Rapid acquisition of the MN multicast subscription after handover
<draft-contreras-multimob-rams-03.txt>

Abstract

A new proposal is presented for speeding up the acquisition by the MAG of the MN’s active multicast subscription information, in order to accelerate the multicast delivery to the MN after a handover. To do that, an extension to the current PMIPv6 protocol is proposed. The solution described in this memo is not only applicable to the base solution for multicast support in PMIPv6, but also it can be applied to other solutions envisioned as possible architectural evolutions of it. Furthermore, it is also independent of the role played by the MAG within the multicast network (either acting as MLD proxy or multicast router).

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

Copyright and License Notice
Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1 Introduction .. 4
 1.1 Conventions and Terminology 5
2 Overview .. 6
3 PMIPv6 extensions .. 7
 3.1 New "Active Multicast Subscription" mobility option 7
 3.1.1 Option application rules 7
 3.1.2 Option format ... 7
 3.2 New "multicast Signaling" flag on PBU/PBA message headers . 8
 3.2.1 Flag application rules 8
 3.2.1.1 Registration process 8
 3.2.1.2 De-registration process 9
 3.2.2 New format of conventional PBU/PBA messages 9
 3.2.2.1 Proxy Binding Update Message 9
 3.2.2.2 Proxy Binding Acknowledgement Message 10
 3.3 New messages for active multicast subscription
 interrogation ... 11
 3.4.1 Subscription Query message 11
 3.4.1.1 Message application rules 11
 3.4.1.2 Message format 11
 3.4.2 Subscription Response message 12
 3.4.2.1 Message application rules 12
 3.4.2.2 Message format 13
 3.5 New messages for active multicast subscription indication . 14
 3.5.1 Multicast Activity Indication message 14
 3.5.1.1 Message application rules 14
 3.5.1.2 Message format 14
 3.5.2 Multicast Activity Indication Acknowledge message 15
 3.5.2.1 Message application rules 15
 3.5.2.2 Message format 15
 3.6 New "PBA timer" in the LMA 16
3.6.1 Flag application rules 16
4 Signaling process description 17
4.1 Handover of proactive type 17
 4.1.1 Rationale ... 17
 4.1.2 Message flow description 17
4.2 Handover of reactive type 19
 4.2.1 Rationale ... 19
 4.2.2 Message flow description 20
 4.2.3 Further considerations for the reactive handover
 signaling ... 25
5 Co-existence with PMIPv6 multicast architectural evolutions .. 29
6 Benefits of layer-2 triggers for fast handover 29
7 Security Considerations 30
8 IANA Considerations ... 30
9 References .. 30
 9.1 Normative References 30
 9.2 Informative References 30
10 Acknowledgments ... 31
Author’s Addresses ... 31
1 Introduction

Recently, a base solution has been adopted for continuous multicast service delivery in PMIPv6 domains [4]. This solution specifies the basic functionality needed in the PMIPv6 entities to provide a multicast service, and supports the continuous delivery of multicast traffic by obtaining, after a handover, the on-going multicast subscription information directly from the MN. Thus, once the MN attaches to a new MAG, the MN is interrogated by the MAG through an MLD General Query, which is sent just after any new link is set up, to get knowledge of any existing subscription, as specified in [2].

However, as highlighted by [5], the base solution must be improved to cover some performance requirements, especially those referred to the user perceived service quality, seriously affected by the disruption of multicast content forwarding to the MN during handovers.

One MN with an active multicast subscription, moving from one point-of attachment to another within a PMIPv6 domain, will experience a certain delay in receiving again the multicast content that it was previously receiving at the previous location. Such delay will cause a gap on the content reception. Two measures can help to mitigate such reception gap. One of them is to buffer at the previous MAG the traffic with destination the MN and forwarding it at the new MAG, in order to properly deliver that traffic to the MN. The other possible measure is to reduce the time needed by the new MAG to get knowledge of the active multicast subscription maintained by the MN, in order to subscribe to the multicast group on behalf of the MN as soon as possible.

While the first measure can be accomplished by using [7] or some evolution of it (despite being only applicable in the case the underlying radio access technology supports layer-2 triggers), there is no a generic standard solution for the rapid acquisition of the on-going multicast subscription of the MN.

The method used in the base solution to get knowledge of an existing multicast subscription relies on the behaviour of the IGMP/MLD protocols. Both protocols send multicast membership interrogation messages when a new link is up. The answer to that request will report any existing multicast subscription by the MN.

Due to this behavior, despite of being a straightforward method, the MAG can incur in a huge delay in receiving the corresponding MLD Report message caused by either the MLD query processing time or the radio transfer delays associated with this procedure.

The new approach proposed here consists on extending the PMIPv6
signaling protocol defined in [1] by including a new multicast information option to update PMIPv6 entities during registration and de-registration processes, and new messages to trigger the transfer of such multicast information. No extension is required for any of the multicast-related protocols (IGMP/MLD or PIM protocols).

This proposal intends to provide a signaling method internal to the network to speed up the subscription information acquisition by the MAG, in order to accelerate the multicast delivery to the MN. By doing so, the knowledge by the MAG of the currently active multicast subscription becomes independent of the underlying radio technology dynamics and relaxes the requirement of a rapid response from the MN in processing MLD control messages. Issues like radio framing, radio access contention, channel reliability, IGMP/MLD timers optimisation for wireless environments, etc, are not relevant any more to determine multicast performance after handovers.

The solution described in this memo is not only applicable to the base solution defined in [4], but also it can be applied to other solutions envisioned as possible architectural evolutions of it, as those stated in [6]. Furthermore, it is also independent of the role played by the MAG within the multicast network (either acting as MLD proxy or multicast router).

1.1 Conventions and Terminology

This document uses the terminology referring to PMIPv6 components as defined in [1]. Additionally, the following terms are defined.

pMAG

The previous MAG or pMAG is the MAG where the MN is initially registered in a handover event.

nMAG

The new MAG or nMAG is the MAG where the MN is registered at the end of the handover event.

Reactive Handover

A reactive handover is a handover event in which the LMA receives the MN registration from the nMAG without having previously received the MN de-registration from the pMAG.

Proactive handover

A proactive handover is a handover event where the LMA receives the MN de-registration from the pMAG previously to receive the MN registration from the nMAG.
2 Overview

The LMA is a key element within the PMIPv6 infrastructure. It traces the MN reachability along the PMIPv6 domain, therefore the LMA is the best element to store and forward the multicast subscription information to the rest of entities within the PMIPv6, that is, to the MAGs, as the MN moves.

The LMA only requires to know the detailed subscription information (in terms of the IP addresses of both the multicast group subscribed, G, and the source delivering it, S) during the handover event. Apart from the handover event, it is not worthy to continuously inform the LMA about it. Such procedure would significantly increase the signaling load within the PMIPv6 domain without a clear benefit. The subscription information (S,G) is only critical during handover, neither after nor before. Indicating the active subscription while the handover is ongoing guarantees that such information will be up-to-date, ready to be transferred to the new MAG where the MN has just attached.

To do that, it will be necessary to extend the PMIPv6 protocol in several ways. First of all, a new mobility option is needed to pack the IP addresses of the current multicast subscription. Furthermore, additional messages are required to manage the interchange of the multicast information among PMIPv6 entities. Finally, some flags are defined to govern the process.

Next sections provide the details.
3 PMIPv6 extensions

This section outlines the extensions proposed to the PMIPv6 protocol specified in [1].

3.1 New "Active Multicast Subscription" mobility option

3.1.1 Option application rules

A new TLV-encoded mobility option, "Active Multicast Subscription" option is defined for use with the PBU and PBA messages exchanged between an LMA and a MAG to transfer the multicast subscription information. This option is used for exchanging the IP addresses of both the group subscribed by the MN, and the source delivering it as well. There can be multiple "Active Multicast Subscription" options present in the message, one for each active subscription maintained by the MN when the handover is taken place.

This new option will be used, with the same aim, also by the new message Subscription Response described later in this document.

3.1.2 Option format

The format of this new option is as follows:

```
    0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      Type     |     Length    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                  Multicast Source IP address                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                  Multicast Group IP address                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Type
To be defined

Length
8-bit unsigned integer indicating the length of the option in octets, excluding the type and length fields. This field must be set to the value 8 for IPv4, and 32 for IPv6.

Multicast Source IP address

Unicast IP address of the node which injects the multicast content in the network.

Multicast Group IP address
Multicast IP address identifying the content which the MN subscribes to.

3.2 New "multicast Signaling" flag on PBU/PBA message headers

3.2.1 Flag application rules

A new flag S is added in both PBU and PBA message headers to advise about the MAG and the LMA capabilities of processing multicast-related signaling for the MN subject of the message.

This flag will govern the multicast-related signaling between the LMA and the MAG. As a general rule, the value of the flag in the PBA message should be a copy of the value received in the PBU message. Specific rules are described in next sub-sections.

3.2.1.1 Registration process

These rules apply for the Initial Binding registration process.

- PBU message
 - S=0, it indicates that the MAG sending the PBU message does not accept multicast-related signaling for the MN being attached. This can be used to discriminate PMIPv6 nodes which are not multicast enabled, for backward compatibility reasons.
 - S=1, it indicates that the MAG sending the PBU message accepts multicast-related signaling for the MN being attached. Depending on the type of handover (reactive or proactive) the LMA will take some actions, described later in this document.

- PBA message
 - If S=0 in the corresponding PBU message, the value of the flag in the PBA message should be a copy of the value received in the PBU message, without any further meaning.
 - If S=1 in the corresponding PBU message, two sub-cases can happen
 - S=1 in the PBA message if the multicast subscription information is provided in this message for the MN. When S=1, if the MN maintains an active multicast session, the PBA
message will include the "Active Multicast Subscription" mobility option with the IP addresses of the subscribed group and the source providing it.

- S=0 in the PBA message if the multicast subscription information is not provided in this message for the MN. The PBA message will include the "Active Multicast Subscription" mobility option with the IP addresses of the group and the source set to 0. This case is useful to decouple unicast and multicast signaling for a MN being registered at nMAG. A way for obtaining later active multicast-subscription information is described later in this document.

3.2.1.2 De-registration process

These rules apply for the Binding De-registration process:

- **PBU message**
 - S=0, it indicates that the MN has no active multicast session.
 - S=1, it indicates that the MN has an active multicast session, and the IP addresses of the subscribed group and the source providing it are transported in the "Active Multicast Subscription" mobility option.

- **PBA message**

 The value of the flag in the PBA message should be a copy of the value received in the PBU message, without any further meaning.

3.2.2 New format of conventional PBU/PBA messages

3.2.2.1 Proxy Binding Update Message

As result of the new defined flag, the PBU message results as follows:

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>+---</td>
</tr>
<tr>
<td>+---</td>
</tr>
</tbody>
</table>

3.2.2.2 Proxy Binding Acknowledgement Message

As a result of the new defined flag, the PBA message results as follows:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Status     |K|R|P|S| Rsrvd |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           Sequence #          |           Lifetime            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

3.3 New "multicast Active" flag on LMA Binding Cache (and optionally on the MN’s policy store)

3.3.1 Flag application rules

A new flag A is added in the LMA Binding Cache to retain the knowledge that the registered MN maintains or not an active multicast subscription. The basic use of this flag is to restrict the interrogation of the pMAG only to the cases in which the MN certainly is maintaining an active subscription.

The algorithm which is followed by the LMA to interrogate or not the pMAG (after receiving a PBU message from the nMAG) is as follows:

- Flag S=0 & flag A=0: this situation represents the case where the nMAG does not support multicast-related signaling for the MN being registered, and, additionally, the LMA is not aware of any active multicast subscription on-going. Then, the LMA does not interrogate the pMAG, and registers the MN as attached to the nMAG as usual.

- Flag S=0 & flag A=1: this situation represents the case where the nMAG does not support multicast-related signaling for the MN being registered, but the LMA is aware of one or more on-going MN’s active multicast subscriptions. Due that multicast signaling is not supported by the nMAG for that MN, the LMA does not interrogate the pMAG, and registers the MN as attached to the nMAG as usual.

- Flag S=1 & flag A=0: this situation represents the case where the nMAG supports multicast-related signaling for the MN being
registered, but the LMA is not aware of any active multicast subscription. Then, the LMA does not interrogate the pMAG, and registers the MN as attached to the nMAG as usual.

- Flag S=1 & flag A=1: this situation represents the case where the nMAG supports multicast-related signaling for the MN being registered, and, additionally, the LMA is aware of one or more on-going MN’s active multicast subscriptions. Then, the LMA interrogates the pMAG to obtain the multicast subscription details in the form of \((S, G)\) previously to complete the registration of the MN attached to the nMAG.

The flag A should be initialized to the value 0.

Optionally, this flag can be also added to the MN’s policy store, and dynamically updated by the LMA to signal that the MN has (or not) an active multicast subscription. By introducing this flag in the MN’s policy profile, the nMAG can know in advance the existence of an active multicast session by the incoming MN.

3.4 New messages for active multicast subscription interrogation

A new pair of messages is defined for interrogating entities about the active multicast subscription of the MN when the handover is of reactive type.

These messages are sent using the Mobility Header as defined in [3].

3.4.1 Subscription Query message

3.4.1.1 Message application rules

The Subscription Query message is sent by the LMA towards the pMAG to interrogate it about any existing multicast subscription of the MN which is being registered by the nMAG. This message is generated in case of the handover is of reactive type.

Additionally, this message is sent by the nMAG towards the LMA to interrogate it about the existing multicast subscription of the MN when the LMA acknowledges the PBU sent by the nMAG but the multicast information is not provided (in detail, when the PBU messages has set the flag S to 1, and the PBA message has set the flag S to 0).

3.4.1.2 Message format

The Subscription Query message has the following format.
Sequence Number

The Sequence Number field establishes the order of the messages sent in the Subscription Query / Subscription Response dialogue between the LMA and the MAG for a certain MN. The initial Sequence Number will be determined by the entity which creates the message (either LMA or MAG, depending on the scenario), which will be responsible of managing this counter.

Reserved

This field is unused for now. The value must be initialized to 0.

Mobility options

This message will carry one or more TLV-encoded mobility options. The valid mobility options for this message are the following:

- Mobile Node Identifier option (mandatory)
- Home Network Prefix option (optional)

There can be one or more instances of the Home Network Prefix option, but only one instance of the Mobile Node Identifier option.

3.4.2 Subscription Response message

3.4.2.1 Message application rules

The Subscription Response message is sent by the pMAG towards the LMA, or by the LMA towards the nMAG, to answer a previously received Subscription Query message, as described above.
3.4.2.2 Message format

The Subscription Response message has the following format.

```
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +------------------------------------------+
  |  Sequence #   |I|  Reserved   |
  +------------------------------------------+
  +------------------------------------------+
  +------------------------------------------+
  +------------------------------------------+
```

Sequence Number

The value of the Sequence Number field in the Subscriber Response message must be a copy of the Sequence Number received in the Subscription Query message.

Multicast Information (I)

The multicast Information flag I specifies if there is multicast subscription information available for the MN or not. The meaning is the following:

I=0: there is no multicast subscription information available for the MN identified by the Mobile Node Identifier option in this message.

I=1: there is multicast subscription information available for the MN identified by the Mobile Node Identifier option in this message. The multicast subscription information is carried on one or more instances of the Active Multicast Subscription option in this message (one instance for each active subscription).

Reserved

This field is unused for now. The value must be initialized to 0.

Mobility options

This message will carry one or more TLV-encoded mobility options. The valid mobility options for this message are the following:

- Mobile Node Identifier option (mandatory)
- Active Multicast Subscription option (mandatory) only when flag I=1, not present in any other case
- Home Network Prefix option (optional)

There can be one or more instances of the Home Network Prefix option (in all cases) and the Active Multicast Subscription option (only when I=1), but only one instance of the Mobile Node Identifier option.

3.5 New messages for active multicast subscription indication

A new pair of messages is defined for setting up and down the optional A flag defined above.

These messages are sent using the Mobility Header as defined in [3].

3.5.1 Multicast Activity Indication message

3.5.1.1 Message application rules

The Multicast Activity Indication message is sent by a MAG towards the LMA to set to 1 or 0 the A flag either to indicate the start or the complete cease of any multicast subscription by the MN. Through the use of this message, the LMA becomes aware that one or more multicast flows are being forwarded to a MN. This information is useful for the LMA during a handover to discriminate if the pMAG should be asked or not about multicast information corresponding to the MN being registered at the nMAG, in case of the handover is of reactive type.

3.5.1.2 Message format

The Multicast Activity Indication message has the following format.

```
| Sequence # | A | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Sequence Number

The Sequence Number field establishes the order of the messages sent in the Activity Indication / Activity Indication Ack dialogue between the MAG and the LMA for a certain MN. The initial Sequence Number will be determined by the MAG, which will be responsible of managing this counter.

Activity indicator (A)

The Activity indicator flag A specifies if the MN multicast activity is on, that is, if the MN maintains one or more active multicast subscriptions at the MAG. The meaning is the following:

A=0: the multicast activity of the MN (identified by the Mobile Node Identifier option in this message) is off.

A=1: the multicast activity of the MN (identified by the Mobile Node Identifier option in this message) is on.

Reserved

This field is unused for now. The value must be initialized to 0.

Mobility options

This message will carry one or more TLV-encoded mobility options. The valid mobility options for this message are the following:

- Mobile Node Identifier option (mandatory)
- Home Network Prefix option (optional)

There can be one or more instances of the Home Network Prefix option, but only one instance of the Mobile Node Identifier option.

3.5.2 Multicast Activity Indication Acknowledge message

3.5.2.1 Message application rules

The Multicast Activity Indication Acknowledge message is sent by the LMA towards a MAG to confirm the reception of a previously sent Multicast Activity Indication message.

3.5.2.2 Message format

The Multicast Activity Indication message has the following format.
Sequence Number

The value of the Sequence Number field in the Activity Indication Ack message must be a copy of the Sequence Number received in the Activity Indication message.

Reserved

This field is unused for now. The value must be initialized to 0.

Mobility options

This message will carry one or more TLV-encoded mobility options. The valid mobility options for this message are the following:

- Mobile Node Identifier option (mandatory)
- Home Network Prefix option (optional)

There can be one or more instances of the Home Network Prefix option, but only one instance of the Mobile Node Identifier option.

3.6 New "PBA timer" in the LMA

A new timer named "PBA timer" is used in the LMA to define the maximum waiting time before the PBA message is sent to the nMAG in case the multicast subscription information relative to the MN is not yet available. The aim of this timer is to prevent potential large delays in the forwarding of unicast traffic towards the MN being registered at the nMAG. This timer allows decoupling the unicast signaling from the multicast one.

This timer should be upper bounded by the constant defined in [3] INIT_BINDACK_TIMEOUT, whose default value is 1 s. This constant sets the time when the nMAG will retry the MN registration by sending again the PBU message. The "PBA timer" has to ensure that the nMAG does not enter the retry mode.
4 Signaling process description

As the MN moves from one access gateway (named previous-MAG, pMAG) to another (named new-MAG, nMAG), the mobility-related signaling due to the handover event is carried out independently by the pMAG and the nMAG. That signaling process is not synchronized and, thus, two scenarios should be considered depending on the order in which the LMA receives notification of the MN registration and de-registration in the nMAG and the pMAG respectively.

4.1 Handover of proactive type

4.1.1 Rationale

In the proactive case, the LMA receives the MN de-registration from the pMAG previously to receive the MN registration from the nMAG.

Only for those MNs which maintain an active multicast subscription, the pMAG will include, as part of the PBU message (with flag S set to 1), the new TLV-encoded mobility option "Active Multicast Subscription" carrying the IP addresses of the multicast subscription(s) active in the MN at that moment.

The LMA will store that information in the corresponding binding cache. If, later on, the MN attaches to a nMAG, this information will be sent (using the same TLV option) to the nMAG as part of the PBA confirmation of the registration process (the PBU message sent by the nMAG should set the flag S to 1). On the other hand, if no further registration happens, the multicast information will be removed together with the rest of binding database for that MN.

After receiving the multicast addresses of the group(s) subscribed by the MN, and the source(s) delivering it(them), the nMAG can subscribe the multicast flow on behalf of the MN, if there is no other MN receiving it already at the nMAG. The multicast status can be also set in advance for the point-to-point link towards the MN.

4.1.2 Message flow description

The figure 1 summarizes this process.
The sequence of messages is the following:

1) A registered MN is receiving a multicast content which has been previously subscribed by sending an standard MLD report from the MN to the currently serving MAG, pMAG. The pMAG keeps the multicast status state of the point-to-point link with the MN.
2) The MN perceives a better radio link and decides to initiate a handover process over a radio access controlled by a new MAG, nMAG. As consequence, pMAG determines a detach event corresponding to this MN, and updates the attachment status of this MN to the LMA by sending an extended Proxy Binding Update message, including a new TLV-encoded option, named "Active Multicast Subscription", which contains the IP addresses of the (S,G) pairs of the active multicast subscriptions in the moment of handover.

3) The LMA processes the PBU message. Additionally, the LMA stores in the Binding Cache the information regarding the on-going multicast subscription when the handover has been initiated. This information will be kept until a new registration of the MN is completed by another MAG, or till the Binding Cache expiration, according to [1].

4) The LMA acknowledges to the pMAG the previous PBU message.

5) As a result of the handover process, the MN attaches to another MAG, called nMAG.

6) The nMAG triggers a registration process by sending a PBU message (with flag S set to 1) to the LMA.

7) After the analysis of the PBU message, the LMA sends an extended PBA including the new "Active Multicast Subscription" option, which contains the IP addresses of the (S,G) pairs of the active multicast subscriptions in the moment of handover.

8) The nMAG processes the PBA message, following all the standard procedures described in [1]. Additionally, with the new information relative to multicast subscription, the nMAG will set up the multicast status of the point-to-point link between the nMAG and the MN, and will join the content identified by (S,G) on behalf of the MN in case the nMAG is not receiving already such content due to a previous subscription ordered by another present MN attached to it. From that instant, the multicast content is served to the MN.

4.2 Handover of reactive type

4.2.1 Rationale

In the reactive case, the LMA receives the MN registration from the nMAG without having previously received the MN de-registration from the pMAG.

As the nMAG is not aware of any active multicast subscription of the MN, the nMAG will start a conventional registration process, by
sending a normal PBU message (with flag S set to 1) towards the LMA.

After receiving the PBU message from the nMAG, the LMA will take the
decision of interrogating or not the pMAG regarding any existing
multicast subscription for that MN.

