MAOI)</td>
<td>Seconds</td>
</tr>
<tr>
<td>Keepalive Time</td>
<td>Seconds</td>
</tr>
<tr>
<td>ConnectRetry</td>
<td>Seconds</td>
</tr>
<tr>
<td>TCP Parameters for DUT and tester</td>
<td></td>
</tr>
<tr>
<td>MSS</td>
<td>Bytes</td>
</tr>
<tr>
<td>Slow start threshold</td>
<td>Bytes</td>
</tr>
<tr>
<td>Maximum window size</td>
<td>Bytes</td>
</tr>
</tbody>
</table>

Test Details:

a. If the Offered Load matches a subset of routes, describe how this subset is selected

b. Describe how the Convergence Event is applied; does it cause instantaneous traffic loss or not
c. If there is any policy configured, describe the configured policy

Complete the table below for the initial Convergence Event and the reversion Convergence Event

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convergence Event</td>
<td>Initial or reversion</td>
</tr>
</tbody>
</table>

Traffic Forwarding Metrics
- Total number of packets offered to DUT: Number of packets
- Total number of packets forwarded by DUT: Number of packets
- Connectivity Packet Loss: Number of packets
- Convergence Packet Loss: Number of packets
- Out-of-order packets: Number of packets
- Duplicate packets: Number of packets

Convergence Benchmarks
- Rate-derived Method [IGP-Data]:
 - First route convergence time: Seconds
 - Full convergence time: Seconds
- Loss-derived Method [IGP-Data]:
 - Loss-derived convergence time: Seconds
- Route-Specific Loss-Derived Method:
 - Minimum R-S convergence time: Seconds
 - Maximum R-S convergence time: Seconds
 - Median R-S convergence time: Seconds
 - Average R-S convergence time: Seconds

Loss of Connectivity Benchmarks
- Loss-derived Method:
 - Loss-derived loss of connectivity period: Seconds
- Route-Specific loss-derived Method:
 - Minimum LoC period [n]: Array of seconds
 - Minimum Route LoC period: Seconds
 - Maximum Route LoC period: Seconds
 - Median Route LoC period: Seconds
7. IANA Considerations

This draft does not require any new allocations by IANA.

8. Security Considerations

Benchmarking activities as described in this memo are limited to technology characterization using controlled stimuli in a laboratory environment, with dedicated address space and the constraints specified in the sections above.

The benchmarking network topology will be an independent test setup and MUST NOT be connected to devices that may forward the test traffic into a production network, or misroute traffic to the test management network.

Further, benchmarking is performed on a "black-box" basis, relying solely on measurements observable external to the DUT/SUT.

Special capabilities SHOULD NOT exist in the DUT/SUT specifically for benchmarking purposes. Any implications for network security arising from the DUT/SUT SHOULD be identical in the lab and in production networks.

9. References

9.1. Normative References

[I-D.ietf-bmwg-igp-dataplane-conv-term]

9.2. Informative References

Authors' Addresses

Rajiv Papneja
Huawei Technologies
Email: rajiv.papneja@huawei.com

Bhavani Parise
Cisco Systems
Email: bhavani@cisco.com
Susan Hares
Huawei Technologies (USA)
Email: shares@huawei.com

Ilya Varlashkin
Easynet Global Services
Email: ilya.varlashkin@easynet.com

Dean Lee
Ixie
Email: dlee@ixiacom.com

Eric Brendel
Independent Consultant
Email: brendel@pektel.com

Mohan Nanduri
Microsoft
Email: mnanduri@microsoft.com

Jay Karthik
Cisco Systems
Email: jkarthik@cisco.com
Convergence benchmarking on contemporary routers
draft-varlashkin-router-conv-bench-00

Abstract

This document specifies methodology for benchmarking convergence of routers without making assumptions about relation and dependencies between data- and control-planes. Provided methodology is primary intended for testing routers running BGP and some form of link-state IGP with or without MPLS. It may also be applicable for environments using MPLS-TE or GRE, however they’re beyond scope of this document and such application is left for further study.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 22, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents
Table of Contents