Once the multicast subscription information is retrieved from the
pMAG, the LMA encapsulates it in the PBA message by using the TLV
option "Active Multicast Subscription", and forwards the PBA message
to the nMAG. Then, the nMAG can subscribe the multicast flow on
behalf of the MN, if there is no other MN receiving it already at the
nMAG. The multicast status can be also set in advance for the point-
to-point link towards the MN.

4.2.2 Message flow description

The set of figures 2a to 2d summarize this process.

```
+-----+ +-----+ +-----+          +-----+          +-----+
| MN1 | | MN2 |  |p-MAG|          | LMA |          |n-MAG|
+-----+ +-----+  +-----+          +-----+          +-----+

1)       |       |        |                |                |
| unicast data  |                |                |
<-v-v-v-v-v-v-v-|                |                |
|       |        |                |                |
|       |        |                |                |
|  MLD Rep(S,G)  |                |                |
|--------------->| Act Ind(start) |

2)       |       |        |                |                |
| (S,G) Data   |           (flag A = 1)          |
<---------------|   Act Ind Ack  |                |
|       |        |                |                |
|       |        |                |                |
```

Figure 2a. Reactive handover (steps 1 to 2)

The sequence of messages is the following:

1) A pair of MNs, named MN1 and MN2, are attached to the pMAG. Both
MNs are multicast-enabled nodes, and both MNs are only receiving
unicast traffic as usual in PMIPv6 domains, with no multicast
subscription yet. At some point in time, the MN1 request to the pMAG
to be subscribed to the content identified by the IP addresses (S,G), by sending an standard MLD report from the MN to the pMAG. The pMAG will keep the multicast status state of the point-to-point link with the MN. The multicast flow (S,G) is then forwarded by the pMAG to the MN1.

2) Due to this initial multicast subscription for the MN1, the pMAG triggers the multicast Activity Indication message towards the LMA, to indicate that the MN1 multicast activity is on. The LMA will set the flag A to 1. Afterwards, the LMA sends an Activity Indication Ack message to the pMAG to acknowledge the previous indication.
3) Some time later, the MN1 perceives a better radio link and decides to attach at a new MAG, nMAG, in a handover process (as it is a reactive case, the pMAG is not aware of the detachment process). Then, the nMAG triggers a registration process by sending a PBU message (with flag S set to 1) to the LMA.
4) Prior to acknowledge the received PBU message, the LMA checks the status of the A flag for this MN. Due that the flag A=1, the LMA interrogates the pMAG about if there is any active multicast subscription for the MN1, by sending a Subscription Query message.

5) The pMAG answers the LMA with a Subscription Response message including the IP addresses of the existing subscriptions (the pair (S,G) in this case).

6) After processing the pMAG answer, the LMA acknowledges the PBU message, including the multicast subscription information within the new TLV-encoded option "Active Multicast Subscription". The nMAG then process the extended PBA message.

7) The nMAG processes the PBA message, and it proceeds to set up the multicast status of the point-to-point link between the nMAG and the MN1, and to join the content identified by (S,G) on behalf of the MN1 in case the nMAG is not receiving already such content. (The bidirectional tunnel is also set up between the nMAG and the LMA if it has not been established before by another MN connection). At this moment, the multicast content can be served to the MN1. The unicast traffic for the MN1 can be forwarded as well.

8) Some time later, the MN1 decides to totally stop all the active multicast subscriptions that it maintains. The MN1 will send an MLD Done message to nMAG to request the cease of the multicast traffic delivery. As consequence, the nMAG will stop all the multicast traffic.

Figure 2c. Reactive handover (steps 8 to 9)
traffic forwarding to the MN1.

9) After removing the active subscriptions for the MN1, the nMAG sends a multicast Activity Indication message to the LMA indicating that the MN1 multicast activity is off. The LMA will set the flag A to 0, its default value. Afterwards, the LMA sends an Activity Indication Ack message to the nMAG to acknowledge the previous indication.

![Diagram showing the process of removing active subscriptions for MN1]

10) In parallel, the MN2 perceives a better radio link and decides to attach also to the nMAG, in a reactive handover process as well (the pMAG is neither aware of the detachment process). Then, the nMAG triggers a registration process by sending a PBU message (with flag S set to 1) to the LMA.

11) Prior to acknowledge the received PBU message, the LMA checks the status of the A flag for this MN. Due that the flag A=0, the LMA does not interrogate the pMAG, and acknowledges the PBU message. The nMAG then process the extended PBA message.

12) The nMAG is now ready to forward the unicast traffic to the MN2.
4.2.3 Further considerations for the reactive handover signaling

A handover event is managed independently by the pMAG and nMAG. It is not a synchronized process. In a reactive handover, the LMA will receive a registration PBU from nMAG before a de-registration PBU from pMAG, if any.

In the message flows detailed above, it could be the case that the LMA receives a de-registration PBU from pMAG just after sending the Subscription Query message, but before receiving the Subscription Response message. That de-registration PBU message from pMAG will carry the multicast subscription information required to assist the MN in the handover, so such valuable information should be kept by the LMA. Furthermore, it is possible that once the Subscription Query message arrives to pMAG, the pMAG could have already removed the multicast related information for the MN.

In order to avoid loosing the multicast subscription information sent in the de-registration PBU message, the LMA should store it, and include it in the PBA message towards the nMAG in case the Subscription Response message from the pMAG does not contain multicast subscription information for the MN.

4.2.4 Prevention of large delays of the binding acknowledgement for unicast traffic

Attending to the message sequences detailed above for reactive handovers, in case the LMA has to request the multicast subscription information to the pMAG, the binding request sent by the nMAG is maintained on-hold till the LMA receives, processes and includes the multicast subscription information into the extended PBA message. As consequence, the unicast traffic may then suffer an extra delay motivated by the multicast-related signaling. During that time, the unicast traffic with destination the MN being registered by the nMAG must be buffered or discarded by the LMA.

In order to avoid any potential large delay in the forwarding of unicast traffic arriving to the LMA towards the MN, a mechanism should be implemented to decouple multicast from unicast traffic reception by the MN.

The figures 3a and 3b show this mechanism:
The sequence of messages is the following:

1) An MN, named MN1, is attached to the pMAG. The MN is a multicast-enabled node, and it is receiving both unicast and multicast traffic simultaneously.
Figure 3b. Decoupling of unicast and multicast signaling (steps 2 to 8)
2) Some time later, the MN1 perceives a better radio link and decides to attach at a new MAG, nMAG, in a handover process (as a reactive case, the pMAG is not aware of the detachment process). Then, the nMAG triggers a registration process by sending a PBU message (with flag S set to 1) to the LMA.

3) Prior to acknowledge the received PBU message, the LMA decides to interrogate the pMAG about if there is any active multicast subscription for the MN1, by sending a Subscription Query message. The LMA decision is based on the checking of flag A when the reactive handover manages the multicast activity indication.

4) Immediately after sending the Subscription Query message, the LMA starts the timer "PBA timer", which duration determines the maximum waiting time before the PBA is sent to avoid any potential large delay in the forwarding of unicast traffic towards the MN.

5) In case the "PBA timer" expires, the LMA acknowledges the PBU message, by sending the PBA message with flag S=0. The nMAG then processes the extended PBA message. Such acknowledgement will allow the MN to receive the unicast traffic from that time on. (The bidirectional tunnel is also set up between the nMAG and the LMA if it has not been established before by another MN connection).

6) In parallel, the nMAG sends a Subscription Query message to the LMA requesting the multicast-subscription details yet unknown for the MN.

7) The pMAG answers the Subscription Query message originally sent by the LMA, including the IP addresses of the existing subscriptions (the pair (S,G) in this case).

8) After processing the pMAG answer, the LMA sends a Subscription Response message to the nMAG, including the multicast subscription information within the new TLV-encoded option "Active Multicast Subscription". The nMAG processes the PBA message, and it proceeds to set up the multicast status of the point-to-point link between the nMAG and the MN1, and to join the content identified by (S,G) on behalf of the MN1 in case the nMAG is not receiving already such content. (The bidirectional tunnel is also set up between the nMAG and the LMA if it has not been established before by another MN connection). At this moment, the multicast content can also be served to the MN.
5 Co-existence with PMIPv6 multicast architectural evolutions

Along this document, it has been considered that the LMA entity is in charge of delivering both unicast and multicast traffic to a certain MN through the bi-directional tunnels connecting to the MAG where the MN is attached, as specified in the base solution defined in [4]. However, the solution described in this memo is not only applicable to the base solution, but also it can be applied to other solutions envisioned as possible architectural evolutions to solve the tunnel convergence problem affecting the base solution, as those stated in [6].

The Multicast Tree Mobility Anchor (MTMA) solution in [6] makes use of a separate entity to serve multicast traffic through distinct tunnels connected to the MAGs. The tunnels for multicast traffic could not be set up in advance if they are dynamical in nature.

In case of the "multicast activity" flag is also present in the MN’s policy store, the nMAG knows in advance the multicast activity of the incoming MN. Consequently, the nMAG can trigger the multicast tunnel set up in parallel to the registration process, including the acquisition of the active multicast subscription details (the IP addresses of the source and the content), saving time on serving the multicast flow to the incoming MN. The concrete procedure for multicast tunnel establishment is out of the scope of this memo.

6 Benefits of layer-2 triggers for fast handover

As stated before, the global performance of the multicast handover can be improved in the case that layer-2 triggers are supported by the underlying radio technology. In [7], a procedure which allows to buffer at the pMAG and forward to the nMAG the traffic with destination the MN during the handover duration is defined. This forwarding can be beneficial for either strict real-time services or for networks with long handover duration. By forwarding the traffic to the MN, the disruption of the multicast traffic reception is minimized.

The solution in [7] avoids packet loss during the handover. Even so, the proposal in this memo is still useful, because reducing the time required to set up multicast traffic delivery in the nMAG minimizes the buffering needed at the pMAG.

In any case, because the feature in [7] is dependent on the capabilities of the underlying radio technology, and that not all the multicast applications could take benefit of it, that functionality can be seen as optional for multicast handover optimization.
Security Considerations

TBD.

IANA Considerations

This document defines the new following elements which values should be allocated:

- Mobility Header types: the Subscription Query and Subscription Response, and the Multicast Activity Indication and Multicast Activity Indication Acknowledge mobility header types.
- Mobility options: the Active Multicast Subscription mobility option.
- Flags: the multicast Signaling (S), the multicast Information (I), and the multicast Active (A) flags.

References

9.1 Normative References

9.2 Informative References

10 Acknowledgments

The research of Carlos J. Bernardos leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7-ICT-2009-5) under grant agreement n. 258053 (MEDIEVAL project), being also partially supported by the Ministry of Science and Innovation (MICINN) of Spain under the QUARTET project (TIN2009-13992-C02-01).

The research of Ignacio Soto also has received funding from the Spanish MICINN through the I-MOVING project (TEC2010-18907).

Author’s Addresses

Luis M. Contreras
Telefonica I+D
Email: lmcm@tid.es

Carlos J. Bernardos
Universidad Carlos III de Madrid
Email: cjbc@it.uc3m.es

Ignacio Soto
Universidad Politecnica de Madrid
Email: isoto@dit.upm.es
Abstract

This document specifies a multicast handover optimization mechanism for Proxy Mobile IPv6 to accelerate the delivery of multicast traffic to mobile nodes after handovers. The mechanism is based on speeding up the acquisition of mobile nodes’ active multicast subscriptions information by the mobile access gateways. To do that, extensions to the current Proxy Mobile IPv6 protocol are proposed. These extensions are not only applicable to the base solution for multicast support in Proxy Mobile IPv6, but also can be applied to other solutions envisioned as possible architectural evolutions of it. Furthermore, they are also independent of the role played by the mobile access gateway within the multicast network (either acting as multicast listener discovery proxy or multicast router).

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/1id-abstracts.html
Table of Contents

1 Introduction .. 4
 1.1 Terminology ... 5
2. Overview .. 7
3 PMIPv6 extensions .. 8
 3.1. New mobility option 8
 3.1.1. New "Active Multicast Subscription" mobility option . 8
 3.1.1.1. Option application rules 8
 3.1.1.2. Option format 8
 3.2. New flags .. 9
 3.2.1. New "multicast Signaling" flag on PBU/PBA message
 headers .. 9
 3.2.1.1. Flag application rules 9
 3.2.1.1.1. Registration process 10
 3.2.1.1.2. De-registration process 11
 3.2.1.2. New format of conventional PBU/PBA messages 11
 3.2.1.2.1. Proxy Binding Update Message 11
 3.2.1.2.2. Proxy Binding Acknowledgement Message 12
 3.2.2. New "multicast Active" flag in the LMA Binding Cache
 and (optionally) on the MN’s policy store 12
 3.2.2.1. Flag application rules 12
 3.3. New messages ... 13
 3.3.1. New messages for active multicast subscription
 interrogation 13
 3.3.1.1. Subscription Query message 14
 3.3.1.1.1. Message application rules 14
1 Introduction

The base solution describing how continuous multicast service delivery can be provided in Proxy Mobile IPv6 domains is described in RFC 6224 [4]. This solution specifies the basic functionality needed in the Proxy Mobile IPv6 entities to provide a multicast service, and supports the continuous delivery of multicast traffic by obtaining, after a handover, the on-going multicast subscription information directly from the mobile node. When a mobile node attaches to a new mobile access gateway, the mobile node is interrogated by the mobile access gateway through a multicast listener discovery General Query, which is sent just after any new link is set up, to get knowledge of any existing subscription, as specified in [2].

However, as highlighted by [5], the base solution needs to be improved to meet some performance requirements, especially those referred to the user perceived service quality, which is seriously affected by the disruption of multicast content forwarding to the mobile node during handovers.

A mobile node with an active multicast subscription, moving from one point of attachment to another within a Proxy Mobile IPv6 domain, experiences a certain delay until it resumes receiving again the multicast content that it was receiving at the previous location. Such delay causes a gap in the content reception. Two different actions can help to mitigate such reception gap. One of them is to buffer at the previous mobile access gateway the traffic with destination at the mobile node and forward it to the new mobile access gateway, in order to deliver that traffic to the mobile node. The other possible (complementary) action is to reduce the time needed by the new mobile access gateway to get knowledge of the active multicast subscription of the mobile node (i.e., the IP addresses of the multicast groups subscribed and the sources providing them), so the new mobile access gateway can subscribe to the multicast group(s) on behalf of the mobile node as soon as possible.

While the first mechanism can be accomplished by using [7] or some evolution of it (despite being only applicable in the case the underlying radio access technology supports layer-2 triggers, and it requires additional support on the mobile node), there is no a generic standard solution for the accelerated acquisition of the on-going multicast subscription of the mobile node.

The approach followed by the base solution [4] to get knowledge of an existing multicast subscription relies on the behavior of the IGMP/MLD protocols. Both protocols send multicast membership interrogation messages when a new link is up. The response to that
request reports any existing multicast subscription by the mobile node. While this is a straightforward approach, it also causes that the mobile access gateway can incur in a non-negligible delay in receiving the corresponding MLD Report message. This delay is caused by the time needed for the detection of the attachment in the new link, the radio transfer delays associated with the signaling to the mobile node, and the MLD query response interval time required by this procedure (whose default value is 10 seconds as defined in [2], or between 5 and 10 seconds as considered in the best case wireless link scenario in [8]).

This document extends the Proxy Mobile IPv6 signaling protocol defined in the base protocol [1] by including a new multicast information option to update Proxy Mobile IPv6 entities during the registration and de-registration processes, and new messages to trigger the transfer of multicast information. No extension is required in any of the multicast-related protocols in use (IGMP/MLD or PIM protocols). This document provides a signaling method internal to the network to speed up the subscription information acquisition by the mobile access gateway, in order to accelerate the multicast delivery to the mobile node after having completed a handover. By doing so, the knowledge by the mobile access gateway of the currently active multicast subscription becomes independent of the underlying radio technology dynamics and relaxes the requirement of a rapid response from the mobile node in processing MLD control messages. Issues like radio framing, radio access contention, channel reliability, MN’s capabilities (i.e., layer-2 triggering support), IGMP/MLD timers optimization for wireless environments, etc, do not impact on the observed multicast performance during handovers.

The solution described in this document is not only applicable to the base solution defined in [4], but also it can be applied to other solutions envisioned as possible architectural evolutions of it, as those stated in [6]. Furthermore, it is also independent of the role played by the mobile access gateway within the multicast network (either acting as MLD proxy or multicast router).

1.1 Terminology

This document uses the terminology referring to PMIPv6 components as defined in [1].

Additionally, the following terms are defined.

pMAG
The previous MAG or pMAG is the MAG where the MN is initially registered in a handover event.
nMAG

The new MAG or nMAG is the MAG where the MN is registered at the end of the handover event.

Reactive Handover

A reactive handover is a handover event in which the LMA receives the MN registration from the nMAG without having previously received the MN de-registration from the pMAG.

Proactive handover

A proactive handover is a handover event where the LMA receives the MN de-registration from the pMAG previously to receive the MN registration from the nMAG.
2. Overview

The LMA is a key element within the PMIPv6 infrastructure, which traces the MN reachability along the PMIPv6 domain. Therefore the LMA is the best element to maintain the MNs’ multicast subscription information updated and to forward it to the rest of PMIPv6 entities (i.e., to the MAGs) as needed when MNs move within the domain. The LMA has timely knowledge of the MNs’ location, especially during handover events, and it is therefore able to quickly provide information to the new one point of attachment (querying the previous one if required).

The LMA only obtains the detailed subscription information (in terms of the IP addresses of both the multicast group subscribed, G, and the source delivering it, S) during a handover event. There is no need of continuously informing the LMA about MNs’ multicast state while the mobile nodes remain attached to the same mobile access gateway. Such a continuous updating procedure would significantly increase the signaling load within the PMIPv6 domain without a clear benefit. The subscription information (S,G) is only critical during handovers, neither after nor before. Indicating the active subscription while the handover is ongoing guarantees that such information will be up-to-date, ready to be transferred to the new MAG where the MN has just attached.

To be able to transfer the multicast subscription information between PMIPv6 entities during a handover, this document extends the PMIPv6 protocol in several ways. First of all, a new mobility option is defined to carry the IP addresses of the current multicast subscription. Furthermore, additional messages are defined to manage the interchange of the multicast information among PMIPv6 entities. Finally, some flags are defined to govern the process.

Next sections provide the details of these Proxy Mobile IPv6 protocol extensions.
3 PMIPv6 extensions

This section outlines the extensions proposed to the PMIPv6 protocol specified in [1].

3.1. New mobility option

3.1.1. New "Active Multicast Subscription" mobility option

3.1.1.1. Option application rules

A new TLV-encoded mobility option, "Active Multicast Subscription" option is defined for use with the PBU (Proxy Binding Update) and PBA (Proxy Binding Acknowledge) messages exchanged between an LMA and a MAG to transfer the multicast subscription information. This option is used for exchanging the IP addresses of both the group subscribed to by the MN, and the source delivering it. There can be multiple "Active Multicast Subscription" options present in the message, one for each active subscription maintained by the MN when the handover is taking place.

This option does not include specific information about the applicable filter mode defined in [9]. After the handover process, the MN has to receive the same multicast flow being received before the handover initiation (in terms of the (S,G) duple), then the filter mode information is not strictly critical to accelerate the reception of the multicast flow at the new point of attachment. This information can be, however, retrieved later through the response message to the MLD Query sent by the nMAG once the point-to-point link of the entering MN is set-up, as defined in [4].

This new option will be also used, with the same aim, by the new message Subscription Response described later in this document.

3.1.1.2. Option format

The format of this new option is as follows:
Type
To be defined

Length
8-bit unsigned integer indicating the length of the option in octets, excluding the type and length fields. This field must be set to the value 8 for IPv4, and 32 for IPv6.

Multicast Source IP address
Unicast IP address of the node which injects the multicast content in the network. Multicast Group IP address.

Multicast Group IP address
Multicast IP address identifying the content which the MN subscribes to.

3.2. New flags

Two new flags are defined and used to handle the forwarding of multicast subscription information.

3.2.1. New "multicast Signaling" flag on PBU/PBA message headers

3.2.1.1. Flag application rules

A new flag S is added in both PBU and PBA message headers to advise about the MAG and the LMA capabilities of processing multicast-related signaling for the MN that caused the message.

This flag will govern the multicast-related signaling between the LMA and the MAG. As a general rule, the value of the flag in the PBA
3.2.1.1.1. Registration process

During handover, the entities involved in this process are the nMAG and the LMA. These rules also apply for the Initial Binding registration process.

- **PBU message**

 * S=0, it indicates that the MAG sending the PBU message does not accept multicast-related signaling for the MN being attached. This can be used to discriminate PMIPv6 nodes which are not multicast enabled, for backward compatibility reasons.

 * S=1, it indicates that the MAG sending the PBU message accepts multicast-related signaling for the MN being attached. Depending on the type of handover (reactive or proactive) the LMA will take some actions, described later in this document.

- **PBA message**

 * If S=0 in the corresponding PBU message, the value of the flag in the PBA message should be a copy of the value received in the PBU message (thus S=0), without any further meaning.

 * If S=1 in the corresponding PBU message, two sub-cases can happen

 - S=1 and "Active Multicast Subscription" mobility option in the PBA message. When the MN maintains an active multicast session, if the LMA is able to provide the multicast subscription information during registration, the PBA message will include the "Active Multicast Subscription" mobility option with the IP addresses of the subscribed group and the source providing it. If the LMA is not able to provide such information during registration, the PBA message will include the "Active Multicast Subscription" mobility option with the IP addresses of the group and the source set to 0. This case is useful to decouple unicast and multicast signaling for an MN being registered at nMAG. A way for obtaining later active multicast-subscription information is described later in this document.

 - S=0 in the PBA message if the MN does not maintain an active multicast subscription (note that for backward compatibility
3.2.1.1.2. De-registration process

During handover, the entities involved in this process are the pMAG and the LMA. These rules apply for the Binding De-registration process:

- **PBU message**

 * S=0, it indicates that the MN has no active multicast session (note that for backward compatibility reasons a pMAG not supporting multicast related signaling would always send S=0).

 * S=1, it indicates that the MN has an active multicast session, and the IP addresses of the subscribed group and the source providing it are transported in the "Active Multicast Subscription" mobility option.

- **PBA message**

 The value of the flag in the PBA message should be 0, without any further meaning (note that for backward compatibility reasons an LMA not supporting multicast related signaling would always send S=0).

3.2.1.2. New format of conventional PBU/PBA messages

3.2.1.2.1. Proxy Binding Update Message

As result of the new defined flag, the PBU message results as follows:
3.2.1.2. Proxy Binding Acknowledgement Message

As result of the new defined flag, the PBA message results as follows:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Status     |K|R|P|S| Rsrvd |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           Sequence #          |           Lifetime            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
| Mobility options                                                |
|                                                               |
++---------------------------------------------------------------------+
```

3.2.2. New "multicast Active" flag in the LMA Binding Cache and (optionally) on the MN’s policy store

3.2.2.1. Flag application rules

A new flag A is added in the LMA Binding Cache to retain the knowledge that the registered MN maintains or not an active multicast subscription. The basic use of this flag is to restrict the interrogation of the pMAG only to the cases in which the MN certainly is maintaining an active subscription. The algorithm which is followed by the LMA to interrogate or not the pMAG (after receiving a PBU message from the nMAG) is as follows:
- Flag S=0 & flag A=0: this situation represents the case where
 the nMAG does not support multicast-related signaling for the MN
 being registered, and, additionally, the LMA is not aware of any
 active multicast subscription on-going. Then, the LMA does not
 interrogate the pMAG, and registers the MN as attached to the nMAG
 as usual.

- Flag S=0 & flag A=1: this situation represents the case where
 the nMAG does not support multicast-related signaling for the MN
 being registered, but the LMA is aware of one or more on-going
 MN’s active multicast subscriptions. Due to the fact that
 multicast signaling is not supported by the nMAG for that MN, the
 LMA does not interrogate the pMAG, and registers the MN as
 attached to the nMAG as usual.

- Flag S=1 & flag A=0: this situation represents the case where
 the nMAG supports multicast-related signaling for the MN being
 registered, but the LMA is not aware of any active multicast
 subscription. Then, the LMA does not interrogate the pMAG, and
 registers the MN as attached to the nMAG as usual.

- Flag S=1 & flag A=1: this situation represents the case where
 the nMAG supports multicast-related signaling for the MN being
 registered, and, additionally, the LMA is aware of one or more on-
 going MN’s active multicast subscriptions. Then, the LMA
 interrogates the pMAG to obtain the multicast subscription details
 in the form of (S,G) previously to complete the registration of
 the MN attached to the nMAG.

The flag A should be initialized to the value 0.

Optionally, this flag can be also added to the MN’s policy store, and
dynamically updated by the LMA to signal that the MN has (or not) an
active multicast subscription. By introducing this flag in the MN’s
policy profile, the nMAG can know in advance the existence of an
active multicast session by the incoming MN.

3.3. New messages

3.3.1. New messages for active multicast subscription interrogation

A new pair of messages is defined for interrogating entities about
the active multicast subscription of the MN when the handover is of
reactive type.

These messages are sent using the Mobility Header as defined in [3].
3.3.1.1. Subscription Query message

3.3.1.1.1. Message application rules

The Subscription Query message is sent by the LMA towards the pMAG to interrogate it about any existing multicast subscription of the MN which is being registered by the nMAG. This message is generated in case that the handover is of reactive type.

Additionally, this message is sent by the nMAG towards the LMA to interrogate it about the existing multicast subscription of the MN when the LMA acknowledges the PBU sent by the nMAG but the multicast information is not provided (in detail, when the PBU messages has set the flag S to 1, and the PBA message has set the flag S to 1 but the IP addresses of the group and the source in the "Active Multicast Subscription" mobility option are set to 0).

3.3.1.1.2. Message format

The Subscription Query message has the following format.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Sequence #   |   Reserved    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
.                                                               .
.                        Mobility options                       .
.                                                               .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Sequence Number

The Sequence Number field establishes the order of the messages sent in the Subscription Query / Subscription Response dialogue between the LMA and the MAG for a certain MN. The initial Sequence Number will be determined by the entity which creates the message (either LMA or MAG, depending on the scenario), which will be responsible of managing this counter.

Reserved

This field is unused for now. The value must be initialized to 0.
Mobility options

This message will carry one or more TLV-encoded mobility options. The valid mobility options for this message are the following:

- Mobile Node Identifier option (mandatory)
- Home Network Prefix option (optional)

There can be one or more instances of the Home Network Prefix option, but only one instance of the Mobile Node Identifier option.

3.3.1.2. Subscription Response message

3.3.1.2.1. Message application rules

The Subscription Response message is sent by the pMAG towards the LMA, or by the LMA towards the nMAG, to answer a previously received Subscription Query message, as described above.

3.3.1.2.2. Message format

The Subscription Response message has the following format.

```
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Sequence #   |I|  Reserved   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
| mobility options                                             |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Sequence Number

The value of the Sequence Number field in the Subscriber Response message must be a copy of the Sequence Number received in the Subscription Query message.

Multicast Information (I)

The multicast Information flag I specifies if there is multicast
subscription information available for the MN or not. The meaning is the following:

I=0: there is no multicast subscription information available for the MN identified by the Mobile Node Identifier option in this message.

I=1: there is multicast subscription information available for the MN identified by the Mobile Node Identifier option in this message. The multicast subscription information is carried on one or more instances of the Active Multicast Subscription option in this message (one instance for each active subscription).

Reserved

This field is unused for now. The value must be initialized to 0.

Mobility options

This message will carry one or more TLV-encoded mobility options. The valid mobility options for this message are the following:

- Mobile Node Identifier option (mandatory)

- Active Multicast Subscription option (mandatory) only when flag I=1, not present in any other case

- Home Network Prefix option (optional)

There can be one or more instances of the Home Network Prefix option (in all cases) and the Active Multicast Subscription option (only when I=1), but only one instance of the Mobile Node Identifier option.

3.3.2. New messages for active multicast subscription indication

A new pair of messages is defined for setting up and down the optional A flag defined above.

These messages are sent using the Mobility Header as defined in [3].

3.3.2.1. Multicast Activity Indication message

3.3.2.1.1. Message application rules

The Multicast Activity Indication message is sent by a MAG towards
the LMA to set to 1 or 0 the A flag either to indicate the start or
the complete cease of any multicast subscription by the MN. Through
the use of this message, the LMA becomes aware that one or more
multicast flows are being forwarded to a MN. This information is
useful for the LMA during a handover to discriminate if the pMAG
should be asked or not about multicast information corresponding to
the MN being registered at the nMAG, in case that the handover is of
reactive type.

3.3.2.1.2. Message format

The Multicast Activity Indication message has the following format.

<table>
<thead>
<tr>
<th>Sequence Number</th>
<th>A</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile options</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence Number

The Sequence Number field establishes the order of the messages
sent in the Activity Indication / Activity Indication Ack dialogue
between the MAG and the LMA for a certain MN. The initial Sequence
Number will be determined by the MAG, which will be responsible of
managing this counter.

Activity indicator (A)

The Activity indicator flag A specifies if the MN multicast
activity is on, that is, if the MN maintains one or more active
multicast subscriptions at the MAG. The meaning is the following:

A=0: the multicast activity of the MN (identified by the Mobile
Node Identifier option in this message) is off.

A=1: the multicast activity of the MN (identified by the Mobile
Node Identifier option in this message) is on.

Reserved

This field is unused for now. The value must be initialized to 0.
Mobility options

This message will carry one or more TLV-encoded mobility options. The valid mobility options for this message are the following:

- Mobile Node Identifier option (mandatory)
- Home Network Prefix option (optional)

There can be one or more instances of the Home Network Prefix option, but only one instance of the Mobile Node Identifier option.

3.3.2.2. Multicast Activity Indication Acknowledge message

3.3.2.2.1. Message application rules

The Multicast Activity Indication Acknowledge message is sent by the LMA towards a MAG to confirm the reception of a previously sent Multicast Activity Indication message.

3.3.2.2.2. Message format

The Multicast Activity Indication message has the following format.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Sequence #   |   Reserved    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
.                                                               .
.                        Mobility options                        .
.                                                               .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Sequence Number

The value of the Sequence Number field in the Activity Indication Ack message must be a copy of the Sequence Number received in the Activity Indication message.

Reserved

This field is unused for now. The value must be initialized to 0.
Mobility options

This message will carry one or more TLV-encoded mobility options. The valid mobility options for this message are the following:

- Mobile Node Identifier option (mandatory)
- Home Network Prefix option (optional)

There can be one or more instances of the Home Network Prefix option, but only one instance of the Mobile Node Identifier option.

3.4. New "PBA timer" in the LMA

A new timer named "PBA timer" is used in the LMA to define the maximum waiting time before the PBA message is sent to the nMAG in case the multicast subscription information relative to the MN is not yet available. The aim of this timer is to prevent potential large delays in the forwarding of unicast traffic towards the MN being registered at the nMAG. This timer allows decoupling the unicast signaling from the multicast one.

This timer should be upper bounded by the constant defined in [3] INIT_BINDACK_TIMEOUT, whose default value is 1 s. This constant sets the time when the nMAG will retry the MN registration by sending again the PBU message. The "PBA timer" has to ensure that the nMAG does not enter the retry mode.
4 Signaling processes description

A number of new signaling processes are introduced with this solution. Next sections describe these new processes in detail.

4.1. Multicast Activity signaling

This solution makes use of the flag A to keep track of existing multicast activity in a certain MN. The idea behind this is to define a mechanism which helps the LMA to decide whether to interrogate or not the pMAG about potential subscription information.

4.1.1. Multicast Activity set to ON (A=1)

The figure 1 summarizes this process.

| MN1 | MAG | LMA |
+-----+-----+-----+
| | | |
1) | |==Bi-Dir Tunnel=|
 | unicast data <--v-v-v-v-v-v-v-v-|
 | MLD Rep(S,G) --------------> Act Ind(start)
2) | (S,G) Data --------------> Act Ind Ack (flag A = 1)
 |<-------------------|

Figure 1. Multicast Activity set to ON

The sequence of messages is the following:

1) A MN, named MN1, is attached to the MAG. The MN is a multicast-enabled node, and it is only receiving unicast traffic as usual in PMIPv6 domains, with no multicast subscription yet. At some point in time, the MN1 requests to the MAG to be subscribed to the content identified by the IP addresses (S,G), by sending a standard MLD report from the MN to the MAG. The MAG will keep the multicast status state of the point-to-point link with the MN. In case the MAG has not already subscribed to the multicast flow (S,G) it joins the content on behalf of MN. Multicast flow (S,G) is subsequently forwarded by the MAG to the MN1.
2) Due to this initial multicast subscription for the MN1, the MAG triggers the multicast Activity Indication message towards the LMA, to indicate that the MN1 multicast activity is ON. The LMA will set the flag A to 1. Afterwards, the LMA sends an Activity Indication Ack message to the MAG to acknowledge the previous indication.

4.1.2. Multicast Activity set to OFF (A=0)

Figure 2 presents the corresponding flow.

![Figure 2. Multicast Activity set to OFF](image)

The message flow is as follows:

1) Some time later, the MN1 decides to totally stop all the active multicast subscriptions that it maintains. The MN1 will send an MLD Done message to the MAG to request the cease of the multicast traffic delivery. As a consequence, the MAG will stop all the multicast traffic forwarding to the MN1.

2) After removing the active subscriptions for the MN1, the MAG sends a multicast Activity Indication message to the LMA indicating that the MN1 multicast activity is OFF. The LMA will set the flag A to 0, its default value. Afterwards, the LMA sends an Activity Indication Ack message to the MAG to acknowledge the previous indication.

4.2. Handover signaling procedures

As the MN moves from one access gateway (named previous-MAG, pMAG) to another (named new-MAG, nMAG), the mobility-related signaling due to the handover event is carried out independently by the pMAG and the
nMAG. That signaling process is not synchronized and, thus, two
scenarios should be considered depending on the order in which the
LMA receives notification of the MN registration and de-registration
in the nMAG and the pMAG respectively.

4.2.1. Handover of proactive type

4.2.1.1. Rationale

In the proactive case, the LMA receives the MN de-registration from
the pMAG previously to receive the MN registration from the nMAG.

Only for those MNs which maintain an active multicast subscription,
the pMAG will include, as part of the PBU message (with flag S set to
1), the new TLV-encoded mobility option "Active Multicast
Subscription" carrying the IP addresses of the multicast
subscription(s) active in the MN at that moment.

The LMA will store that information in the corresponding binding
cache. If, later on, the MN attaches to a nMAG, this information will
be sent (using the same TLV option) to the nMAG as part of the PBA
confirmation of the registration process (the PBU message sent by the
nMAG should set the flag S to 1). On the other hand, if no further
registration happens, the multicast information will be removed
together with the rest of binding database for that MN.

After receiving the multicast addresses of the group(s) subscribed to
by the MN, and of the source(s) delivering the corresponding
multicast content, the nMAG can subscribe to the multicast flow(s) on
behalf of the MN if there is no other MN receiving it already at the
nMAG. The multicast status can be also set in advance for the point-
to-point link towards the MN.

4.2.1.2. Message flow description

The figure 3 summarizes this process.
The sequence of messages is the following:

1) A registered MN is receiving a multicast content which has been previously subscribed to by sending a standard MLD report from the MN to the currently serving MAG, pMAG. The pMAG keeps the multicast status state of the point-to-point link with the MN.
2) The MN perceives a better radio link and decides to initiate a handover process over a radio access controlled by a new MAG, nMAG. As a consequence, pMAG determines a detach event corresponding to this MN, and updates the attachment status of this MN to the LMA by sending an extended Proxy Binding Update message, including a new TLV-encoded option, named "Active Multicast Subscription", which contains the IP addresses of the (S,G) pairs of the active multicast subscriptions in the moment of handover.

3) The LMA processes the PBU message. Additionally, the LMA stores in the Binding Cache the information regarding the on-going multicast subscription(s) when the detachment is initiated. This information will be kept until a new registration of the MN is completed by another MAG, or till the Binding Cache expiration, according to [1].

4) The LMA acknowledges to the pMAG the previous PBU message.

5) As a result of the handover process, the MN attaches to another MAG, called nMAG.

6) The nMAG triggers a registration process by sending a PBU message (with flag S set to 1) to the LMA.

7) After the analysis of the PBU message, the LMA sends an extended PBA including the new "Active Multicast Subscription" option, which contains the IP addresses of the (S,G) pairs of the active multicast subscriptions in the moment of handover.

8) The nMAG processes the PBA message following all the standard procedures described in [1]. Additionally, with the new information relative to multicast subscription, the nMAG will set up the multicast status of the point-to-point link between the nMAG and the MN, and will join the content identified by (S,G) on behalf of the MN in case the nMAG is not receiving already such content due to a previous subscription ordered by another MN attached to it. From that instant, the multicast content is served to the MN.

4.2.2. Handover of reactive type

4.2.2.1. Rationale

In the reactive case, the LMA receives the MN registration from the nMAG without having previously received the MN de-registration from the pMAG.
As the nMAG is not aware of any active multicast subscription of the MN, the nMAG will start a conventional registration process, by sending a normal PBU message (with flag S set to 1) towards the LMA.

After receiving the PBU message from the nMAG, the LMA will take the decision of interrogating or not the pMAG regarding any existing multicast subscription for that MN. This decision is taken following a procedure that is described later.

Once the multicast subscription information is retrieved from the pMAG, the LMA encapsulates it in the PBA message by using the TLV option "Active Multicast Subscription", and forwards the PBA message to the nMAG. Then, the nMAG can subscribe the multicast flow on behalf of the MN, if there is no other MN receiving it already at the nMAG. The multicast status can be also set in advance for the point-to-point link towards the MN.

4.2.2.2. Message flow description

The figures 4a and 4b summarize this process.

Consider as starting point the situation where a couple of MNs, named MN1 and MN2, are attached to the pMAG, both MNs being multicast-enabled nodes, but only MN1 maintains an active multicast subscription at this moment. As consequence, the value of the A flag in the LMA is set to 1 for MN1, and set to 0 for MN2.

The sequence of messages for the handover of MN1 and MN2 is the following (as depicted in figure 4a):
The sequence of messages is the following:

1) At certain time, the MN1 perceives a better radio link and decides to attach at a new MAG, nMAG, in a handover process (as it is a reactive case, the pMAG is not aware of the detachment process). Then, the nMAG triggers a registration process by sending a PBU message (with flag S set to 1) to the LMA.

2) Prior to acknowledge the received PBU message, the LMA checks the status of the A flag for this MN. Due that the flag A=1, the LMA interrogates the pMAG about if there is any active multicast subscription for the MN1, by sending a Subscription Query message.
3) The pMAG answers the LMA with a Subscription Response message including the IP addresses of the existing subscriptions (the pair \((S,G)\) in this case).

4) After processing the pMAG answer, the LMA acknowledges (with flag \(S\) set to 1) the PBU message, including the multicast subscription information within the new TLV-encoded option "Active Multicast Subscription". The nMAG then process the extended PBA message.

5) The nMAG processes the PBA message, and it proceeds to set up the multicast status of the point-to-point link between the nMAG and the MN1, and to join the content identified by \((S,G)\) on behalf of the MN1 in case the nMAG is not receiving already such content. (The bidirectional tunnel is also set up between the nMAG and the LMA if it has not been established before by another MN connection). At this moment, the multicast content can be served to the MN1. The unicast traffic for the MN1 can be forwarded as well.

6) In parallel, the MN2 perceives a better radio link and decides to attach also to the nMAG in a reactive handover process as well (the pMAG is not aware of this detachment process either). Then, the nMAG triggers a registration process by sending a PBU message (with flag \(S\) set to 1) to the LMA.

7) Prior to acknowledge the received PBU message, the LMA checks the status of the \(A\) flag for this MN. Due that the flag \(A=0\), the
LMA does not interrogate the pMAG, and acknowledges the PBU message (with flag S set to 0). The nMAG then processes PBA message.

8) The nMAG is now ready to forward the unicast traffic to the MN2.

4.2.2.3. Further considerations for the reactive handover signaling

A handover event is managed independently by the pMAG and nMAG. It is not a synchronized process. In a reactive handover, the LMA will receive a registration PBU from nMAG before a de-registration PBU from pMAG, if any.

In the message flows detailed above, it could be the case that the LMA receives a de-registration PBU from pMAG just after sending the Subscription Query message, but before receiving the Subscription Response message. That de-registration PBU message from pMAG will carry the multicast subscription information required to assist the MN in the handover, so such valuable information should be kept by the LMA. Furthermore, it is possible that once the Subscription Query message arrives to pMAG, the pMAG could have already removed the multicast related information for the MN.

In order to avoid losing the multicast subscription information sent in the de-registration PBU message, the LMA should store it, and include it in the PBA message towards the nMAG in case the Subscription Response message from the pMAG does not contain multicast subscription information for the MN.

4.2.3. LMA decision process

A key point of the solution proposed in this document resides on the LMA decision of interrogating the pMAG about a potential active subscription of the MN entering the nMAG. Several variables take place, and it is required to define a mechanism for assisting the LMA in its decision process.

Basically two flags will be used. One flag, the named "multicast Signaling" or S flag, is used to signal the multicast capabilities of the MAGs and the transport of the multicast subscription information within the PBU/PBA messages. The other one, the named "multicast Activity" or A flag, is used to register on the LMA whether the MN is maintaining an active multicast subscription or not.

The following sections summarize the use of these flags on the LMA.
decision process.

4.2.3.1. LMA processing of S flag on reception of PBU messages

4.2.3.1.1. Proactive handover

In the event of proactive handover, the pMAG has previously informed the LMA about any potential subscription information currently active in the MN. The actions to be carried out by the LMA once it receives the PBU message from the nMAG are summarized in the table below.

<table>
<thead>
<tr>
<th>Multicast signaling</th>
<th>Multicast activity</th>
<th>Meaning</th>
<th>LMA action</th>
</tr>
</thead>
<tbody>
<tr>
<td>flag S</td>
<td>flag A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S=0	A=0	Multicast not supported by nMAG	No active subscription by MN	MN registration as in [1] (S=0 in PBA)
A=1	Multicast not supported by nMAG	Active subscription by MN	LMA stores multicast subscription info	MN registration as in [1] (S=0 in PBA)
S=1	A=0	Multicast supported by nMAG	No active subscription by MN	MN registration as in [1] (S=0 in PBA)
A=1	Multicast supported by nMAG	Active subscription by MN	LMA stores multicast subscription info	MN registration conveys multicast subscription info (S=1 in PBA)

4.2.3.1.2. Reactive handover

In the event of reactive handover, the LMA is not aware about any potential subscription information currently active in the MN. The actions to be carried out by the LMA once it receives the PBU message from the nMAG are summarized in the table below.
<table>
<thead>
<tr>
<th>Multicast Signaling Flag S</th>
<th>Multicast Activity Flag A</th>
<th>Meaning</th>
<th>LMA Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A=0</td>
<td>Multicast not supported by nMAG</td>
<td>MN registration as in [1] (S=0 in PBA)</td>
</tr>
<tr>
<td></td>
<td>S=0</td>
<td>No active subscription by MN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A=1</td>
<td>Multicast not supported by nMAG</td>
<td>MN registration as in [1] (S=0 in PBA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active subscription by MN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A=0</td>
<td>Multicast supported by nMAG</td>
<td>MN registration as in [1] (S=0 in PBA)</td>
</tr>
<tr>
<td></td>
<td>S=1</td>
<td>No active subscription by MN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A=1</td>
<td>Multicast supported by nMAG</td>
<td>MN interrogates pMAG to obtain multicast subscription (S=1 in PBA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active subscription by MN</td>
<td></td>
</tr>
</tbody>
</table>

4.2.3.2. LMA set-up of S flag in PBA messages

Once the LMA decision process is finished, the LMA builds the PBA message to complete the registration process triggered by the nMAG. The value of the S flag in the PBA message will be set according to the data specified in the table above.
4.2.4. Prevention of large delays of the binding acknowledgement for unicast traffic

According to the message sequences described for the reactive handover case, in case the LMA has to request the multicast subscription information from the pMAG, the binding request sent by the nMAG is maintained on-hold till the LMA receives, processes and includes the multicast subscription information into the extended PBA message. As consequence, the unicast traffic may then suffer an extra delay motivated by the multicast-related signaling. During that time, the unicast traffic with destination the MN being registered by the nMAG must be buffered or discarded by the LMA.

In order to avoid any potential large delay in the forwarding of unicast traffic arriving at the LMA towards the MN, a mechanism should be implemented to decouple multicast from unicast traffic reception by the MN.