1. Introduction ... 4
2. Test topology ... 5
3. TEST PARAMETERS ... 6
 3.1. Packing ratios .. 7
 3.2. Test traffic 7
 3.3. IGP metrics .. 7
 3.4. Internal routers matrix 7
 3.5. Number of next-hops 8
 3.6. ’e’ – Failure and Restoration start entropy 8
4. TEST PROCEDURES ... 8
 4.1. Initialisation time 8
 4.2. Generic data-plane failure test 9
 4.3. Generic test procedure for 9
5. Failure and restoration scenarios 10
 5.1. Loss of Signal on the link attached to DUT 10
 5.2. Link failure without LoS 10
 5.3. Non-direct link failure 11
 5.4. Best route withdrawal 11
 5.5. iBGP next-hop failure 12
6. Test report ... 12
7. Link bundling and Equal Cost Multi-Path 13
8. Graceful Restart and Non-Stop Forwarding 13
9. Security considerations 13
10. IANA Considerations 14
11. Acknowledgments ... 14
12. Normative References 14
Authors’ Addresses ... 14
1. Introduction

Ability of the network to restore traffic flow when primary path fails has always been important subject for network engineers, researchers and equipment manufacturers. Time to recover from a link or node failure has often been linked to routing protocols convergence; and benchmarking of a routing protocol convergence has often been considered sufficient for quantifying recovery performance. As long as routers could obtain new best path only after relevant routing protocols perform their calculations such methodology was reasonable. However continuous improvements in hardware and software result in more and more routers being able to restore traffic flow even before routing protocols converge. Methodology described in this document takes such fact into account.

When a failure occurs on the network a router needs to:

1. select new best path so that the packets, which already arrived to the router, can be forwarded
2. let other routers know about new network state so they can find new best path from their perspective

How fast a router can perform these two functions characterise router’s performance with regards to convergence. Note that in general case each of these characteristics may or may not be related to the other. For example, some platform may need to perform calculations to find new best path and only then update local FIB and send relevant protocol updates to other routers, another platform can update local FIB without waiting for calculations to complete but still needs to wait for calculations before sending routing protocol updates, third platform can use different optimisation for both FIB changes and routing protocol updates without waiting for completion of the calculations. Other variations are also possible. This document makes no assumption about whether local FIB changes and routing protocol updates dependencies on each other or on routing protocol calculations.

Since it is not known whether local FIB is updated before or after routing protocol calculations, forwarding-plane method is proposed to benchmark local convergence. And because it is not known whether routing protocol updates are linked to FIB modification or not the control-plane approach is used to benchmark how fast updates are propagated. However both characteristics are benchmarked using very similar test topologies and procedures. Also, an attempt is made to minimise dependency on performance on non-DUT elements involved in the tests.
At the time of writing of this document it is not known whether existing network testers and protocol emulators are able to execute described tests out of the box. Nevertheless the authors believe that required functionality can be added with reasonable effort. Alternatively the tests can be performed with help of physical routers to create necessary test topology, which may have impact on time required to perform the test but expected to provide same degree of the test results accuracy. This also means that tests performed using a protocol simulator can be repeated using physical routers and results expected to be comparable.

This document complements draft-papneja-bgp-basic-dp-convergence.

2. Test topology

Unless specified otherwise all tests use same basic test topology outlined below:

```
S ---[DUT]---[M1]---[NetA]
  \           / \          /     \
  |           |   C1        | 2     |
  |           | \           |       |
[ER1] ... [ERn]  /   \       /     |
  \   \   \ \    \     \       |
[NetB-1] [NetB-N]
```

S is source of test traffic for data-plane tests, while for control-plane tests S is an emulated or physical router with packet capturing (sniffing) capability.

Unidirectional test traffic goes from Source to NetA.

IGP between DUT and R1-R4; BGP between DUT and R3, R4; no BGP between R3 and R4 (important). If tunnelling (e.g. MPLS or GRE) is used then R1 and R2 do not need to run BGP, otherwise they MUST run BGP. Source has static default to DUT; R3 and R4 have static to NetA. NetA is in BGP but not in IGP. M1 is K*M matrix of internal routers. Metrics C1 is used to control whether R2 is LFA for DUT to NetA. Metric C2 is used to control whether R3 or R4 are best exit towards NetA. All other metrics are fixed for all tests and MUST be set to
exact values provided in the above diagram. IGP metrics from M1 to ER1 throughout ERn can be set arbitrarily, their exact values are irrelevant to this test as long as they’re valid for given IGP.