The figure 5 shows this mechanism:
Figure 5. Decoupling of unicast and multicast signaling
The sequence of messages is the following:

1) An MN is attached to the pMAG. The MN is a multicast-enabled node, and it is receiving both unicast and multicast traffic simultaneously.

2) Some time later, the MN perceives a better radio link and decides to attach at a new MAG, nMAG, in a handover process (as a reactive case, the pMAG is not aware of the detachment process). Then, the nMAG triggers a registration process by sending a PBU message (with flag S set to 1) to the LMA.

3) Prior to acknowledge the received PBU message, the LMA decides to interrogate the pMAG about if there is any active multicast subscription for the MN, by sending a Subscription Query message. The LMA decision is based on the checking of flag A when the reactive handover manages the multicast activity indication.

4) Immediately after sending the Subscription Query message, the LMA starts the timer "PBA timer", which determines the maximum waiting time before the PBA is sent to avoid any potential large delay in the forwarding of unicast traffic towards the MN.

5) In case the "PBA timer" expires, the LMA acknowledges the PBU message, by sending the PBA message with flag S=1, and the "Active Multicast Subscription" mobility option with the (S,G) IP addresses set to 0. The nMAG then processes the extended PBA message. Such acknowledgement will allow the MN to receive the unicast traffic from that time on. (The bidirectional tunnel is also set up between the nMAG and the LMA if it has not been established before).

6) In parallel, the nMAG sends a Subscription Query message to the LMA requesting the multicast-subscription details yet unknown for the MN.

7) The pMAG answers the Subscription Query message originally sent by the LMA, including the IP addresses of the existing subscriptions (the pair (S,G) in this case).

8) After processing the pMAG answer, the LMA sends a Subscription Response message to the nMAG, including the multicast subscription information within the new TLV-encoded option "Active Multicast Subscription". The nMAG processes the PBA message, and it proceeds to set up the multicast status of the point-to-point link between the nMAG and the MN, and to join the content identified by (S,G) on behalf of the MN in case the nMAG is not receiving already such content. (The bidirectional tunnel is also set up between the nMAG...
and the LMA if it has not been established before). At this moment, the multicast content can also be served to the MN.

5. Co-existence with PMIPv6 multicast architectural evolutions

Along this document, it has been considered that the LMA entity is in charge of delivering both unicast and multicast traffic to a certain MN through the bi-directional tunnels connecting to the MAG where the MN is attached, as specified in the base solution defined in [4]. However, the solution described in this memo is not only applicable to the base solution, but also it can be applied to other solutions envisioned as possible architectural evolutions to solve the tunnel convergence problem affecting the base solution, as those stated in [6].

The Multicast Tree Mobility Anchor (MTMA) solution in [6] makes use of a separate entity to serve multicast traffic through distinct tunnels connected to the MAGs. The tunnels for multicast traffic could not be set up in advance if they are dynamical in nature.

When the "multicast activity" flag is also present in the MN’s policy store, the nMAG knows in advance the multicast activity of the incoming MN. Consequently, the nMAG can trigger the multicast tunnel set up in parallel to the registration process, including the acquisition of the active multicast subscription details (the IP addresses of the source and the content), saving time on serving the multicast flow to the incoming MN. The concrete procedure for multicast tunnel establishment is out of the scope of this document.

6. Benefits of layer-2 triggers for fast handover

As stated before, the global performance of the multicast handover can be improved in the case that layer-2 triggers are supported by the underlying radio technology. In [7], a procedure which allows to buffer at the pMAG and forward to the nMAG the traffic with destination the MN during the handover duration is defined. This forwarding can be beneficial for either strict real-time services or for networks with long handover duration. By forwarding the traffic to the MN, the disruption of the multicast traffic reception is minimized.

The solution in [7] avoids packet loss during the handover. Even so, using the proposal in this memo is still useful, because reducing the time required to set up multicast traffic delivery in the nMAG minimizes the buffering needed at the pMAG.

In any case, because the feature in [7] is dependent on the
capabilities of both the underlying radio technology and the layer-2 triggering functionalities supported by the MN, and that not all the multicast applications could take benefit of it, that functionality could be seen as optional for multicast handover optimization.

7. Security Considerations

TBD.

8. IANA Considerations

This document defines the new following elements which values should be allocated:

- Mobility Header types: the Subscription Query and Subscription Response, and the Multicast Activity Indication and Multicast Activity Indication Acknowledge mobility header types.

- Mobility options: the Active Multicast Subscription mobility option.

- Flags: the multicast Signaling (S), the multicast Information (I), and the multicast Active (A) flags.

9. Contributors

Dirk Von Hugo (Telekom Innovation Laboratories, Dirk.von-Hugo@telekom.de) has largely contributed to this document.

10. Acknowledgments

The authors would like to thank (in alphabetical order) Hitoshi Asaeda, Marco Liebsch, Behcet Sarikaya, Thomas C. Schmidt and Stig Venaas for their valuable comments and discussions on the Multimob mailing list. The authors are also grateful with Hitoshi Asaeda and Behcet Sarikaya for their review of this document.

The research of Carlos J. Bernardos leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7-ICT-2009-5) under grant agreement n. 258053 (MEDIEVAL project), being also partially supported by the Ministry of Science and Innovation (MICINN) of Spain under the QUARTET project (TIN2009-13992-C02-01).
The research of Ignacio Soto has also received funding from the Spanish MICINN through the I-MOVING project (TEC2010-18907).

11 References

11.1 Normative References

11.2 Informative References

Authors’ Addresses

Luis M. Contreras
Telefonica I+D
Email: lmcm@tid.es

Carlos J. Bernardos
Universidad Carlos III de Madrid
Email: cjbc@it.uc3m.es

Ignacio Soto
Universidad Politecnica de Madrid
Email: isoto@dit.upm.es
Fast Handover for Multicast in Proxy Mobile IPv6
draft-hui-multimob-fast-handover-04

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on Jan 01, 2011.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
Abstract

This document specifies the predictive fast handover mechanism to solve the problem of handover latency and packet loss in Proxy Mobile IPv6 Multicast. Necessary extensions are specified for Handover Initiate (HI) and Handover Acknowledgement (HAck) messages to support multicast handover procedure.
Table of Contents

1. Introduction..4
2. Problem Statement...5
3. Terminology...6
4. Protocol Operation..7
5. Message Format...11
6. Security Considerations.....................................13
7. IANA Considerations..14
8. References..15
 8.1. Normative References...................................15
 8.2. Informative References................................15
Author’s Addresses..16
1. Introduction

Proxy Mobile IPv6 (PMIPv6) protocol provides local mobility management to a mobile node without requiring any modification of the mobile node. The Local Mobility Anchor (LMA) and Mobile Access Gateway (MAG) perform the mobility management signaling on behalf of the mobile node. Extensions for LMA and MAG are specified in [1] to support IP multicast in PMIPv6. Nevertheless, the basic performance including handover latency and packet loss is not considered different form that of PMIPv6.

Fast handover for Mobile IPv6 is specified in [2]. [3] extends the FMIPv6 and applies it to the PMIPv6 in order to decrease handover latency and packet loss as well as transfer of network-resident contexts. However, IP multicast is not considered in fast handover for PMIPv6.

We propose a fast handover mechanism to support multicast for PMIPv6. Necessary extensions are specified in HI and HACK message to transfer the multicast node’s context information and deliver the multicast data before the set up of tunnel between n-MAG and LMA.
2. Problem Statement

The existing solution for PMIPv6 multicast [1] specifies that, only after the bi-directional tunnel is built between n-MAG and LMA using extended PBU (PBU-M) message, the multicast packet can be continuously delivered to MN. It inevitably causes the latency and loss of packet during handover process.

The solution presents two ways to acquire the MN’s profile, which includes MN’ ID and multicast state information. One way is to use the Context Transfer Protocol (CXTP) [4] to transfer MN’s profile from p-MAG to n-MAG. In the other way, if MN’s profile is stored in a policy store [5], n-MAG obtains MN’s multicast state by the same mechanism used to acquire MN’ ID and profile during MN’s attachment process [5].

In another PMIPv6 multicast solution [6], the author proposes normal handover and fast handover for proxy mobile multicast service. There is no any optimization in normal handover, the handover involves MN by running the MLDv2 [7] protocol with n-MAG to receive the related multicast packet. In the fast handover procedure, similar to the first method used in [1], the context transfer is used to provide multicast information. Although n-MAG can acquire the MN’ multicast information before MN handovers to it, only after n-MAG joins the multicast group, it can receive the multicast data.
3. Terminology

This document refers to [1] [2] [3] for terminology. The following terms and abbreviations are additionally used in this document. The reference network is illustrated in Figure 1.

Previous Mobile Access Gateway (p-MAG):

The MAG that manages mobility related signaling for the MN before handover.

New Mobile Access Gateway (n-MAG):

The MAG that manages mobility related signaling for the MN after handover.

HO-Initiate:

A generic signaling that indicates the handover of the MN sent from the MN to the p-MAG. It is assumed that HO-Initiate can carry the information to identify the MN and to assist the p-MAG to resolve the n-MAG.
4. Protocol Operation

The architecture of fast handover for multicast in Proxy Mobile IPv6 is shown in Figure 1. A multicast tunnel is established to transfer the multicast data from p-MAG to n-MAG before the n-MAG joins the multicast group, so that whenever the MN handovers to the n-MAG, it can receive the multicast data from n-MAG.

```
+----------+
|   LMA    |
+----------+
         /      |
         /        |
        /          |
+........+/..+   +..\........+  
.        |     .    +--------+   +--------+  
.        |     .    | p-MAG |()_______| n-MAG | .  
.        |     .    . +--------+   . +--------+  
.        |     .    .  . . . . .    . . . . .   
.        |     .    .  +-----+. .  . +-----+.  
.        |     .    .  | MN | --------> | MN |  .  
.        |     .    .  . +-----+. .  . +-----+.  
+.............+  +.............+  
```

Figure 1: Reference network for fast handover

In order to decrease the handover latency and packet loss, this document specifies a bi-directional tunnel between the Previous MAG (p-MAG) and the New MAG (n-MAG). As the n-MAG needs the multicast node’s context information to set up a bi-directional tunnel to continuous deliver multicast packet to mobile node, the HI and HACK messages are extended to support mobile multicast node’s context transfer, in which parameters such as MN ID, MN Multicast State, are transferred from the p-MAG to the n-MAG. The sequence of events illustrating the fast handover for multicast is shown in Figure 2.
The detailed descriptions are as follows:

1. The MN detects that a handover is imminent and reports the MN ID and n-MAG ID.
2. The p-MAG sends the HI to the n-MAG. The HI message includes MN ID and MN Multicast State.
3. The n-MAG sends the HAck back to the p-MAG.
4. The n-MAG requests the p-MAG to forward multicast packets by setting F flags in the HI message.
5. A tunnel is established between the p-MAG and n-MAG and multicast packets destined for the MN are forwarded from the p-MAG to the n-MAG over this tunnel.
6. The MN undergoes handover to n-MAG.
7. The n-MAG starts to forward multicast packets destined for the MN.
8. The n-MAG sends the Proxy Binding Update with multicast extension (PBU-M) (proposed in [1]) to the LMA.
9. The LMA sends back the Proxy Binding Acknowledgment (PBA) to the n-MAG.
10. A bi-directional tunnel is set up for forwarding corresponding multicast data.
(11) Multicast packet forwarding is completed between p-MAG and n-MAG.
5. Message Format

This document defines new Mobility Header messages for the extended HI and HAck and new mobility options for delivering context information.

![Figure 3: HI Mobility Header message with multicast extension](image)

A new flag (M) is included in the HI Mobility Header message with multicast extension. The rest of the message format remains the same as defined in [3].

When (M) flag is specified in HI Mobility Header message, the mobility options field needs to be extended to include the multicast addresses.

![Figure 3: HI Mobility Header message with multicast extension](image)
6. Security Considerations

TBD.
7. IANA Considerations

This document does not require any IANA action.
8. References

8.1. Normative References

8.2. Informative References
Author’s Addresses

Min Hui
China Mobile
53A, Xibianmennei Ave.,
Xuanwu District,
Beijing 100053
China
Email: huimin.cmcc@gmail.com

Hui Deng
China Mobile
53A, Xibianmennei Ave.,
Xuanwu District,
Beijing 100053
China
Email: denghui02@gmail.com

Dapeng Liu
China Mobile
53A, Xibianmennei Ave.,
Xuanwu District,
Beijing 100053
China
EMail: liudapeng@chinamobile.com
Tuning the Behavior of IGMP and MLD for Routers in Mobile and Wireless Networks

draft-ietf-multimob-igmp-mld-tuning-05

Abstract

IGMP and MLD are the protocols used by hosts and multicast routers to exchange their IP multicast group memberships with each other. This document describes the ways of IGMPv3 and MLDv2 protocol optimization for mobility, and aims to become a guideline for tuning of IGMPv3/MLDv2 Queries and timer and counter values.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 8, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must...
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
2. Terminology .. 3
3. Explicit Tracking of Membership Status 4
4. Tuning IGMP/MLD Timers and Values 4
 4.1. Tuning IGMP/MLD General Query Interval 5
 4.2. Tuning IGMP/MLD Query Response Interval 6
 4.3. Tuning Last Member Query Timer (LMQT) and Last
 Listener Query Timer (LLQT) 6
 4.4. Tuning Startup Query Interval 7
 4.5. Tuning Robustness Variable 7
 4.6. Tuning Scenarios for Various Mobile IP Networks 8
5. Destination Address of Specific Query 9
6. Interoperability .. 9
7. IANA Considerations .. 10
8. Security Considerations 10
9. Acknowledgements .. 10
10. References .. 10
 10.1. Normative References 10
 10.2. Informative References 10
Appendix A. Unicasting General Query 11
Authors’ Addresses .. 12
1. Introduction

The Internet Group Management Protocol (IGMP) [1] for IPv4 and the Multicast Listener Discovery Protocol (MLD) [2] for IPv6 are the standard protocols for hosts to initiate joining or leaving of multicast sessions. These protocols must be also supported by multicast routers or IGMP/MLD proxies [6] that maintain multicast membership information on their downstream interfaces. Conceptually, IGMP and MLD work on both wireless and mobile networks. However, wireless access technologies operate on a shared medium or a point-to-point link with limited spectrum and bandwidth. In many wireless regimes, it is desirable to minimize multicast-related signaling to preserve the limited resources of battery powered mobile devices and the constrained transmission capacities of the networks. The motion of a host may cause disruption of a multicast service initiation and termination in the new or previous network upon its movement. Slow multicast service activation following a join may incur additional delay in receiving multicast packets and degrade reception quality. Slow service termination triggered by a rapid departure of the mobile host without leaving the group in the previous network may waste network resources.

When IGMP and MLD are used with mobile IP protocols, the proximity of network entities should be considered. For example, when bi-directional tunnel is used with the mobility entities described in [7][8], the mobile host experiences additional latency, because the round-trip time using bi-directional tunnel between mobility entities is larger comparing to the case that a host and an upstream router attach to a LAN.

This document describes the ways of tuning the IGMPv3 and MLDv2 protocol behavior on multicast router and proxy side for wireless and mobile networks, including query and related timers tuning. The selective optimization that provides tangible benefits to the mobile hosts and routers is given by keeping track of downstream hosts’ membership status and varying IGMP/MLD Query types and values to tune the number of responses. The proposed behavior interoperates with the IGMPv3 and MLDv2 protocols.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [3].

In this document, "router" means both multicast router and IGMP/MLD proxy.
3. Explicit Tracking of Membership Status

Mobile hosts use IGMP and MLD to request to join or leave multicast sessions. When an adjacent upstream router receives the IGMP/MLD Report messages, it recognizes the membership status on the link. To update the membership status reliably, the router sends IGMP/MLD Query messages periodically, and sends Group-Specific and/or Group-and-Source Specific Queries when a member host reports its leave. IGMP/MLD Query is therefore necessary to obtain the up-to-date membership information, but a large number of the reply messages sent from all member hosts MAY cause network congestion or consume network bandwidth.

The "explicit tracking function" [9] is the possible approach to reduce the transmitted number of IGMP/MLD messages and contribute to the efficiency of mobile communications. It enables the router to keep track of the membership status of the downstream IGMPv3 or MLDv2 member hosts. That is, if a router enables the explicit tracking function, it does not always need to ask Current-State Report message's transmission from the receiver hosts since the router implicitly recognizes the (potential) last member host when it receives the State-Change Report reporting a leave. The router can therefore send IGMP/MLD Group-Specific and Group-and-Source Specific Queries LMQC/LLQC times (see Section 4.3 for LMQC/LLQC) only when it recognizes the last member has left from the network. This reduces the transmitted number of Current-State Report messages.

Enabling the explicit tracking function is advantageous for mobile multicast, but the function requires additional processing capability and possibly a large memory for routers to keep all membership status. Especially when a router needs to maintain a large number of receiver hosts, this resource requirement is potentially impacted. Therefore, in this document it is recommended that adjacent upstream multicast routers enable the explicit tracking function for IP multicast communications on wireless and mobile networks, if they have enough resources. If operators think that their routers do not have enough resources, they MAY disable this function on their routers. Note that whether routers enable the explicit tracking function or not, they need to maintain downstream membership status by sending IGMPv3/MLDv2 General Query messages as some IGMPv3/MLDv2 messages MAY be lost during transmission.

4. Tuning IGMP/MLD Timers and Values
4.1. Tuning IGMP/MLD General Query Interval

IGMP and MLD are non-reliable protocols; to cover the possibility of a State-Change Report being missed by one or more multicast routers, "hosts retransmit the same State-Change Report messages [Robustness Variable] – 1 more times", at intervals chosen at random from the range (0, [Unsolicited Report Interval]) [1][2]. Although this behavior increases the protocol robustness, it does not guarantee that the State-Change Report reaches the routers. Therefore, routers still need to refresh the downstream membership information by receiving Current-State Report periodically solicited by IGMP/MLD General Query sent in the [Query Interval] period, in order to enhance robustness of the host in case of link failures and packet loss. It also supports the situation that mobile hosts turn off or move from a network to other network managed by a different router without any notification (e.g., leave request).

The [Query Interval] is the interval between General Queries sent by the regular IGMPv3/MLDv2 querier, and the default value is 125 seconds [1][2]. By varying the [Query Interval], multicast routers can tune the number of IGMP/MLD messages on the network; larger values cause IGMP/MLD Queries to be sent less often.

This document proposes 150 seconds for the [Query Interval] value by changing the Querier’s Query Interval Code (QQIC) field specified in the IGMP/MLD Query message, for the case that a router enabling the explicit tracking function potentially operates a large number of member hosts such as more than 200 hosts on the wireless link. This longer interval value contributes to minimizing traffic of Report messages and battery power consumption for mobile hosts.

On the other hand, this document also proposes 60 to 90 seconds for the [Query Interval] value for the case that a router enabling the explicit tracking function attaches to a wireless link with higher capacity. This shorter interval contributes to quick synchronization of the membership information tracked by the router but MAY consume battery power of mobile hosts.

If a router does not enable the explicit tracking function, the [Query Interval] value would be its default value, 125 seconds.

In situations where Mobile IPv6 [8] is used, when the home agent implements multicast router functionality and multicast data packets are tunneled to and from the home agent, the home agent MAY want to slow down Query periodicity. It happens, for example, when the home agent detects network congestion. In this case, the home agent starts forwarding queries with the default [Query Interval] value and increases the value in a gradual manner.
4.2. Tuning IGMP/MLD Query Response Interval

The [Query Response Interval] is the Max Response Time (or Max Response Delay) used to calculate the Max Resp Code inserted into the periodic General Queries. Its default value is 10 seconds expressed by "Max Resp Code=100" for IGMPv3 [1] and "Maximum Response Code=10000" for MLDv2 [2]. By varying the [Query Response Interval], multicast routers can tune the burstiness of IGMP/MLD messages on the network; larger values make the traffic less bursty as host’s responses are spread out over a larger interval, but will increase join latency when State-Change Report (i.e., join request) is missing.

According to our experimental analysis, this document proposes two tuning scenarios for tuning the [Query Response Interval] value in different wireless link conditions; one scenario is for a wireless link with a lower capacity of network resource or a lossy link, and the other scenario is for a wireless link with enough capacity or reliable condition for IGMP/MLD message transmission.

Regarding the first scenario, for instance, when a multicast router attaches to a bursty IEEE 802.11b link, the router configures the longer [Query Response Interval] value, such as 10 to 20 (sec). This configuration will reduce congestion of the Current-State Report messages on a link but MAY increase join latency and leave latency when the unsolicited messages (State-Change Record) are lost on the router.

The second scenario MAY happen for a multicast router attaching to a wireless link having higher capacity of the resource or a point-to-(multi-)point link such as an IEEE 802.16e link, because IGMP/MLD messages do not seriously affect the link condition. The router can seek Current-State Report messages with the shorter [Query Response Interval] value, such as 5 to 10 (sec). This configuration will contribute to quickly (at some level) discovering non-tracked member hosts and synchronizing the membership information.

4.3. Tuning Last Member Query Timer (LMQT) and Last Listener Query Timer (LLQT)

Shortening the Last Member Query Timer (LMQT) for IGMPv3 and the Last Listener Query Timer (LLQT) for MLDv2 contributes to minimizing leave latency. LMQT is represented by the Last Member Query Interval (LMQI), multiplied by the Last Member Query Count (LMQC), and LLQT is represented by the Last Listener Query Interval (LLQI), multiplied by the Last Listener Query Count (LLQC).

While LMQI and LLQI are changeable, it is reasonable to use the
default values (i.e., 1 second) for LMQI and LLQI in a wireless network. LMQC and LLQC, whose default value is the [Robustness Variable] value, are also tunable. Therefore, LMQC and LLQC MAY be set to "1" for routers enabling the explicit tracking function, and then LMQT and LLQT are set to 1 second. However, setting LMQC and LLQC to 1 increases the risk of missing the last member; LMQC and LLQC SHOULD be set to 1 only when network operators think that their wireless link is stable enough.

On the other hand, if network operators think that their wireless link is lossy (e.g., due to a large number of attached hosts or limited resources), they MAY set LMQC and LLQC to "2" for their routers enabling the explicit tracking function. Although bigger LMQC and LLQC values MAY cause longer leave latency, the risk of missing the last member will be reduced.