Routers ER1 throughout ERn together with prefixes NetB-1 throughout NetB-N are presented to create realistic environment but not used directly in measurements. NetB-1 throughout NetB-N are distinct single-prefix sets.

Traffic restoration depends on ability of R2 and M1 to forward traffic after failure. To eliminate this dependency R2 is set to always forward traffic to R3 and NetA via M1 which in turn always forwards traffic directly via R3 or R2 depending on the test. One possibility to achieve this is to use static routes. Another alternative is to use different IGP between R2 and R3 from the one used by DUT and make routes learned via this IGP preferred on R2. E.g. DUT uses OSPF, then in addition to it R2&R3 also run ISIS and prefer ISIS routes over OSPF ones. A protocol simulator can have internal mechanism to provide required behaviour. There are no other dependencies on non-DUT devices in this tests.

For evaluating eBGP performance following topology is used:

```
[R1]
  /  \
 /    \ /    \
[S]----[DUT]          [NetA]
  \    /          \    /  \
   \  /          \  /
    [R2]
```

Test topology for eBGP

In "Link failure without LoS" test direct cable between DUT and R1 is replaced with connection over an L2 switch as follow:

```
[DUT]---[SW1]---[R1]
```

3. TEST PARAMETERS
3.1. Packing ratios

Routes with different prefixes but same attributes can potentially be packed into single update message. Since both number of update messages and number of prefixes per update can affect convergence time, the tests SHOULD be performed with various prefix packing ratios. This document does not specify values of individual BGP attributes used to control packing ratio.

3.2. Test traffic

Traffic is sent from single source address located at the Source port of the tester to one address in each prefix in NetA set. Packets are sent at rate 1000 per second, which provides 1ms resolution of the convergence time as measured by tests in this document. All packets SHOULD be 64 bytes at IP layer, that is IP header plus IP payload.

3.3. IGP metrics

Basic test topology specifies fixed IGP metrics for some links. These metrics SHOULD be used verbatim. There are also two variable metrics - C1 and C2 - intended for controlling whether R2 is Loop-Free-Alternate (LFA) for DUT towards NetA, and whether R3 remains best exit towards NetA after path failure between DUT and R3. Following values SHOULD be used for C1 and C2 depending on required behaviour:

<table>
<thead>
<tr>
<th>R2 is LFA?</th>
<th>R3 best?</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

3.4. Internal routers matrix

Basic test topology has N*K grid of internal routers denoted as M1. When N>1 or K>1 the cost of all links within grid MUST be set to 1 (one). This matrix is intended for controlling topology size, which has affect on particularly SPF run-time.

If traffic is forwarded using a tunneling mechanism, such as MPLS or GRE, the internal routers only need to have reachability information about tunnel end-points. However if traditional hop-by-hop forwarding is used, then internal routers MUST have routes to each and every prefix within NetA set.
This document does not specify how internal routers should obtain necessary reachability information. The only requirement is that after primary DUT-NetA path failure internal routers are able to forward traffic to NetA instantly. Using values of IGP metrics as described earlier addresses this requirement. Also, protocol simulator may have built-in mechanism to achieve desired behaviour.

3.5. Number of next-hops

Basic test topology has set of N edge routers ER1 throughout ERn, each advertising unique prefix. Some BGP implementations may exhibit different performance depending on number of next-hops for which IGP cost has changed after failure. By varying overall number of next-hops such dependency can be detected.

Note that prefixes NetB-1 throughout NetB-n are not used as destinations for test traffic, they’re only present for creating "background environment".

3.6. ‘e’ - Failure and Restoration start entropy

Tests described in this document use fixed time T2 and variable offset ‘e’ as starting point for simulating failure or restoration event.

Fixing time T2 is necessary as reference point to which variable offset e is added for each iteration of the test. Introduction of such variable offset allows better analysis of the test results. For example, DUT may run FIB changes at certain intervals. If failure introduced close to the end of such interval, shorter outage will be observed, and if introduced close to the beginning of such interval longer outage will be observed. Running test multiple times each time using different offset will help to profile DUT better.

Test report must contain value of T2 (same for all iterations) and values of e for each iterations. This document recommends to use T2=T1+8s and e from 0 to 1s in 0.01s (10ms) increments.

4. TEST PROCEDURES

This section provides generic steps that are used in all tests.

4.1. Initialisation time

The objective of this test is to measure time that must elapse between starting protocols and ability of the test topology to forward traffic. This test is not intended to reflect DUT
performance but used only as a way to find time T1 that is used in all subsequent tests.

To execute test perform following steps:

1. Configure DUT and protocol simulator (or auxiliary nodes)
2. At T0 start traffic and then immediately start routeing protocols
3. When traffic starts arriving Sink Port 1 stop test.

The time of arrival of the first packet is T1.

4.2. Generic data-plane failure test

The purpose of failure test is to measure time required by DUT to resume traffic flow after best path to destination fails. Following steps are common for all failure tests:

1. Start protocols and mark time as T0
2. At time T1 start traffic to each prefix in set NetA
3. At T2+e simulate failure or restoration event (see Section 5)
4. From T2+e until T3 packets do not arrive to NetA
5. After packets are seen again at NetA (T3) wait until time T4
6. Stop traffic
7. Measure total number of lost packets and calculate outage knowing packet-per-second

4.3. Generic test procedure for

1. At T0 bring up all interfaces and protocols, and start capturing BGP packets at RS1
2. At T1+e simulate failure/restoration event (see Section 5)
3. At T2-d1 first UPDATE message is sent by DUT and at T2 it will be observed at RS1
4. At T3-d2 last UPDATE message is sent by DUT and at T3 it will be observed at RS1

\(d1\) and \(d2\) represent serialisation and propagation delay and can be
disregarded unless DUT-RS1 link has large delay. With this in mind, T2-(T1+e) and T3-(T1+e) represent convergence time for the first and last prefix respectively.

5. Failure and restoration scenarios

This section defines set of various failure and restoration scenarios used in step 3 of the generic test procedures described in previous section. Unless otherwise specified all scenarios are applicable to both data- and control-plane test procedures.

5.1. Loss of Signal on the link attached to DUT

This scenario simulates situation where link attached to DUT fails and Loss of Signal (LoS) can be observed by DUT. In other words link fails and results in interface on the DUT going down.

To simulate LoS failure at the time defined by the test procedure shut down R1 side of the link to DUT.

To simulate LoS restoration at the time defined by the test procedure re-activate R1 side of the link to DUT.

5.2. Link failure without LoS

This scenario simulates situation where link between DUT and adjacent node fails but DUT does not observe LoS. In practice such failure can occur when, for example, link between DUT and adjacent node is implemented via carrier equipment that does not shut link down when remote side of the link fails.

DUT can use various methods to detect such failures, including but not limited to protocol HELLO or Keep-alive packets, BFD, OAM. This document does not restrict methods which DUT can use, but requires use of particular method to be recorded in the test report.

Basic network topology is modified for the purpose of this test only as follow: rather than using direct cabling between DUT and R1 the link is implemented via intermediate L2 switch that supports concept of VLAN’s. Initially switch ports connected to DUT and R1 are placed into the same VLAN (same L2 broadcast domain).

To simulate failure at the time defined by the test procedure move switch port connected to R1 to a VLAN different from the one used for switch port connected to DUT.

To simulate restoration at the time defined by the test procedure
move switch port connected to R1 back to the same VLAN as the one used for switch port connected to DUT.

5.3. Non-direct link failure

This scenario simulates situation where a link not directly connected to DUT but located on the primary path to destination fails. Unmodified basic network topology is used.

Depending on technologies used in the setup different failure detection techniques can be employed by DUT. This document assumes that DUT relies exclusively on IGP information to learn about failure and that nodes adjacent to the failed link flood this information within D seconds since the event. If required exact value of D can be obtained through simple additional test, but in this document D is assumed to be 0 (zero).

It is possible, though undesirable, that some traffic and protocol simulators may continue accepting packets coming through the port that leads to simulated failed link. It is essential to assert such behaviour prior to the tests and if confirmed, exclude packets received after failure from calculations in step 7 of the test.

Failure event is triggered by simulating shutdown of R3 side of the link to R1 at the time defined by the test procedure. R1 MUST send IGP update (depending on which protocol is used) to DUT within D seconds.

Restoration event is triggered by simulating recovery of R3 side of the link to R1 at the time defined by the test procedure. R1 MUST send IGP update (depending on which protocol is used) to DUT within D seconds.