4.4. Tuning Startup Query Interval

The [Startup Query Interval] is the interval between General Queries sent by a Querier on startup. The default value is 1/4 of [Query Interval]; however, in this document it is RECOMMENDED that the use of its shortened value such as 1 second since the shorter value would contribute to shortening handover delay for mobile hosts in, e.g., the base solution with PMIPv6 [10]. Note that the [Startup Query Interval] is a static value and cannot be changed by any external signal. Therefore operators who maintain routers and wireless links MUST properly configure this value.

4.5. Tuning Robustness Variable

To cover the possibility of unsolicited reports being missed by multicast routers, unsolicited reports are retransmitted [Robustness Variable] - 1 more times, at intervals chosen at random from the defined range [1][2]. The QRV (Querier’s Robustness Variable) field in IGMP/MLD Query contains the [Robustness Variable] value used by the querier. The default [Robustness Variable] value defined in IGMPv3 [1] and MLDv2 [2] is "2".

This document proposes "2" for the [Robustness Variable] value for mobility, when a router attaches to a wireless link having lower capacity of the resource or a large number of hosts. For a router that attaches to a wireless link having higher capacity or is known to be reliable, it is not required to retransmit the same State-Change Report message; hence the router sets the [Robustness Variable] to "1".
4.6. Tuning Scenarios for Various Mobile IP Networks

In mobile IP networks, IGMP and MLD are used either with three deployment scenarios: (1) running directly between host and access router on a wireless network, (2) running between host and home router through a tunnel link, and (3) running between home router and foreign router through a tunnel link.

When a receiver host connects directly through a wireless link to a foreign access router or a home router, the tuning of the IGMP/MLD protocol parameters SHOULD be the same as suggested in the previous sections. The example of this scenario occurs when in Proxy Mobile IPv6 (PMIPv6) [7], the mobile access gateway, whose role is similar to a foreign router, acts as a multicast router or proxy.

The second scenario occurs when bi-directional tunnel established between host and home router is used to exchange IGMP/MLD messages such as in [8][11]. There are difficulties in tuning the parameters in this situation, because the tunnel link condition is diverse and changeable. When a host is far away from the home router, the transmission delay between the two entities MAY be longer and the packet delivery MAY be more unreliable. Thus the effects of the IGMP/MLD message transmission through a tunnel link SHOULD be considered during the parameter setting. For example, the [Query Interval] and [Query Response Interval] could be set shorter to compensate the transmission delay, and the [Robustness Variable] could be increased for possible packet loss.

The third scenario occurs in [10], in which the mobile access gateway (i.e., foreign router) acts as the IGMP/MLD Proxy [6] in PMIPv6 [7]. Through the bi-directional tunnel established with the local mobility anchor (i.e., home router), the mobile access gateway sends summary reports of its downstream member hosts to the local mobility anchor. Apart from the distance factor that influences the parameter setting, the [Query Response Interval] on the local mobility anchor could be set to a smaller value because the number of the mobile access gateways is much smaller compared to that of the host and the chances of packet burst is low for the same reason. And the power consumption due to a lower query interval is not an issue for the mobile access gateways because the mobile access gateways are usually not battery-powered.

Ideally, the IGMP/MLD querier router adjusts its parameter setting according to the actual mobile IP network conditions to benefit service performance and resource utilization. It would be desirable that a home router determines aforementioned timers and values according to the delay between the initiating IGMP/MLD Query and the responding IGMP/MLD Report, while describing such mechanism.
dynamically adjusting these timers and values is out of scope of this document.

5. Destination Address of Specific Query

IGMP/MLD Group-Specific and Group-and-Source Specific Queries defined in [1][2] are sent to verify whether there are hosts that desire reception of the specified group or a set of sources or to rebuild the desired reception state for a particular group or a set of sources. These specific Queries build and refresh multicast membership state of hosts on an attached network. These specific Queries SHOULD be sent to all desired hosts with specific multicast address (not the all-hosts/all-nodes multicast address) as their IP destination addresses, because hosts that do not join the multicast session do not pay attention to these specific Queries, and only active member hosts that have been receiving multicast contents with the specified address reply IGMP/MLD reports.

6. Interoperability

IGMPv3 [1] and MLDv2 [2] provide the ability for hosts to report source-specific subscriptions. With IGMPv3/MLDv2, a mobile host can specify a channel of interest, using multicast group and source addresses in its join request. Upon its reception, the upstream router that supports IGMPv3/MLDv2 establishes the shortest path tree toward the source without coordinating a shared tree. This function is called the source filtering function and is required to support Source-Specific Multicast (SSM) [4].

Recently, the Lightweight-IGMPv3 (LW-IGMPv3) and Lightweight-MLDv2 (LW-MLDv2) [5] protocols have been defined as the proposed standard protocols in the IETF. These protocols provide protocol simplicity for mobile hosts and routers, as they eliminate a complex state machine from the full versions of IGMPv3 and MLDv2, and promote the opportunity to implement SSM in mobile communications.

This document assumes that both multicast routers and mobile hosts MUST be IGMPv3/MLDv2 capable, regardless whether the protocols are the full or lightweight version. And this document does not consider interoperability with older version protocols. One of the reasons not being interoperable with older IGMP/MLD protocols is that the explicit tracking function does not work properly with older IGMP/MLD protocols because of a report suppression mechanism; a host would not send a pending IGMP/MLD report if a similar report was sent by another listener on the link.
7. IANA Considerations

This document has no actions for IANA.

8. Security Considerations

This document neither provides new functions or modifies the standard functions defined in [1][2][5]. Therefore there is no additional security consideration provided.

9. Acknowledgements

Luis M. Contreras, Marshall Eubanks, Gorry Fairhurst, Dirk von Hugo, Imed Romdhani, Behcet Sarikaya, Stig Venaas, Jinwei Xia, and others provided many constructive and insightful comments.

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Unicasting General Query

IGMPv3 and MLDv2 specifications [1][2] describe that a host MUST accept and process any Query whose IP Destination Address field contains any of the addresses (unicast or multicast) assigned to the interface on which the Query arrives. In general, the all-hosts multicast address (224.0.0.1) or link-scope all-nodes multicast address (FF02::1) is used as the IP destination address of IGMP/MLD General Query. On the other hand, according to [1][2], a router MAY be able to unicast General Query to the tracked member hosts in [Query Interval], if the router keeps track of membership information (Section 3).

Unicasting IGMP/MLD General Query would reduce the drain on battery power of mobile hosts as only the active hosts that have been receiving multicast contents respond the unicast IGMP/MLD General Query messages and non-active hosts do not need to pay attention to the IGMP/MLD Query messages. This also allows the upstream router to proceed fast leaves (or shorten leave latency) by setting LMQC/LLQC smaller, because the router can immediately converge and update the membership information, ideally.

However, there is a concern in unicast General Query. If a multicast router sends General Query "only" by unicast, it cannot discover potential member hosts whose join requests were lost. Since the hosts do not retransmit the same join requests (i.e., unsolicited Report messages), they lose the chance to join the channels unless the upstream router asks the membership information by sending General Query by multicast. It will be solved by using both unicast
and multicast General Queries and configuring the [Query Interval] timer value for multicast General Query and the [Unicast Query Interval] timer value for unicast General Query. However, using two different timers for General Queries would require the protocol extension this document does not focus on. If a router does not distinguish the multicast and unicast General Query Intervals, the router SHOULD only use and enable multicast General Query.

Also, unicasting General Query does not remove multicasting General Query. Multicast General Query is necessary to update membership information if it is not correctly synchronized due to missing Reports. Therefore, enabling unicast General Query SHOULD NOT be used for the implementation that does not allow to configure different query interval timers as [Query Interval] and [Unicast Query Interval]. If a router does not distinguish these multicast and unicast General Query Intervals, the router SHOULD only use and enable multicast General Query.

Authors’ Addresses

Hitoshi Asaeda
Keio University
Graduate School of Media and Governance
5322 Endo
Fujisawa, Kanagawa 252-0882
Japan

Email: asaeda@wide.ad.jp
URI: http://www.sfc.wide.ad.jp/~asaeda/

Hui Liu
Huawei Technologies Co., Ltd.
Huawei Bld., No.3 Xinxi Rd.
Shang-Di Information Industry Base
Hai-Dian Distinct, Beijing 100085
China

Email: helen.liu@huawei.com
Qin Wu
Huawei Technologies Co., Ltd.
Site B, Floor 12F, Huihong Mansion
No.91 Baixia Rd.
Nanjing, Jiangsu 21001
China

Email: bill.wu@huawei.com
Multicast Mobility Routing Optimizations for Proxy Mobile IPv6
draft-ietf-multimob-pmipv6-ropt-00

Abstract

The MULTIMOB group has specified a base solution to support IP multicasting in a PMIPv6 domain [RFC6224]. In this document, some enhancements to the base solution are described. These enhancements include the use of a multicast tree mobility anchor as the topological anchor point for multicast traffic, as well as a direct routing option where the MAG can provide access to multicast content in the local network. These enhancements provide benefits such as reducing multicast traffic replication and supporting different PMIPv6 deployments scenarios.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 5, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the
Table of Contents

1. Introduction .. 4
2. Terminology ... 5
3. Multicast Tree Mobility Anchor (MTMA) 6
 3.1. Overview 6
 3.2. Operations of the Mobile Node 7
 3.3. Operations of the Mobile Access Gateway 8
 3.3.1. MAG as MLD Proxy 8
 3.3.2. MAG as Multicast Router 11
 3.4. Operations of the Multicast Tree Mobility Anchor .. 12
4. Direct Routing 12
 4.1. Overview 12
 4.2. Operations of the Mobile Node 13
 4.3. Operations of the Mobile Access Gateway 13
 4.3.1. MAG as MLD Proxy 14
 4.3.2. MAG as multicast router 17
5. Functions and Requirements 17
 5.1. Extension to the Binding Update List in MAG 17
 5.2. Extension of the Policy Profile Information including
 multicast related parameters 17
 5.3. Data Structure in MTMA 18
6. Dynamic Selection Support 18
 6.1. Use Cases 18
 6.2. Any Source Multicast Scenario 19
 6.3. Source Specific Multicast Scenario 20
7. IANA Considerations 20
8. Security Considerations 20
9. Authors .. 20
10. References .. 21
 10.1. Normative References 21
 10.2. Informative References 21
Appendix A. MTMA Deployment Use Cases 22
 A.1. PMIPv6 domain with ratio 1:1 22
 A.2. PMIPv6 domain with ratio N:1 22
 A.3. PMIPv6 domain with ratio 1:N 24
 A.4. PMIPv6 domain with H-LMA 26
Authors’ Addresses 28
1. Introduction

Proxy Mobile IPv6 [RFC5213] is a network-based approach to solving the IP mobility problem. In a Proxy Mobile IPv6 (PMIPv6) domain, the Mobile Access Gateway (MAG) behaves as a proxy mobility agent in the network and does the mobility management on behalf of the Mobile Node (MN). The Local Mobility Anchor (LMA) is the home agent for the MN and the topological anchor point. PMIPv6 was originally designed for unicast traffic. However, a PMIPv6 domain may handle data from both unicast and multicast sources.

The Internet Group Management Protocol (IGMPv3) [RFC3376] is used by IPv4 hosts to report their IP multicast group memberships to neighboring multicast routers. Multicast Listener Discovery (MLDv2) [RFC3810] is used in a similar way by IPv6 routers to discover the presence of IPv6 multicast hosts. Also, the IGMP/MLD proxy [RFC4065] allows an intermediate (i.e. edge) node to appear as a multicast router to downstream hosts, and as a host to upstream multicast routers. IGMP and MLD related protocols however were not originally designed to address IP mobility of multicast listeners (i.e. IGMP and MLD protocols were originally designed for fixed networks).

The MULTIMOB group has specified a base solution to support IP multicast listener mobility in a PMIPv6 domain [RFC6224], which describes deployment options without modifying mobility and multicast protocol standards. The PMIPv6 allows a MAG to establish multiple PMIPv6 tunnels with different LMAs, e.g. up to one per MN. In the presence of multicast traffic, multiple instances of the same traffic can converge to the same MAG. Hence, when IP multicasting is applied into PMIPv6, it leads to redundant traffic at a MAG. This is the so-called "Tunnel Convergence problem".

To address this issue, a comprehensive solution is proposed in this document, consisting of two complementary enhancements: multicast anchor and direct routing. The former uses a multicast tree mobility anchor (MTMA) as the topological anchor point for remotely delivering multicast traffic, while the latter uses direct routing taking advantage of local multicast source availability, allowing a MAG to connect directly to a multicast router for simple access to local content. Neither of the schemes has any impact on the MN to support multicast listener mobility.

The MTMA details are described in section 3. Section 4 describes the direct routing technique. Section 5 describes the details about the dynamic selection at the MAG between direct routing (e.g. for local access) and MTMA (e.g. for remote access).
2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [RFC2119].

This document uses the terminology defined in [RFC5213], [RFC6275], and [RFC3810]. Specifically, the definition of PMIPv6 domain is reused from [RFC5213] and reproduced here for completeness.

Proxy Mobile IPv6 Domain (PMIPv6-Domain): Proxy Mobile IPv6 domain refers to the network where the mobility management of a mobile node is handled using the Proxy Mobile IPv6 protocol as defined in [RFC5213]. The Proxy Mobile IPv6 domain includes local mobility anchors and mobile access gateways between which security associations can be set up and authorization for sending Proxy Binding Updates on behalf of the mobile nodes can be ensured.

In this draft we refine such definition from the point of view of the kind of traffic served to the MN in the following way:

PMIPv6 unicast domain: PMIPv6 unicast domain refers to the network covered by one LMA for unicast service. This service allows MN mobility as it moves from one MAG to another associated to that LMA regarding its unicast traffic.

PMIPv6 multicast domain: PMIPv6 multicast domain refers to the network covered by one network element named MTMA (defined below) for multicast service in such a way that an MN using that service is not aware of mobility as it moves from one MAG to another.

Direct routing: it uses native multicast infrastructure for retrieving multicast data. For the operator having its own local content, this technique also includes the case that content source is directly connected to a MAG.

From the definitions above, it can stated that a PMIPv6 domain can have several PMIPv6 unicast domains and PMIPv6 multicast domains. Additionally, some other definitions are introduced, as follows.

MTMA or multicast tree mobility anchor: an entity working as topological anchor point for multicast traffic.

H-LMA or Hybrid-LMA: an entity dedicated to both unicast and multicast services, that is, it is able to work as both LMA and MTMA simultaneously.
3. Multicast Tree Mobility Anchor (MTMA)

An MTMA can be used to serve as the mobility anchor for multicast traffic. Typically, the MTMA will be used to get access to multicast content remotely.

The MTMA connects to the MAG as described in [RFC6224] and it can reuse native PMIPv6 features such as tunnel establishment and security [RFC5213], heartbeat [RFC5847], etc. Unicast traffic will go normally to the LMAs in the PMIPv6 domain as described in [RFC5213].

This section describes how the MTMA works in scenarios of MN attachment and multicast mobility. It concentrates on the case of both LMA and MTMA defining a unique PMIPv6 domain. Some other different deployment scenarios are presented in Appendix A.

3.1. Overview

Figure 1 shows an example of a PMIPv6 domain supporting multicast mobility. The LMA is dedicated to unicast traffic, and the MTMA is dedicated to multicast traffic. The MTMA can be considered to be a form of upstream multicast router with tunnel interfaces allowing remote subscription for the MNs. Note that there can be multiple LMAs for unicast traffic in a given PMIPv6 domain (not shown in Figure 1 for simplicity). Similarly, more than one MTMA could be deployed by the operator (not shown in Figure 1).

As shown in Figure 1, MAG1 may connect to both unicast (LMAs) and multicast (MTMAs) entities. Thus, a given MN may simultaneously receive both unicast and multicast traffic. In Figure 1, MN1 and MN2 receive unicast traffic, multicast traffic, or both, whereas MN3 receives multicast traffic only.
3.2. Operations of the Mobile Node

The MN operation is not impacted by the existence of an MTMA as anchor for the multicast traffic being subscribed. The MN will act according to the stated operations in [RFC5213] and [RFC6224].

This draft considers that every MN requesting multicast-only services is previously registered in a PMIPv6 unicast domain to get a unicast IP address. The registration can also be required also for several purposes such as remote management, billing, etc.
3.3. Operations of the Mobile Access Gateway

There are two main functionalities in the MAG when it is connected to an MTMA. One when the MAG incorporates MLD proxy functions as per [RFC4605]. The other case is when the MAG functions as a multicast router as per [RFC4601] or [RFC4607].

The following sections describe the MAG for both cases in more detail.

3.3.1. MAG as MLD Proxy

If the MAG has MLD proxy functionality only, once the MLD proxy instance is configured to obtain the multicast traffic remotely from the MTMA, the system behavior remains static.

In case of remote subscription, all MAGs that are connected to the MTMA must support the MLD proxy [RFC4605] function. Specifically in Figure 1, each of the MAG1-MTMA and MAG2-MTMA tunnel interfaces define an MLD proxy domain. The MNs are considered to be on the downstream interface of the MLD proxy (of the MAG), and the MTMA is considered to be on the upstream interface (of the MAG) as per [RFC4605]. Note that the MAG could also be an IGMP proxy. For brevity this document will refer primarily to MLD proxy, but all references to "MLD proxy" should be understood to also include "IGMP/MLD proxy" functionality.

3.3.1.1. Multicast Establishment

Figure 2 shows the procedure when MN1 attaches to MAG, and establishes associations with LMA (unicast) and MTMA (multicast).
<table>
<thead>
<tr>
<th>MN1</th>
<th>MAG</th>
<th>LMA</th>
<th>MTMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN attaches to MAG1</td>
<td>(MLD Proxy)</td>
<td>(Unicast)</td>
<td>(Multicast)</td>
</tr>
<tr>
<td>------Rtr Sol------ -></td>
<td>--PBU -- ></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><-- PBA --</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>=Unicast= Tunnel</td>
<td></td>
<td></td>
</tr>
<tr>
<td><------Rtr Adv ------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< ------ Unicast Traffic------ ></td>
<td>=Multicast Tunnel ==</td>
<td></td>
</tr>
<tr>
<td></td>
<td><--MLD Query --------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MN requires multicast services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------MLD Report (G) -- ></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>----- Aggregated ----></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MLD Report (G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< ------------ Multicast Traffic ------------ ></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: MN Attachment and Multicast Service Establishment for MTMA

In Figure 2, MAG first establishes the PMIPv6 tunnel with LMA for unicast traffic as defined in [RFC5213] after being triggered by the Router Solicitation message from MN1. Unicast traffic will then flow between MN1 and LMA.

For multicast traffic, a multicast tunnel may have been pre-configured between MAG and MTMA, or may be dynamically established when the first MN appears at the MAG.

MN1 sends the MLD report message (when required by its upper layer applications) as defined in [RFC3810] in response to an MLD Query from MAG. The MAG, acting as a MLD Proxy defined in [RFC4605], will then send an Aggregated MLD Report to the multicast anchor, MTMA (assuming that this is a new multicast group which the MAG had not previously subscribed to). Multicast traffic will then flow from the
Multicast Mobility

Figure 3 illustrates the mobility scenario for multicast traffic. Specifically, MN2 with ongoing multicast subscription moves from MAG1 to MAG2. Note that, for simplicity, in this scenario we only consider the tunnel of MAG2 with MTMA (for multicast traffic) and we do not show any unicast traffic. Of course, if it was desired to support unicast traffic, it would be served by a tunnel between MAG2 and LMA.

According to the baseline solution signaling method described in [RFC6224], after MN2 mobility, MAG2 acting in its role of MLD proxy will send an MLD Query to the newly observed MN on its downlink. Assuming that the subsequent MLD Report from MN2 requests membership for a new multicast group (from MAG2’s point of view), this will then result in an Aggregated MLD Report being sent to the MTMA from MAG2. This message will be sent through a multicast tunnel between MAG2 and MTMA (pre-established or dynamically established).

When MN2 detaches, MAG1 may keep the multicast tunnel with the multicast MTMA if there are still other MNs using the multicast tunnel. Even if there are no MNs currently on the multicast tunnel, MAG1 may decide to keep the multicast tunnel for potential future use.

As discussed above, existing MLD (and MLD proxy) signaling will handle a large part of the multicast mobility management for the MN.
3.3.2. MAG as Multicast Router

If the MAG is a multicast router, the system behavior when operating with remote subscription is as described before, considering that a multicast routing protocol is running between the MAG and the MTMA on the tunnel interface. Even once the MAG has decided to obtain the multicast traffic remotely based for instance on routing information and/or network management criteria, this decision can be dynamically changed if such criteria changes. This behavior is further described in section Section 6.2.
3.4. Operations of the Multicast Tree Mobility Anchor

The MTMA provides connectivity to the multicast infrastructure out of the PMIPv6 domain. The MTMA itself could either act as an additional MLD proxy (only in the case where all the connected MAGs act also as MLD proxies), reporting to a further node an aggregated view of the subscriptions in a PMIPv6 multicast domain; or it can act as a designated multicast router for all the MAGs in a PMIPv6 multicast domain. The MTMA will then request the multicast content on behalf of the MAGs (and MNs behind them). In addition, the MTMA will create and maintain the corresponding multicast forwarding states per each tunnel interface towards the MAGs. Whatever the role played, when the MAGs act as MLD proxy, the MTMA becomes the MLD querier of the MLD proxy instance located in each MAG.

4. Direct Routing

Direct routing uses native multicast infrastructure, allowing a MAG to directly connect a multicast router in the PMIPv6 domain. A MAG can act as a MLD proxy or multicast router for redirecting multicast packets.

The main purpose of direct routing is to provide optimal routing for local content. As a consequence, it alleviates the MTMA of the channel management and data delivery of locally available content. Unicast traffic will go normally to the LMAs in the PMIPv6 domain.

This section describes how the direct routing works in scenarios of MN attachment and multicast mobility.

4.1. Overview

Figure 4 shows the architecture for the local routing case using native multicasting infrastructure [I-D.deng-multimo-pmip6-requirement].

The LMA is dedicated to unicast traffic, and the multicast traffic is obtained from an upstream multicast router present in the PMIPv6 domain. Note that there can be multiple LMAs for unicast traffic (not shown in Figure 1) in a given PMIPv6 domain.

As shown in Figure 4, a MAG may connect to both unicast (LMA) and multicast (MR) nodes. Thus, a given MN may simultaneously receive both unicast and multicast traffic.

As seen in Figure 4, each MAG has a direct connection (i.e., not using the tunnel interface) with a multicast router. To facilitate
IGMP/MLD signaling and multicast packets forwarding, a MLD proxy function defined in [RFC4605], or multicast routing function SHOULD be placed on the MAG.