5.4. Best route withdrawal

This scenario simulates situation where best AS exit path to a destination is no longer valid and ASBR sends BGP UPDATE to its iBGP peers. Unmodified basic network topology is used.

Disconnecting R3 from NetA implies that R3 will send BGP WITHDRAW for this prefixes in its update to DUT. It is possible, though undesirable, that some protocol simulator and traffic generators will still count packets received at sink port 1 even after prefixes were withdrawn. To correctly execute this test it’s mandatory that traffic received at sink port 1 after withdrawing prefixes is ignored and not counted as delivered. If traffic generator is not able to assure such functionality (should be asserted prior to the test), then packets received at the sink port 1 MUST be excluded from
calculation in step 7 of the test.

Failure event is triggered by simulating failure of the link between R3 and NetA and immediate withdrawal of all corresponding prefixes by R3.

Restoration event is triggered by simulating recovery of the link between R3 and NetA and immediate BGP UPDATE for all corresponding prefixes by R3.

5.5. iBGP next-hop failure

This scenario simulates situation where ASBR used as best exit to a destination unexpectedly fails both at control and forwarding plane. Both R1 and a router within M1 connected to R3 MUST send appropriate IGP update message to the rest of the network within D seconds. To detect failure DUT MAY rely on IGP information provided by rest of the network or it MAY employ additional techniques. This document does not restrict what detection mechanism should DUT use but requires that particular mechanism is recorded in the test report.

Failure event is triggered by simulating removal of R3 from the test topology at the time defined by the test procedure, followed by IGP update as described in previous paragraph.

Recovery event is triggered by re-introducing R3 into the test topology, followed by IGP update as described in first paragraph of this section and immediate re-activation of BGP session between R3 and DUT. Note that recovery time calculated by this method depends on DUT performance in respect to bringing up new BGP session. This is intentional. Control plane convergence benchmarking can be performed separately by a method that is outside of the scope of this document and two results can be correlated netto data-plane convergence value should that be necessary.

6. Test report

TODO: Report format is to be discussed.

Test report MUST contain following data for each test:

1. T1 and ‘e’
2. Number of prefixes NetA and NetB
3. Size of M1 (recorded as N*K)
4. Traffic rate, in packets per second, and packet size at IP layer in octets

5. Number of lost packets during failure, and number of lost packets during restoration

7. Link bundling and Equal Cost Multi-Path

Scenarios where DUT can balance traffic to NetA across multiple best paths is explicitly excluded from scope of this document. There are two reasons.

First, two different DUT may choose different path (out of all equal) to forward given packet, which makes it unreasonably difficult to define generic traffic that would produce comparable results when testing different platforms.

Second, mechanisms used to handle failures in ECMP (but not necessarily in link-bundling) environment are similar to those handling single-path failures. Therefore it’s expected that convergence in ECMP scenario will be of the same order as in single-path scenario.

8. Graceful Restart and Non-Stop Forwarding

While Graceful Restart and Non-Stop Forwarding mechanisms are related to DUT ability to forward traffic under certain failure conditions, the test covering DUT own ability to restore or preserve traffic flow already covered in RFC6201.

9. Security considerations

The tests described in this document intended to be performed in isolated lab environment, which inherently has no security implication on the live network of the organisation or Internet as whole.

Authors foresee that some people or organisations might be interested to benchmark performance of the live networks. The tests described in this document are disruptive by their nature and will have impact at least on the network where they’re executed, and depending on the role of that network effect can extend to other parts of the Internet. Such tests MUST NOT be attempted in live environment without careful consideration.
The fact of publishing this document does not increase potential negative consequences if tests are executed in live environment because information provided here is mere recording of widely known and used techniques.

10. IANA Considerations

None.

11. Acknowledgments

Authors would like to thank Gregory Cauchie, Rob Shakir, David Freedman, Anton Elita, Saku Ytti, Andrew Yourtchenko, for their valuable contribution and peer-review of this work.

12. Normative References

Authors’ Addresses

Ilya Varlashkin
Easynet Global Services

Email: ilya.varlashkin@easynet.com

Rajiv Papneja
Huawei Technologies (USA)

Email: rajiv.papneja@huawei.com

Bhavani Parise
Cisco

Email: bhavani@cisco.com