Multicast Tree

```
+--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+
+--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+     +--------+
| MN     |      | MN     |
```

Figure 4: Architecture for direct routing based PMIPv6 multicasting

4.2. Operations of the Mobile Node

The MN operation is not impacted by the direct routing option. The MN will act according to the stated operations in [RFC5213] and [RFC6224].

This draft considers that every MN requesting multicast-only services is previously registered in a PMIPv6 unicast domain to get a unicast IP address. This registration can also be required for several purposes such as remote management, billing, etc.

4.3. Operations of the Mobile Access Gateway

There are two main functionalities in the MAG when it supports direct routing. One is the when the MAG incorporates MLD proxy functions as per [RFC4605]. The other case is when the MAG functions as a
multicast router as per [RFC4601] or [RFC4607].

The following sections describe the MAG for both cases in more detail.

4.3.1. MAG as MLD Proxy

In case the MAG only incorporates MLD proxy functionality, for every one of the MLD proxy instances invoked in the MAG it is necessary to define at configuration time the upstream interface from where the multicast traffic will be received. This decision requires to define whether the multicast subscription by an MLD proxy instance for all the multicast channels will be local (if the upstream interface points to a multicast router internal to the PMIPv6 domain) or remote (in case of the upstream interface is the bi-directional tunnel towards the LMA, for the architecture in [RFC6224], or the MTMA, for the multicast listener optimization described in this document).

4.3.1.1. Multicast Establishment

If the MAG has MLD proxy functionality only, once the MLD proxy instance is configured to obtain the multicast traffic locally, the system behavior remains static.

In Figure 5, the MAG first establishes the PMIPv6 tunnel with LMA for unicast traffic as defined in [RFC5213] after being triggered by the Router Solicitation message from the MN. Unicast traffic will then flow between the MN and LMA.

For multicast traffic, it is assumed that the upstream interface of the MLD proxy instance has been configured pointing to a multicast router internal to the PMIPv6 domain (or towards an additional MLD proxy node in the domain), for all the multicast channels (which, in consequence, have to be local). There should be direct connectivity between the MAG and the local multicast router (or additional MLD proxy).

Upon detecting node attachment from an incoming interface, the MAG adds each downstream interface to the MLD Proxy instance with upstream link to a MR according to the standard MLD proxy operations and sends an MLD Query message towards the MN. The MN sends the MLD report message (when required by its upper layer applications) as defined in [RFC3810] in response to an MLD Query from MAG. Upon receiving the MLD Report message from each incoming interface, the MAG checks the MLD Proxy instance associated with the downstream interface and then the MLD Report messages will be aggregated and forwarded to the upstream link associated with the MR (assuming that this is a new multicast group which the MAG had not previously...
Multicast traffic will then flow from the local multicast router towards the MN.

```
MN | MAG (MLD Proxy) | LMA (Unicast) | MR (Multicast)
MN attaches to MAG1
<---- Rtr Sol ----> | ---- PBU ---->
<---- PBA ---->
== Unicast == Tunnel
<---- Rtr Adv ---->
<-------- Unicast Traffic -------->
<---- MLD Query ---->
<-------- MLD Query -------->
MN requires multicast services
-- MLD Report (G) -->
<-------- Aggregated ---->
MLD Report (G)
<---------- Multicast Traffic ---------->
```

Figure 5: Multicast service establishment for direct routing
4.3.1.2. Multicast mobility

![Figure 6: Multicast mobility signaling for direct routing](image)

Figure 6 shows the handover operation procedure in the local direct routing architecture. When an MN hands off to the next MAG (N-MAG) from the previous MAG (P-MAG), the N-MAG detects the newly arrived attached MN and performs binding update procedure by exchanging PBU/PBA signaling messages with LMA. At the same time, a MLD Proxy instance detecting the new MN transmits an MLD query message to the MN. After receiving the MLD query message, the MN sends an MLD report message that includes the multicast group information. The N-MAG then sends an aggregated MLD report message to the upstream link associated with the MR. In the direct routing case, an upstream interface of MLD Proxy instance is decided towards certain multicast router based on the operator’s configuration or multicast routing, as
compared to the base solution defined in [RFC6224] where it is
determined for each MN based on the Proxy Binding Update List. When
the N-MAG receives the multicast packets from the MR, it then simply
forwards them without tunnel encapsulation. The N-MAG updates the
MN’s location information to the LMA by exchanging PBU/PBA signaling
messages.

4.3.2. MAG as multicast router

If the MAG behaves as a multicast router, the MAG then implements a
multicast routing protocol. This allows the MAG to make decisions
about from where to receive the traffic of any multicast channel,
based on routing information and/or network management criteria. The
selected incoming interface for receiving multicast traffic will be
then the one matching such criteria, and it could drive to either a
local or remote subscription. Some situations are introduced in the
next section.

If the MAG is a multicast router, the system behavior when operating
with local subscription is as before, but extending the role of the
MAG to be a multicast router, and running a multicast routing
protocol among the MAG and local multicast router serving the
multicast traffic. Once the MAG decides to obtain the multicast
traffic locally based in routing information and/or network
management criteria, this can be dynamically changed if such criteria
change.

5. Functions and Requirements

A set of new functions and structures are needed in PMIPv6 to allow
the use of the solution described in this document. The following
sub-sections describe these required extensions.

5.1. Extension to the Binding Update List in MAG

The Binding Update List in the MAG must be updated to be able to
handle the fact that more than one entity (i.e. LMA and MTMA) may be
serving the mobile node.

5.2. Extension of the Policy Profile Information including multicast
related parameters

A given mobile node’s policy profile information must be updated to
be able to store the IPv6 addresses of both the LMA and MTMA, for the
remote subscription case.

Additionally, when the MAG act as multicast router in the local
subscription case it is required to keep registration of the IP address for the rendez-vous point in the PMIPv6 domain, when PIM-SM is used. When using PIM-SSM, the IP addresses of the local multicast sources have to be also registered.

5.3. Data Structure in MTMA

The MTMA does not directly interact with the MNs attached to any of the MAGs. The MTMA only manages the multicast groups subscribed per MAG on behalf of the MNs attached to it. Having this in mind, the relevant information to be stored in the MTMA should be the tunnel interface identifier (tunnel-if-id) of the bi-directional tunnel for multicast between the MTMA and every MAG (e.g. similar to what it is stated in [RFC5213] for the unicast case), the IP addresses of the multicast group delivered per tunnel to each of the MAGs, and the IP addresses of the sources injecting the multicast traffic per tunnel to the multicast domain defined by the MTMA.

6. Dynamic Selection Support

As mentioned above, the MAG as multicast router provides some flexibility for choosing local versus remote multicast subscription. With this approach IP multicast traffic can selectively be received from the home, visited or local domains, and the selection of traffic can be based on operator policies. Considering PIM as the multicast routing protocol running on the MAG, it is possible to find out two situations where such dynamic selection can occur, according to the PIM flavor on place. For all the scenarios below we consider a certain multicast flow being injected by two different sources, one local to the PMIPv6 domain and one remote through the home network, by using an MTMA.

6.1. Use Cases

The MAG has different options to subscribe to a multicast group, such as:

- Via the tunnel with the LMA unicast [RFC6224]
- Via the tunnel with the MTMA (as described in Section 3)
- Via local subscription/routing (as described in Section 4)

Also, the content can be located in different places. For instance, the content might be locally available (e.g. TV channels offered in the visited domain), or the content might be remote (e.g. TV channels offered in the home domain). In case the content is
available remotely at the home network it is preferred to subscribe via the MTMA tunnel to home. However, if the content is available locally, it is preferred to subscribe at the MAG (local break point) instead of via the home network. The MAG may therefore have to choose which approach needs to be taken to subscribe to a particular content requested by a particular MN.

- If the IP address of the source injecting a certain multicast group is local (scope: local domain), the MAG should get access to it via local subscription (or routing, if the MAG is a multicast router).

- If IP address of the source injecting a certain multicast group is global (or the scope is broader than the local domain), the MAG may have to decide among the different available options (i.e. RFC6224, Local Routing, or MTMA). This can be achieved through some static or dynamic configuration at the MAG.

6.2. Any Source Multicast Scenario

This situation applies for both PIM-SM and BIDIR PIM variants. In this case, once the MAG receives the MLD report from the MN requesting the multicast channel in the form (*,G), the MAG could decide what multicast flow subscribes to (either the local or the remote one).

The subscription can be statically pre-configured or dynamically configured based on some rule. For instance, static configuration can be made per MN (user), such as "multicast traffic from user X should always go through the home (i.e., via the tunnel with the MTMA/LMA-as-per-RFC6224), while traffic from user Y should go via local subscription". Also, configuration profiles can also be more complex and include considerations on types of traffic or IP flows, such as "traffic of type A from user X should always go through the home, traffic of type B from user X should be subscribed locally" using routing information and/or network management criteria. Similarly, routing information can be received dynamically. For example, at user's registration time PBU/PBA signaling can be used to carry the profile information similar to what is described in [I-D.ietf-netext-pmipv6-sipto-option]. Also, routing information can be exchanged dynamically when the multicast group subscription is made.

In case of using PIM-SM, another scenario is possible. PIM-SM allows switching from a multicast shared-tree to a source-specific tree to optimize the path for traffic delivery. The location of the rendezvous point and the multicast source can either be in the PMIPv6 domain or the home network, so the optimization could be from local
subscription to remote subscription or vice versa. The possibility of switching to a source-based tree, and the time for doing so is implementation-dependent, and this could be triggered immediately (e.g. after reception of the first multicast packet) or after some time, or may not even switch at all.

6.3. Source Specific Multicast Scenario

This situation applies for PIM-SSM. Then, in a source-specific multicast scenario [RFC4607], the MAG would send the PIM request to the corresponding interface based on the multicast source address indicated on the (S,G) subscription requested by the MN in the MLD Report, using the routing information.

7. IANA Considerations

TBD.

8. Security Considerations

This draft discusses the operations of existing protocols without modifications. It does not introduce new security threats beyond the current security considerations of PMIPv6 [RFC5213], MLD [RFC3810], IGMP [RFC3376] and IGMP/MLD Proxying [RFC4605].

9. Authors

Additional co-authors of this document are:

Akbar Rahman

InterDigital Communications, LLC

E-mail: akbar.rahman@interdigital.com

Ignacio Soto

Universidad Politecnica de Madrid

E-mail: isoto@dit.upm.es

10. References
10.1. Normative References

10.2. Informative References

[I-D.deng-multimob-pmip6-requirement]

[I-D.ietf-netext-pmipv6-sipto-option]
Appendix A. MTMA Deployment Use Cases

From the network architecture point of view, there are several options when considering the multicast tree mobility anchor (MTMA) approach. These options can be distinguished in terms of the number of LMAs and MTMAs present in a PMIPv6 domain and the service relationship that a set of MNs gets from them, in the form of a "LMA : MTMA" ratio. According to that, it is possible to differentiate the following approaches:

A set of MNs is served in a PMIPv6 domain by two entities, one MTMA for multicast service, and one LMA for unicast, in such a way that the ratio is 1:1 (one common PMIPv6 unicast and multicast domain).

A set of MNs is served in a PMIPv6 domain by several entities, one MTMA for multicast service, while the others (LMAs) for unicast, in such a way that the ratio is N:1 (N PMIPv6 unicast domains coexist with a unique multicast domain).

A set of MNs is served in a PMIPv6 domain by several entities, one LMA for unicast, while the others (MTMAs) are devoted to multicast service, in such a way that the ratio is 1:N (one single PMIPv6 unicast domain coexists with multiple multicast domains).

Scenarios with an N:M ratio are considered to be a combination of the previous ones.

A.1. PMIPv6 domain with ratio 1:1

This approach basically refers to the architecture presented in Figure 1. Within this approach, a common set of MNs is served by a couple of entities, one LMA for unicast and one MTMA for multicast. All the MNs of the set are served by these two elements as they move in the PMIPv6 domain.

A.2. PMIPv6 domain with ratio N:1

This approach basically refers to the situation where a common set of MNs is served by a unique MTMA for multicast service, but...
simultaneously there are subsets from that group of MNs which are served by distinct LMAs for unicast service as they move in the PMIPv6 domain. Each particular MN association with the LMAs (unicast) and MTMA (multicast) remains always the same as it moves in the PMIPv6 domain.

Figure 7 shows the scenario here described.

```
+-------------------+   +-------------------+
| Content Source A | +---| Content Source B |
+-------------------+   +-------------------+

***  ***  ***  ***  ***  ***  ***  ***  ***  ***
*  **  **  **  **  **  **  **  **  **  **  **  *
*  *  Fixed Internet  *
*  **  **  **  **  **  **  **  **  **  **  **  *
***  ***  ***  ***  ***  ***  ***  ***  ***  ***

+---+   +---+   +---+
| LMA1 | +---| MTMA2 | +---| LMA3 |
+---+   +---+   +---+

\ \ oo oo oo oo oo \//
 oo \ \ oo oo \//oo
 oo \ \ oo oo \//oo
 oo \ \ oo oo \//oo

+---+   +---+   +---+   +---+
| MAG1 | +---| MAG2 | +---| MAG3 | +---| MAG4 |
+---+   +---+   +---+   +---+

{MN10} {MN11} {MN20} {MN21} {MN30} {MN31} {MN40} {MN41}
```

Figure 7: PMIPv6 domain with ratio N:1

The Figure 7 proposes an architecture where there are two entities acting as LMAs, LMA1 and LMA3, while there is another one, named MTMA2, working as multicast tree mobility anchor. LMA1 and LMA3
constitute two distinct unicast domains, whereas MTMA2 forms a single multicast domain. The tunnels among MAGs and LMAs represented by lines ("||") indicate a tunnel transporting unicast traffic, while the tunnels among MAGs and MTMA2 depicted with circles ("o") show a tunnel transporting multicast traffic.

In the figure it can be observed that all the MNs are served by MTMA2 for the incoming multicast traffic from sources A or B. However, there are different subsets regarding unicast traffic which maintain distinct associations within the PMIPv6 domain. For instance, the subset formed by MN10, MN11, MN20 and MN21 is served by LMA1 for unicast, and the rest of MNs are being served by LMA3. For the scenario described above, the association between each MN and the corresponding LMA and MTMA is permanently maintained.

A.3. PMIPv6 domain with ratio 1:N

This approach is related to a scenario where a common group of MNs is served by a unique LMA for unicast service, but simultaneously there are subsets from that group of MNs which are served by distinct MTMAs for multicast service as they move in the PMIPv6 domain. Each particular MN association with the LMA and MTMAs (unicast and multicast respectively) remains always the same as it moves in the PMIPv6 domain.

Figure 8 shows the scenario here described.
The Figure 8 proposes an architecture where the LMA2 is the unique LMA for a certain group of MNs, while there are two others entities, MTMA1 and MTMA3, acting as MTMAs for different subsets of MNs of the same group. MTMA1 and MTMA3 constitute two distinct multicast domains, whereas LMA2 forms a single unicast domain. Each MTMA could be devoted to carry on a different content (for instance, MTMA1 for source A and MTMA3 for source B) or not. Looking at the picture, the subset formed by MN10, MN11, MN20, and MN21 is served by MTMA1 for multicast. The rest of MNs are being served by MTMA3 also for multicast. Finally, all of them are served by LMA2 for unicast. For the scenario described above, the association between each MN and the
corresponding LMA and MTMA is permanently maintained.

A.4. PMIPv6 domain with H-LMA

The H-LMA is defined as an entity which simultaneously transports unicast and multicast service, that is, it simultaneously works as LMA and MTMA. In the context of the MTMA solution, an H-LMA can play the role of MTMA for an entire group of MNs in a PMIPv6 domain, while acting simultaneously as LMA for a subset of them. The figure 9 adapts the PMIPv6 domain with ratio N:1 scenario of figure 7 to the case where MTMA2 is an H-LMA, which serves multicast traffic to all the MNs in the picture, and simultaneously, it is able to serve unicast traffic to the subset formed by MN30, MN40 and MN41.
Figure 8 presents a PMIPv6 network where there are two pure unicast LMAs, LMA1 and LMA3, and a hybrid LMA, labeled as H-LMA in the figure. The H-LMA is an MTMA from the perspective of MAG1 and MAG4. The tunnels among MAGs and LMAs represented by lines (*) indicate a tunnel transporting exclusively unicast traffic, the tunnels depicted with circles ("o") show a tunnel transporting exclusively multicast traffic, and the tunnels with mixed lines and circles ("db") describe a tunnel transporting both types of traffic simultaneously.

Figure 9: PMIPv6 domain with H-LMA
All of the MNs in the figure receive the multicast traffic from H-LMA (one single multicast domain), but it is possible to distinguish three subsets from the unicast service perspective (that is, three unicast domains). The first subset is the one formed by MN10, MN11 and MN20, which receives unicast traffic from LMA1. A second subset is the one formed by MN21 and MN30, which receives unicast traffic from H-LMA. And finally, a third subset is built on MN31, MN40 and MN41, which receives unicast traffic from LMA3. For the scenario described above, the association between each MN and the corresponding LMA and H-LMA is permanently maintained.

Authors’ Addresses

Juan Carlos Zuniga
InterDigital Communications, LLC
1000 Sherbrooke Street West, 10th floor
Montreal, Quebec H3A 3G4
Canada

Email: JuanCarlos.Zuniga@InterDigital.com
URI: http://www.InterDigital.com/

Luis M. Contreras
Telefonica I+D
Don Ramon de la Cruz, 82-84
Madrid 28006
Spain

Email: lmcm@tid.es

Carlos J. Bernardos
Universidad Carlos III de Madrid
Av. Universidad, 30
Leganes, Madrid 28911
Spain

Phone: +34 91624 6236
Email: cjbc@it.uc3m.es
URI: http://www.it.uc3m.es/cjbc/
Seil Jeon
Instituto de Telecomunicacoes
Campus Universitario de Santiago
Aveiro 3810-193
Portugal

Email: seiljeon@av.it.pt
URI: https://atnog.av.it.pt/~sjeon/

Younghan Kim
Soongsil University
Sangdo-dong, Dongjak-gu
Seoul 511
Republic of Korea

Email: yhkim@dcn.ssu.ac.kr
URI: http://dcnlab.ssu.ac.kr/
Mobile Multicast Sender Support in Proxy Mobile IPv6 (PMIPv6) Domains
draft-ietf-multimob-pmipv6-source-00

Abstract

Multicast communication can be enabled in Proxy Mobile IPv6 domains via the Local Mobility Anchors by deploying MLD Proxy functions at Mobile Access Gateways, via a direct traffic distribution within an ISP’s access network, or by selective route optimization schemes. This document describes the support of mobile multicast senders in Proxy Mobile IPv6 domains for all three scenarios. Mobile sources always remain agnostic of multicast mobility operations.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on July 12, 2012.

Copyright Notice
Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Terminology ... 4
3. Base Solution for Source Mobility and PMIPv6 Routing 4
 3.1. Overview ... 4
 3.2. Base Solution for Source Mobility: Details 8
 3.2.1. Operations of the Mobile Node 8
 3.2.2. Operations of the Mobile Access Gateway 8
 3.2.3. Operations of the Local Mobility Anchor 8
 3.2.4. IPv4 Support 9
 3.2.5. Efficiency of the Distribution System 10
4. Direct Multicast Routing 10
 4.1. Overview ... 10
 4.2. MLD Proxies at MAGs 11
 4.2.1. PIM-SM Considerations 12
 4.2.2. SSM Considerations 12
 4.3. PIM-SM ... 12
 4.4. BIDIR PIM .. 13
5. Extended Source Mobility Schemes in PMIPv6 13
 5.1. Multiple Upstream Interface Proxy 13
6. IANA Considerations 13
7. Security Considerations 13
8. Acknowledgements 14
9. References ... 14
 9.1. Normative References 14
 9.2. Informative References 15
Appendix A. Evaluation of Traffic Flows 16
Appendix B. Change Log 16
Authors’ Addresses ... 16
1. Introduction

Proxy Mobile IPv6 (PMIPv6) [RFC5213] extends Mobile IPv6 (MIPv6) [RFC3775] by network-based management functions that enable IP mobility for a host without requiring its participation in any mobility-related signaling. Additional network entities called the Local Mobility Anchor (LMA), and Mobile Access Gateways (MAGs), are responsible for managing IP mobility on behalf of the mobile node (MN). An MN connected to a PMIPv6 domain, which only operates according to the base specifications of [RFC5213], cannot participate in multicast communication, as MAGs will discard group packets.

Multicast support for mobile listeners can be enabled within a PMIPv6 domain by deploying MLD Proxy functions at Mobile Access Gateways, and multicast routing functions at Local Mobility Anchors [RFC6224]. This base deployment option is the simplest way to PMIPv6 multicast extensions in the sense that it follows the common PMIPv6 traffic model and neither requires new protocol operations nor additional infrastructure entities. Standard software functions need to be activated on PMIPv6 entities, only, at the price of possibly non-optimal multicast routing.

Alternate solutions leverage performance optimization by providing multicast routing at the access gateways directly, or by selective route optimization schemes. Such approaches (partially) follow the business model of providing multicast data services in parallel to PMIPv6 unicast routing.

Multicast listener support satisfies the needs of receptive use cases such as IPTV or sever-centric gaming on mobiles. However, current trends in the Internet enfold towards user-centric, highly interactive group applications like user generated streaming, conferencing, collective mobile sensing, etc. Many of these popular applications create group content at end systems and can largely profit from a direct data transmission to a multicast-enabled network.

This document describes the support of mobile multicast senders in Proxy Mobile IPv6 domains subsequently for the base deployment scenario [RFC6224], for direct traffic distribution within an ISP’s access network, as well as for selective route optimization schemes. The contribution of this work reflects the source mobility problem as discussed in [RFC5757]. Mobile Nodes in this setting remain agnostic of multicast mobility operations.
2. Terminology

This document uses the terminology as defined for the mobility protocols [RFC6275], [RFC5213] and [RFC5844], as well as the multicast edge related protocols [RFC3376], [RFC3810] and [RFC4605].

3. Base Solution for Source Mobility and PMIPv6 Routing

3.1. Overview

The reference scenario for multicast deployment in Proxy Mobile IPv6 domains is illustrated in Figure 1. MAGs play the role of first-hop access routers that serve multiple MNs on the downstream while running an MLD/IGMP proxy instance for every LMA upstream tunnel.
An MN in a PMIPv6 domain will decide on multicast data transmission completely independent of its current mobility conditions. It will send packets as initiated by applications, using its source address with Home Network Prefix (HNP) and a multicast destination address chosen by application needs. Multicast packets will arrive at the currently active MAG via one of its downstream local (wireless) links. A multicast unaware MAG would simply discard these packets in the absence of a multicast routing information base (MRIB).

An MN can successfully distribute multicast data in PMIPv6, if MLD...
proxy functions are deployed at the MAG as described in [RFC6224]. In this set-up, the MLD proxy instance serving a mobile multicast source has configured its upstream interface at the tunnel towards MN’s corresponding LMA. For each LMA, there will be a separate instance of an MLD proxy.

According to the specifications given in [RFC4605], multicast data arriving from a downstream interface of an MLD proxy will be forwarded to the upstream interface and to all but the incoming downstream interfaces that have appropriate forwarding states for this group. Thus multicast streams originating from an MN will arrive at the corresponding LMA and directly at all mobile receivers co-located at the same MAG and MLD Proxy instance. Serving as the designated multicast router or an additional MLD proxy, the LMA forwards data to the fixed Internet, whenever forwarding states are maintained by multicast routing. If the LMA is acting as another MLD proxy, it will forward the multicast data to its upstream interface, and to downstream interfaces with matching subscriptions, accordingly.

In case of a handover, the MN (unaware of IP mobility) can continue to send multicast packets as soon as network connectivity is reconfigured. At this time, the MAG has determined the corresponding LMA, and IPv6 unicast address configuration (including PMIPv6 bindings) has been performed. Still multicast packets arriving at the MAG are discarded (if not buffered) until the MAG has completed the following steps.

1. The MAG has determined that the MN is admissible to multicast services.

2. The MAG has added the new downstream link to the MLD proxy instance with up-link to the corresponding LMA.

As soon as the MN’s uplink is associated with the corresponding MLD proxy instance, multicast packets are forwarded again to the LMA and eventually to receivers within the PMIP domain (see the call flow in Figure 2). In this way, multicast source mobility is transparently enabled in PMIPv6 domains that deploy the base scenario for multicast.
These multicast deployment considerations likewise apply for mobile nodes that operate with their IPv4 stack enabled in a PMIPv6 domain. PMIPv6 can provide IPv4 home address mobility support [RFC5844]. IPv4 multicast is handled by an IGMP proxy function at the MAG in an analogous way.

Following these deployment steps, multicast traffic distribution transparently inter-operates with PMIPv6. It is worth noting that an MN - while being attached to the same MAG as the mobile source, but associated with a different LMA - cannot receive multicast traffic on a shortest path. Instead, multicast streams flow up to the LMA of the mobile source, are transferred to the LMA of the mobile listener and tunneled downwards to the MAG again (see Appendix A for further considerations).
3.2. Base Solution for Source Mobility: Details

Incorporating multicast source mobility in PMIPv6 requires to deploy general multicast functions at PMIPv6 routers and to define their interaction with the PMIPv6 protocol in the following way.

3.2.1. Operations of the Mobile Node

A Mobile Node willing to send multicast data will proceed as if attached to the fixed Internet. No specific mobility or other multicast related functionalities are required at the MN.

3.2.2. Operations of the Mobile Access Gateway

A Mobile Access Gateway is required to have MLD proxy instances deployed, one for each tunnel to an LMA, which serves as its unique upstream link (cf., [RFC6224]). On the arrival of an MN, the MAG decides on the mapping of downstream links to a proxy instance and the upstream link to the LMA based on the regular Binding Update List as maintained by PMIPv6 standard operations. When multicast data is received from the MN, the MAG MUST identify the corresponding proxy instance from the incoming interface and forwards multicast data upstream according to [RFC4605].

The MAG MAY apply special admission control to enable multicast data transition from an MN. It is advisable to take special care that MLD proxy implementations do not redistribute multicast data to downstream interfaces without appropriate subscriptions in place.

3.2.3. Operations of the Local Mobility Anchor

For any MN, the Local Mobility Anchor acts as the persistent Home Agent and at the same time as the default multicast upstream for the corresponding MAG. It will manage and maintain a multicast forwarding information base for all group traffic arriving from its mobile sources. It SHOULD participate in multicast routing functions that enable traffic redistribution to all adjacent LMAs within the PMIPv6 domain and thereby ensure a continuous receptivity while the source is in motion.

3.2.3.1. Local Mobility Anchors Operating PIM

Local Mobility Anchors that operate the PIM-SM routing protocol [RFC4601] will require sources to be directly connected for sending PIM registers to the RP. This does not hold in a PMIPv6 domain, as MAGs are routers intermediate to MN and the LMA. In this sense, MNs are multicast sources external to the PIM-SM domain.
To mitigate this incompatibility common to all subsidiary MLD proxy domains, the LMA should act as a PIM Border Router and activate the Border-bit. In this case, the DirectlyConnected(S) is treated as being TRUE for mobile sources and the PIM-SM forwarding rule "iif == RPF_interface(S)" is relaxed to be TRUE, as the incoming tunnel interface from MAG to LMA is considered as not part of the PIM-SM component of the LMA (see A.1 of [RFC4601]).

Notably, running BIDIR PIM [RFC5015] on LMAs remains robust with respect to source location and does not require a special configuration.

3.2.4. IPv4 Support

An MN in a PMIPv6 domain may use an IPv4 address transparently for communication as specified in [RFC5844]. For this purpose, an LMA can register an IPv4-Proxy-CoA in its Binding Cache and the MAG can provide IPv4 support in its access network. Correspondingly, multicast membership management will be performed by the MN using IGMP. For multicast support on the network side, an IGMP proxy function needs to be deployed at MAGs in exactly the same way as for IPv6. [RFC4605] defines IGMP proxy behaviour in full agreement with IPv6/MLD. Thus IPv4 support can be transparently provided following the obvious deployment analogy.

For a dual-stack IPv4/IPv6 access network, the MAG proxy instances SHOULD choose multicast signaling according to address configurations on the link, but MAY submit IGMP and MLD queries in parallel, if needed. It should further be noted that the infrastructure cannot identify two data streams as identical when distributed via an IPv4 and IPv6 multicast group. Thus duplicate data may be forwarded on a heterogeneous network layer.

A particular note is worth giving the scenario of [RFC5845] in which overlapping private address spaces of different operators can be hosted in a PMIP domain by using GRE encapsulation with key identification. This scenario implies that unicast communication in the MAG-LMA tunnel can be individually identified per MN by the GRE keys. This scenario still does not impose any special treatment of multicast communication for the following reasons.

Multicast streams from and to MNs arrive at a MAG on point-to-point links (identical to unicast). Multicast data transmission from the MAG to the corresponding LMA is link-local between the routers and routing/forwarding remains independent of any individual MN. So the MAG-proxy and the LMA SHOULD NOT use GRE key identifiers, but plain GRE encapsulation in multicast communication (including MLD queries and reports). Multicast traffic sent upstream and downstream of MAG-
to-LMA tunnels proceeds as router-to-router forwarding according to the multicast routing information base (MRIB) of the MAG or LMA and independent of MN’s unicast addresses, while the MAG proxy instance re-distributes multicast data down the point-to-point links (interfaces) according to its own MRIB, independent of MN’s IP addresses.

3.2.5. Efficiency of the Distribution System

In the following efficiency-related issues are enumerated.

Multicast reception at LMA In the current deployment scenario, the LMA will receive all multicast traffic originating from its associated MNs. There is no mechanism to suppress upstream forwarding in the absence of receivers.

MNs on the same MAG using different LMAs For a mobile receiver and a source that use different LMAs, the traffic has to go up to one LMA, cross over to the other LMA, and then be tunneled back to the same MAG, causing redundant flows in the access network and at the MAG.

4. Direct Multicast Routing

There are deployment scenarios, where multicast services are available throughout the access network independent of the PMIPv6 routing system [I-D.zuniga-multimob-pmipv6-ropt]. In these cases, the visited networks grant a local content distribution service (in contrast to LMA-based home subscription) with locally optimized traffic flows. It is also possible to deploy a mixed service model of local and LMA-based subscriptions, provided a unique way of service selection is implemented. For example, access routers (MAGs) could decide on service access based on the multicast address G or the SSM channel (S,G) under request (see Section 5 for a further discussion).

4.1. Overview

Direct multicast access can be supported by

- native multicast routing provided by one multicast router that is neighboring MLD proxies deployed at MAGs within a flat access network, or via tunnel uplinks,

- a multicast routing protocol such as PIM-SM [RFC4601] or BIDIR-PIM [RFC5015] deployed at the MAGs.
Figure 3 displays the corresponding deployment scenarios, which separate multicast from PMIPv6 unicast routing. It is assumed throughout these scenarios that all MAGs (MLD proxies) are linked to a single multicast routing domain.

Multicast traffic distribution can be simplified in these scenarios. A single proxy instance at MAGs with up-link into the multicast domain will serve as a first hop multicast gateway and avoid traffic duplication or detour routing. Multicast routing functions at MAGs will seamlessly embed access gateways within a multicast cloud. However, mobility of the multicast source in this scenario will require some multicast routing protocols to rebuild distribution trees. This can cause significant service disruptions or delays (see [RFC5757] for further aspects). Deployment details are specific to the multicast routing protocol in use, in the following described for common protocols.

4.2. MLD Proxies at MAGs

In a PMIPv6 domain, single MLD proxy instances can be deployed at each MAG to enable multicast service at the access (see Figure 3 (a)). To avoid service disruptions on handovers, the uplinks of all proxies SHOULD be adjacent to the same next-hop multicast router.
This can either be achieved by arranging proxies within a flat access network, or by upstream tunnels that terminate at a common multicast router.

Multicast data submitted by a mobile source will reach the MLD proxy at the MAG that subsequently forwards flows to the upstream and all downstream interfaces with appropriate subscriptions. Traversing the upstream will lead traffic into the multicast infrastructure (e.g., to a PIM Designated Router) which will route packets to all local MAGs that have joined the group, as well as further upstream according to protocol procedures and forwarding states.

On handover, a mobile source will reattach at a new MAG and can continue to send multicast packets as soon as PMIPv6 unicast configurations have completed. Like at the previous MAG, the new MLD proxy will forward data upstream and downstream to subscribers. Listeners local to the previous MAG will continue to receive group traffic via the local multicast distribution infrastructure following aggregated listener reports of the previous proxy. In general, the mobile source remains unchanged when seen from the wider multicast infrastructure.

4.2.1. PIM-SM Considerations

A mobile source that transmits data via an MLD proxy will not be directly connected to a PIM Designated Router as discussed in Section 3.2.3.1. Countermeasures apply correspondingly.

A PIM Designated Router that is connected to MLD proxies via individual IP-tunnel interfaces will experience invalid PIM source states on handover. This problem can be mitigated by aggregating proxies on a lower layer.

4.2.2. SSM Considerations

Source-specific subscriptions invalidate with routes, whenever the source moves from or to the MAG/proxy of a subscriber. Multicast forwarding states will rebuild with unicast route changes. However, this may lead to noticeable service disruptions for locally subscribed nodes.

4.3. PIM-SM

TODO
4.4. BIDIR PIM

TODO

5. Extended Source Mobility Schemes in PMIPv6

In this section, specific optimization approaches to multicast source mobility are introduced.

5.1. Multiple Upstream Interface Proxy

Although multicast communication can be enabled in PMIPv6 domains by deploying MLD Proxy functions at MAG, some disadvantages still exist. Firstly, for a proxy device performing IGMP/MLD-based forwarding has a single upstream interface and one or more downstream interfaces as described in RFC4605, there should be many MLD Proxy functions deployed at one MAG, which is complicated and then is difficult for implementation and management. And then when the multicast packets arrive at the MAG running multiple parallel MLD proxy functions, there may be confusions for the data if there is no extra processing or filtering scheme at the MAG. In addition, the route optimization issue is still up in the air, that is, for a mobile receiver and a source on the same MAG using different LMA, the traffic has to go up to one LMA, cross over to the other LMA, and then be tunneled back to the same MAG, causing redundant flows in the access network and at the MAG. Therefore, the MLD Proxy function should be extended to accommodate the PMIPv6 protocol. As same as described in [RFC6224] and this document (s. abobe), the MLD proxy functions are deployed at the MAG, while only one MLD Proxy function is required to run at the MAG and multiple upstream interfaces can be set for the MLD Proxy instance, which is called Multi-Upstream Interfaces MLD Proxy (MUIMP).

.... TODO details.

6. IANA Considerations

TODO.

Note to RFC Editor: this section may be removed on publication as an RFC.

7. Security Considerations

TODO
Consequently, no new threats are introduced by this document in addition to those identified as security concerns of [RFC3810], [RFC4605], [RFC5213], and [RFC5844].

However, particular attention should be paid to implications of combining multicast and mobility management at network entities. As this specification allows mobile nodes to initiate the creation of multicast forwarding states at MAGs and LMAs while changing attachments, threats of resource exhaustion at PMIP routers and access networks arrive from rapid state changes, as well as from high volume data streams routed into access networks of limited capacities. In addition to proper authorization checks of MNs, rate controls at replicators MAY be required to protect the agents and the downstream networks. In particular, MLD proxy implementations at MAGs SHOULD carefully procure for automatic multicast state extinction on the departure of MNs, as mobile multicast listeners in the PMIPv6 domain will not actively terminate group membership prior to departure.

8. Acknowledgements

The authors would like to thank (in alphabetical order) Muhamma Omer Farooq, Aaron Feng, Dirk von Hugo, Ning Kong, Jouni Korhonen, He-Wu Li, Akbar Rahman, Stig Venaas, Li-Li Wang, Qian Wu, Zhi-Wei Yan for advice, help and reviews of the document. Funding by the German Federal Ministry of Education and Research within the G-LAB Initiative (project HAMcast) is gratefully acknowledged.

9. References

9.1. Normative References

9.2. Informative References

[I-D.zuniga-multimob-pmipv6-ropt]

Appendix A. Evaluation of Traffic Flows

TODO

Appendix B. Change Log

The following changes have been made from version draft-ietf-multimob-pmipv6-source-00:

Authors’ Addresses

Thomas C. Schmidt
HAW Hamburg
Berliner Tor 7
Hamburg 20099
Germany

Email: schmidt@informatik.haw-hamburg.de
URI: http://inet.cpt.haw-hamburg.de/members/schmidt

Shuai Gao
Beijing Jiaotong University
Beijing,
China

Phone:
Fax:
Email: shgao@bjtu.edu.cn
URI:

Hong-Ke Zhang
Beijing Jiaotong University
Beijing,
China

Phone:
Fax:
Email: hkzhang@bjtu.edu.cn
URI:
IGMP/MLD Optimization in Wireless and Mobile Networks
draft-liu-multimob-igmp-mld-wireless-mobile-01

Abstract

This document proposes a variety of optimization approaches for IGMP and MLD in wireless and mobile networks. It aims to provide useful guideline to allow efficient multicast communication in these networks using IGMP or MLD protocols.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 13, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction .. 3
2. Requirements ... 3
 2.1. Characteristics of Wireless and Mobile Multicast 3
 2.2. Wireless Link Model 4
 2.3. Requirements on IGMP and MLD 5
3. IGMP/MLD Optimization for Wireless and Mobile Networks 6
 3.1. Switching Between Unicast and Multicast Queries 6
 3.2. General Query Supplemented with Unicast Query 6
 3.3. Retransmission of Queries 7
 3.4. General Query Suppression 7
 3.5. Tuning Response Delay According to Link Type and Status . 8
 3.6. Triggering Reports and Queries Quickly During Handover ... 9
4. Applicability and Interoperability Considerations 9
5. IANA Considerations 10
6. Security Considerations 10
7. Acknowledgements 10
8. References .. 10
 8.1. Normative References 10
 8.2. Informative References 11
Authors’ Addresses .. 11
1. Introduction

With the wide deployment of various wireless access techniques and the tendency to support video applications on these networks, wireless and mobile multicast come to attract more and more interests from content and service providers, but still face great challenges when considering dynamic group membership management and constant update of delivery path introduced by node movement, and high probability of loss and congestion due to limited reliability and capacity of wireless links.

Multicast network is generally constructed by IGMP and MLD group management protocol (respectively for IPv4 and IPv6 networks) to track valid receivers and by multicast routing protocol to build multicast delivery paths. This document focuses only on IGMP and MLD, which are used by a host to subscribe a multicast group and are most possibly to be exposed to wireless link to support terminal mobility. As IGMP and MLD were designed for fixed users using wired link, they do not necessarily work well for all kinds of wireless link types and mobile scenarios, thus should be enhanced to be adapted to these environments.

This memo proposes a variety of optimizations for IGMP and MLD in wireless and mobile networks to improve network performance, with minimum changes on the protocol behavior and without introducing interoperability issues. These solutions can also be applied in wired network when efficiency or reliability is required.

For generality, this memo does not put any limitation on the type of wireless techniques running below IGMP or MLD. They could be cellular, WiMAX, WiFi and etc, and are modeled as different abstract link models as described in section 2.2. Even though some over the air techniques (such as WiFi) have multicast limitations, it is probable that IGMP/MLD is enabled on the wireless terminal and multicast needs to be supported across the network. The mobile IP protocol adopted on the core side, upstream from the access router, could either be PMIP, MIPv4, or MIPv6.

2. Requirements

2.1. Characteristics of Wireless and Mobile Multicast

Several aspects should be considered when supporting IP multicast in wireless and mobile networks, including:

0 Limited link bandwidth: wireless link usually has limited bandwidth, and the situation will be made even worse if high volume
video multicast data has to be carried. Also the bandwidth available in the upstream and downstream directions may be asymmetrical.

O High loss rate: wireless link usually has packet loss ranging from 1% to 30% according to different links types and conditions. Also when packets have to travel between home and access networks (e.g. through tunnel), they are prone to loss if the two networks are distant from each other.

O Frequent membership change: in fixed multicast, membership change only happens when a user leaves or joins a group, while in mobile scenario membership may also change when a user changes its location.

O Prone to performance degradation: the possible increased interaction of protocols across layers for mobility management, and the limitation of link capacity, may lead to network performance degradation and even to complete connection loss.

O Increased Leave Latency: the leave latency in mobile multicast might be increased due to user movement, especially if the traffic has to be transmitted between access and home networks, or if there is a handshake between networks.

2.2. Wireless Link Model

Wireless links can be categorized by their different transmission modes into three typical models: point-to-point (PTP), point-to-multipoint (PTMP), and broadcast link models.

In PTP model, one link is dedicated for two communication facilities. For multicast transmission, each PTP link normally has only one receiver and the bandwidth is dedicated for that receiver. Such link model may be implemented by running PPP on the link or having separate VLAN assignment for each receiver. In mobile network, tunnel between entities of home and foreign networks should be recognized as a PTP link.

PTMP is the model for multipoint transmission wherein there is one centralized transmitter and multiple distributed receivers. PTMP provides common downlink channels for all receivers and dedicated uplink channel for each receiver. Bandwidth downstream is shared by all receivers on the same link.

Broadcast link can connect two or more nodes and supports broadcast transmission. It is quite similar to fixed Ethernet link model and its link resource is shared in both uplink and downlink directions.
2.3. Requirements on IGMP and MLD

IGMP and MLD are usually run between mobile or wireless terminals and their first-hop access routers (i.e. home or foreign routers) to subscribe an IP multicast channel. Currently the version in-use includes IGMPv2 [RFC2236] and its IPv6 counterpart MLDv1 [RFC2710], IGMPv3 [RFC3376] and its IPv6 counterpart MLDv2 [RFC3810], and LW-IGMPv3/MLDv2 [RFC5790]. All these versions have basic group management capability required by a multicast subscription. The differences lie in that IGMPv2 and MLDv1 can only join and leave a non-source specific group, while IGMPv3 and MLDv2 can select including and excluding specific sources for their join and leave operation, and LW-IGMPv3/MLDv2 simplifies IGMPv3/MLDv2 procedures by discarding excluding-source function. Among these versions, (LW-) IGMPv3/MLDv2 has the capability of explicit track each host member.

From the illustration given in section 2.1 and 2.2, it is desirable for IGMP and MLD to have the following characteristics when used in wireless and mobile networks:

- Adaptive to link conditions: wireless network has various link types, each with different bandwidth and performance features. IGMP or MLD should be able to be adaptive to different link model and link conditions to optimize its protocol operation.

- Minimal group Join/Leave latency: because mobility and handover may cause a user to join and leave a multicast group frequently, fast join and leave by the user helps to accelerate service activation and to release unnecessary resources quickly to optimize resource utilization.

- Robust to packet loss: the unreliable packet transmission due to instable wireless link conditions and limited bandwidth, or long distance transmission in mobile network put more strict robustness requirement on delivery of IGMP and MLD protocol messages.

- Reducing packet exchange: wireless link resources are usually more limited, precious, and congested compared to their wired counterpart. This requires packet exchange be minimized without degrading protocol performance.

- Packet burst avoidance: large number of packets generated within a short time interval may have the tendency to deteriorate wireless network conditions. IGMP and MLD should be optimized if their protocol message generation has the potential of introducing packet burst.
3. IGMP/MLD Optimization for Wireless and Mobile Networks

This section introduces several optimization methods for IGMP and MLD in wireless or mobile environment. The aim is to meet the requirements described in section 2.3. These measures could be applied between host and access routers in mobile or wireless network. It should be noted that because an enhancement in one direction might result in weakening effect in another, balances should be taken cautiously to realize overall performance elevation.

3.1. Switching Between Unicast and Multicast Queries

IGMP/MLD protocols use multicast Queries whose destination addresses are multicast addresses and also allow use of unicast Query with unicast destination to be sent only for one destination. Unicast Query has the advantage of not affecting other hosts on the same link, and is desirable for wireless communication because a mobile terminal often has limited battery power. But if the number of valid receivers is large, using unicast Query for each receiver is inefficient because large number of Unicast Queries have to be generated, in which situation normal multicast Query will be a good choice because only one General Query is needed. If the number of receivers to be queried is small, unicast Query is advantageous over the multicast one.

More flexibly, the router can choose to switch between unicast and multicast Query according to the practical network conditions. For example, if the receiver number is small, the router could send unicast Queries respectively to each receiver, without arousing other non-member host which is in dormant state. When the receiver number reaches a predefined level, the router could change to use multicast Queries. To have the knowledge of the number of the valid receivers, a router is required to enable explicit tracking, and because Group-Specific Query and Group-and-Source-Specific Query are usually not used under explicit tracking, the switching mostly applies to General Queries.

3.2. General Query Supplemented with Unicast Query

Unicast Query also can be used in assistance to General Query to improve the robustness of solicited reports when General Query fails to collect all of its valid members. It requires the explicit tracking to be enabled and can be used when a router after sending a periodical General Query collects successfully most of the valid members’ responses while losing some of which are still valid in its database. This may be because the non-respondent ones silently leave the network without any notification, or because their reports are lost for some unknown reasons. The router could choose to unicast a
3.3. Retransmission of Queries

In IGMP and MLD, apart from the continuously periodical transmission, General Query is also transmitted during a router’s startup. It is transmitted for [Startup Query Count] times by [Startup Query Interval]. There are some other cases where retransmission of General Query is beneficial which are not covered by current IGMP and MLD protocols as shown as following.

For example, a router which keeps track of all its active receivers, if after sending a General Query, fails to get any response from the receivers which are still valid in its membership database. This may be because all these valid receivers have left the group silently or moved out of range, or all the responses of the receivers happen to be lost, or the sent Query does not arrive at the other side of the link to the receivers. The router could compensate this situation by retransmitting the General Query to solicit its active members. The retransmission can also be used to group or source-specific group Queries on a router without explicit tracking capability, when the Queries cannot collect valid response, to prevent missing valid memebers caused by lost Queries and Reports.

The compensating Queries could be sent several times, if the router cannot get any feedback from the receivers. The repetition of the transmission could be in fixed interval, or in prolonged interval as described [ADAPTIVE].

3.4. General Query Suppression

In IGMP and MLD, General Query is sent periodically and continuously without any limitation. It helps soliciting the state of current valid member but has to be processed by all terminals on the link, whether they are valid multicast receivers or not. When there is no receiver, the transmission of the General Query is a waste of resources for both the terminals and the router.

An IGMP/MLD router could suppress its transmission of General Query if it knows there is no valid multicast receiver on an interface, e.g. in the following cases:
When the last member reports its leave for a group. This could be judged by an explicit tracking router checking its membership database, or by a non-explicit-tracking router getting no response after sending Group-Specific Query or Group-and-Source-Specific Query.

When the only member on a PTP link reports its leaving.

When a router after retransmitting General Queries on startup fails to get any response.

When a router previously has valid members but fails to get any response after several rounds of General Queries.

In these cases the router could make the decision that no member is on the interface and totally stop its transmission of periodical General Queries. If afterwards there is any valid member joins a group, the router could resume the original cycle of general Querying. Because General Query has influences on all terminals on a link, suppressing it when it is not needed is beneficial for both the link efficiency and terminal power saving.

3.5. Tuning Response Delay According to Link Type and Status

IGMP and MLD use delayed response to spread unsolicited Reports from different hosts to reduce possibility of packet burst. This is implemented by a host responding to a Query in a specific time randomly chosen between 0 and [Maximum Response Delay]. The value of [Maximum Response Delay] is determined by the router and is carried in Query messages to inform the hosts for the calculation. A larger value will lessen the burst better but will increase leave latency (the time between the last listener request escaping a channel and the traffic actually ceases flowing).

In order to avoid message burst and reduce leave latency, the Response Delay may be dynamically calculated based on the expected number of responders, and link type and status, as shown in the following:

- If the expected number of reporters is large and link condition is bad, the system administrator MUST choose the longer Maximum Response Delay; if the expected number of reporters is small and the link condition is good, smaller Maximum response Delay should be set. In this way, the IGMP/MLD packet burst can be reduced.

- If the link type is PTP, the Maximum Response Delay can be chosen smaller, whereas if the link is PTMP or broadcast medium, the Maximum Response Delay can be configured larger.
The Maximum Response Delay could be configured by the administrator as mentioned above, or be calculated automatically by a software tool implemented according to experiential model for different link modes. How to determine the instant value of Maximum Response Delay is out of this document's scope.

3.6. Triggering Reports and Queries Quickly During Handover

When a mobile terminal is moving from one network to another, if it is receiving multicast content, its new access network should try to deliver the content to the receiver without disruption or performance deterioration. In order to implement smooth handover between networks, the terminal’s membership should be acquired as quickly as possible by the new access network.

The access router could trigger a Query to the terminal as soon as it detects a new terminal on its link. This could be a General Query if the number of the entering terminals is not small. Or this Query could also be a unicast Query for this incoming terminal to prevent unnecessary action of other terminals in the switching area.

For the terminal, it could send a report immediately if it is currently in the multicast reception state, when it begins to connect the new network. This helps establishing more quickly the membership state and enable faster multicast stream injection, because with the active report the router does not need to wait for the query period to acquire the terminal’s newest state.

4. Applicability and Interoperability Considerations

Among the optimizations listed above, ‘Switching between unicast and multicast Queries’ (3.1) and ‘General Query Supplemented with Unicast Query’ (3.2) require a router to know beforehand the valid members connected through an interface, thus require explicit tracking capability. An IGMP/MLD implementation could choose any combination of the methods listed from 3.1 to 3.6 to optimize multicast communication on a specific wireless or mobile network.

For example, an explicit-tracking IGMPv3 router, can switch to unicast General Queries if the number of members on a link is small (3.1), can trigger unicast Query to a previously valid receiver if failing to get expected responses from it (3.2), can retransmit a General Query if after the previous one cannot collect reports from all valid members (3.3), and can stop sending a General Query when the last member leaves the group (3.4), and etc.

For interoperability, it is required if multiple multicast routers...
are connected to the same network for redundancy, each router are configured with the same optimization policy to synchronize the membership states among the routers.

5. IANA Considerations

This document makes no request of IANA.

Note to RFC Editor: this section may be removed on publication as an RFC.

6. Security Considerations

They will be described in the later version of this draft.

7. Acknowledgements

The authors would like to thank Qin Wu, Stig Venaas, Gorry Fairhurst, Thomas C. Schmidt, Marshall Eubanks, Suresh Krishnan, J. William Atwood, WeeSan Lee, Imed Romdhani, Hitoshi Asaeda, Liu Yisong and Wei Yong for their valuable comments and suggestions on this document.

8. References

8.1. Normative References

[RFC5790] Liu, H., Cao, W., and H. Asaeda, "Lightweight Internet

8.2. Informative References

[ADAPTIVE]

Authors’ Addresses

Hui Liu
Huawei Technologies
Building Q14, No.156, Beiqing Rd.
Beijing 100095
China

Email: helen.liu@huawei.com

Mike McBride
Huawei Technologies
2330 Central Expressway
Santa Clara CA 95050
USA

Email: michael.mcbride@huawei.com
Abstract

To support IP multicasting in PMIPv6 domain, MULTIMOB WG has issued several proposals including the base solution, dedicated schemes and direct routing which requires all communications to go through the local mobility anchor (LMA), the dedicated server and the native multicasting infrastructure, respectively. As this can be suboptimal, localized routing (LR) allows multicast source attached to the same or different mobile access gateways (MAG) with mobile node to send multicast data by using localized forwarding or a direct tunnel between the gateways without any dedicated devices or dependence of the native multicasting infrastructure. This document describes multicast routes optimization mechanisms for localized routing. The MAG and the LMA are the mobility entities defined in the PMIPv6 protocol and act as PIM-SM routers.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 3, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Table of Contents

1. Introduction ... 3
2. Terminology ... 5
3. Overview ... 5
4. Protocol Operation 7
 4.1. Add Route to MRIB 7
 4.2. Optimized Multicast Route Establishment 7
 4.3. Optimized Multicast Route Deletion 9
5. Local Mobility Anchor Operation 11
7. Mobile Node Operation 12
8. Message Format Extension 12
 8.1. Proxy Binding Update with Source Address Finding Extension 12
 8.2. Proxy Binding Acknowledgement Message with Source Address Finding Extension 13
 8.3. Care-of Address Option 14
9. Security Considerations 15
10. IANA Considerations 15
11. Normative References 15
Authors’ Addresses 16
1. Introduction

Proxy Mobile IPv6 (PMIPv6) [RFC5213] enables network-based mobility for IPv6 mobile nodes (MNs) that do not implement any mobility protocols. The Local Mobility Anchor (LMA) is the topological anchor point to manages the mobile node’s binding state. The Mobile Access Gateway (MAG) is an access router or gateway that manages the mobility-related signaling for an MN. An MN is attached to the Proxy Mobile IPv6 Domain (PMIPv6-Domain) that includes LMA and MAG(s), and is able to receive data coming from outside of the PMIPv6-Domain through LMA and MAG.

Network-based mobility support for unicast is addressed in [RFC5213], while multicast support in PMIPv6 is not discussed in it. Since LMA and MAG set up a bi-directional IPv6-in-IPv6 tunnel for each mobile node and forwards all mobile node’s traffic according to [RFC5213], it highly wastes network resources when a large number of mobile nodes join/subscribe the same multicast sessions/channels, because independent data copies of the same multicast packet are delivered to the subscriber nodes in a unicast manner through MAG.

In order to deploy the multicast service in the PMIPv6 network, many schemes have been proposed:

The base solution described in [RFC6224] provides options for deploying multicast listener functions in PMIPv6-Domains without modifying mobility and multicast protocol standards. However, in this specification, MAG MUST act as an MLD proxy [RFC4605] and hence MUST dedicate a tunnel link between LMA and MAG to an upstream interface for all multicast traffic. It requires all the LMA to forward multicast packets to MAG via PMIPv6 tunnel which can be suboptimal.

[draft-zuniga-multimob-pmipv6-ropt-01] uses a multicast tree mobility anchor (MTMA) as the topological anchor point for multicast traffic, as well as a direct routing option where the MAG can provide access to multicast content in the local network. All the multicast traffic has to go through the MAG-MTMA tunnel which result in suboptimal multicast routing path like the base solution. And the direct routing solution needs native multicasting infrastructure as a requirement.

[draft-asaeda-multimob-pmip6-extension-07] describes PMIPv6 extensions to support IP multicast communication for mobile nodes in PMIPv6-Domain. If the LMA is the upstream router for the channel(s) for the MAG, the MAG encapsulates PIM Join/Prune messages using the LMA-MAG bi-directional tunnel. The multicast data has to always go through the LMA-MAG bi-directional tunnel. It does solve the tunnel convergence problem and source mobility, but when multicast source is
a mobile node in the same PMIPv6 domain, using the proposed scheme mentioned above, the routing path through a multicast anchor (LMA) tends to be longer, which results in non-optimal multicast routes and performance degradation. Figure 1 shows the Architecture of Multicast Deployment with listener and source in the same PMIPv6 domain, LMA will receive all multicast traffic originating from its associated MN-S through LMA-MAG2 bi-directional tunnel, and then forward to multicast listener MN through LMA-MAG1 bi-directional tunnel, causing non-optimal multicast routes.

In this document, we discuss how to establish optimized multicast routes for the deployment scenario provided by Figure 1. The proposed protocol assumes that both LMA and MAG enable the Protocol-Independent Multicast - Sparse Mode (PIM-SM) multicast routing protocol [RFC4601], and further MAG MUST operate as an "SSM-aware" router [RFC4604]. The proposed protocol supports seamless handover. It can cooperate with local routing and direct routing to deliver IP multicast packets for mobile nodes and source mobility. In this document, because multicast localized routing is mainly focused on, the detail specification of source mobility and is not described.
2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

The following terms used in this document are to be interpreted as defined in [RFC5213]: Home Address (HoA), Mobile Access Gateway (MAG), Local Mobility Anchor (LMA), Mobile Node (MN), Proxy Mobile IPv6 Domain (PMIPv6-Domain), LMA Address (LMAA), Proxy Care-of Address (Proxy-CoA), Proxy Binding Update (PBU), and Proxy Binding Acknowledgement (PBA).

Terms DR (Designated Router), MRIB (Multicast Routing Information Base), RPF (Reverse Path Forwarding), RPF Neighbor, SPT (shortest-path tree), PIM Join, Pim Prune, iif (incoming interface), oiflist (outgoing interface list), Source-Specific Multicast (SSM) are to be interpreted as defined in [RFC4601].

3. Overview

In the SSM case, the multicast receivers actively send the (HoA,G) subscribe message, for the LMA is just the topological anchor point of the source’s Home Address (HoA) in the PMIPv6 network.
As shown in Figure 2, MN (the multicast receivers) and MN-S (the multicast senders) are both mobile nodes in the same PMIPv6 domain, they both have binding cache entry in the LMA. MN sends (HoA,G) subscribe message (MLD Report messages) specifying sender and multicast addresses to the access link to establish the SPT, the MN has to operate as an "SSM-aware" host [RFC4604]. On receiving the (HoA,G) subscribe message from the MN, the attached MAG1 sends a PBU-F message to LMA to find the CoA (i.e., IP address of MAG2) of MN-S. On the reception of PBU-F, the LMA responds with a PBA-F message including the CoA of MN-S to MAG1, after lookup of its binding cache entry. After acquiring the CoA of MN-S, MAG1 establishes bi-directional tunnel with MAG2, and sends PIM Join message to MAG2 through this tunnel, MAG1 and MAG2 establish the related multicast state for MN. So the MAG-based SPT is established successfully and the subsequent multicast data flow will be transmitted through the MAG-based SPT which is represented by "=O" in Figure 2. Unicast data flow will be transmitted through base PMIPv6 tunnel which is represented by "||" in Figure 2.

The tunnel between MAG1 and MAG2 is used for multicast packets (including signaling and data flow) transmission only.
As described in [RFC4601], on receipt of data from S to G on interface iif (incoming interface of the packet), the DR will firstly check whether the source is directly connected and the iif is identical to the Reverse Path Forwarding (RPF) interface. As shown in Figure 2, MAG2 is the DR of MN-S, MAG1 is the DR of MN. After tunnel establishment between MAG1 and MAG2, MAG1 add the tunnel route to the MRIB, the RPF check will be successful.

This draft considers that every MN demanding multicast-only services is previously registered in a PMIPv6 unicast domain to get a unicast IP address.

4. Protocol Operation

4.1. Add Route to MRIB

In PIM-SM, the MRIB is used to decide where to send Join/Prune messages. On receiving the MLD Report message from MN, the MAG of MN has to choose a RPF Neighbor that the MRIB indicates should be used to forward packets to, and then send the Join/Prune message to the RPF Neighbor.

After tunnel establishment between MAG1 and MAG2, MAG1 add the tunnel route to the MRIB, so the RPF Neighbor of MAG1 is MAG2, MAG1 send PIM Join/Prune message through this tunnel.

Once the multicast subscription information is retrieved from the pMAG, the LMA encapsulates it in the PBA message by using the TLV option "Active Multicast Subscription", and forwards the PBA message to the nMAG. Then, the nMAG can subscribe the multicast flow on behalf of the MN, if there is no other MN receiving it already at the nMAG.

When the MAG is connected with other PIM-SM router not over LMA, there’s no problem. PIM-SM establishes multicast routing path using RPF algorithm through reflecting MAG’s RIB.

But when the MAG is connected with several LMAs including PIM-SM, MRIB SHOULD get information from PMIP routing table but "MAG’s RIB doesn’t reflect PMIP routing" (Thomas and Hitoshi agreed it).

4.2. Optimized Multicast Route Establishment

This document provides the multicast routes optimization scheme. The procedures are described as follows and illustrated in Figure 3;
Figure 3 Procedure of establishing multicast Route

1. MN sends (HoA,G) subscribe message (MLD Report messages) specifying sender and multicast addresses to the access link.

2. On receiving the (HoA,G) subscribe message from the MN, the attached MAG1 sends a PBU-F message to LMA to find the CoA (i.e., IP address of MAG2) of MN-S.

3. On the reception of PBU-F, the LMA responds with a PBA-F message including the CoA of MN-S to MAG1, after lookup of its binding cache entry.
4. After acquire the CoA of MN-S, MAG1 establish bi-directional tunnel with MAG2. Refer to [RFC5213] for the detailed tunnel negotiation mechanism.

5. After tunnel establishment, MAG1 add the tunnel route to the MRIB, so the RPF Neighbor of MAG1 is MAG2.

6. If there are multicast channels the MN has subscribed but MAG1 has not yet subscribed, MAG1 establishes multicast state for MN, and sets the iif of the multicast state as MAG1-MAG2 tunnel interface. If MAG1 already subscribed the channel, MAG1 updates the iif of the multicast state as MAG1-MAG2 tunnel interface.

7. MAG1 joins the corresponding multicast channels by sending the PIM Join message to the RPF Neighbor MAG2 through the MAG1-MAG2 tunnel.

8. On the reception of PIM Join message from MAG1, if MAG2 has not yet subscribed the multicast channel, MAG2 establishes multicast state for the channel, and adds the MAG2-MAG1 tunnel interface to the oiflist of the multicast state. If MAG2 already subscribed the channel, MAG2 updates the oiflist of the multicast state by adding the MAG2-MAG1 tunnel interface to the oiflist.

9. The subsequent multicast data flow will be transmitted through the optimized multicast route (MAG1-MAG2 bi-directional tunnel).

4.3. Optimized Multicast Route Deletion
With regard to MN-S, MN is the last multicast listener on MAG1.

delete all the (S,G) state relating to MN-S on MAG1.

- PIM (S,G) prune
- ===============Bi-dir tunneI==============>
- update (S,G) state
- update oiflist
- Remove multicast Bi-dir tunnel
- <======================================>

Figure 4 Procedure of deleting multicast Route

1. MN sends (HoA,G) leave message (MLD Report messages) specifying sender and multicast addresses to the access link.

2. On receiving the (HoA,G) leave message from the MN, if MAG1 figures that MN is the last multicast listener subscribed to the MN-S, MAG1 performs the following steps, otherwise, MAG1 simply delete the multicast state of MN as normal.

3. MAG1 deletes all the multicast state related to MN-S.

4. MAG1 removes the tunnel route from the MRIB and leave the corresponding multicast channels by sending the PIM Prune message to the RPF Neighbor MAG2 through the MAG1-MAG2 tunnel.

5. On the reception of PIM Prune message from MAG1, MAG2 updates the oiflist of the multicast state by removing the MAG2-MAG1 tunnel interface from the oiflist.
5. Local Mobility Anchor Operation

On receiving a PBU-F message from MAG, the LMA must perform the following operations.

1. Check if the PBU-F message contains the F flag set to 1.
2. Find the CoA of MN-S by looking up the binding cache of LMA.
3. If the corresponding HoA-CoA entry is found in the binding cache, LMA will respond to MAG of MN with a PBA-F message containing a success indication. Otherwise, if not found, LMA will respond with the PBA-F containing a failure indication.

The responding PBA-F message from LMA to MAG of MN is constructed as follows.

1. Source address field in the IP header must be set to IP address of LMA
2. Destination address filed in the IP header must be set to IP address of the MAG of MN
3. The PBA message MUST include the CoA of MN-S.

6. Mobile Access Gateway Operation

The MAG MUST operate as an "SSM-aware" router. [RFC4604] provide the behavior of an "SSM-aware" router.

The PBU-F message from MAG to LMA MUST be constructed, as specified below.

1. Source address field in the IP header must contain the IP address of MAG.
2. Destination address filed in the IP header must contain the IP address of LMA.
3. The PBU-F message must include the HoA of MN-S.

On receiving a PBA-F message from LMA, MAG1(MAG of MN) MUST perform the following operations.
1. Check if the PBA-F message contains the F flag set to 1.

2. MAG1 MUST establish a tunnel with MAG2 (MAG of MN-S) for multicast data delivery.

3. MAG1 MUST add route to Multicast Routing Information Base (MRIB) and send PIM Join/Prune messages through MAG1-MAG2 tunnel interface.

4. MAG1 MUST create/update multicast state for MN, the iif of the multicast state MUST be set to MAG1-MAG2 tunnel interface.

On receiving a PIM Join/Prune messages from MAG2-MAG1 tunnel interface, MAG2 MUST create/update multicast state for MN.

1. Add MAG2-MAG1 tunnel interface to the oiflist of the multicast state on receiving a PIM Join message from MAG2-MAG1 tunnel interface.

2. Delete MAG2-MAG1 tunnel interface from the oiflist of the multicast state on receiving a PIM Prune message from MAG2-MAG1 tunnel interface.

7. Mobile Node Operation

In this document, MN’s MAG acquire MN-S’s CoA from LMA according to MN-S’s HoA, so a mobile node sends MLD Report messages including source and multicast addresses when it subscribes a multicast channel.

The MN MUST operate as an "SSM-aware" host. [RFC4604] provide the behavior of an "SSM-aware" host.

8. Message Format Extension

8.1. Proxy Binding Update with Source Address Finding Extension
A Binding Update message that is sent by MAG to LMA is referred to as the "Proxy Binding Source Address Finding" message. A new flag (F) is included in the Proxy Binding Update message with Source Address Finding extension (PBU-F). The rest of the Binding Update message format remains the same as defined in [RFC3775] and with the additional (R), (M), and (P) flags, as specified in [RFC3963], [RFC4140], and [RFC5213], respectively.

Source Address Finding Flag

A new flag (F) is included in the Binding Update message to indicate to LMA that the Binding Update message is a Source Address Finding message. In the normal PMIP operation, the flag must be set to 0.

The PBU-F message is transferred for finding the MN-S’s care-of address. The rest of the PBU message remains unchanged.

8.2. Proxy Binding Acknowledgement Message with Source Address Finding Extension

Figure 5 Proxy Binding Update with Source Address Finding Extension

A Binding Update message that is sent by MAG to LMA is referred to as the "Proxy Binding Source Address Finding" message. A new flag (F) is included in the Proxy Binding Update message with Source Address Finding extension (PBU-F). The rest of the Binding Update message format remains the same as defined in [RFC3775] and with the additional (R), (M), and (P) flags, as specified in [RFC3963], [RFC4140], and [RFC5213], respectively.

Source Address Finding Flag

A new flag (F) is included in the Binding Update message to indicate to LMA that the Binding Update message is a Source Address Finding message. In the normal PMIP operation, the flag must be set to 0.

The PBU-F message is transferred for finding the MN-S’s care-of address. The rest of the PBU message remains unchanged.
A "Proxy Binding Acknowledgement" message is sent from LMA to MAG in response to a Proxy Binding Update message. A new flag (F) is included in the Proxy Binding Acknowledgement message with Source Address Finding extension (PBA-F). The rest of the Binding Acknowledgement message format remains the same as defined in [RFC3775] and with the additional (R) flag, as specified in [RFC3963] and [RFC5213], respectively.

Source Address Finding Flag

A new flag (F) is included in the Binding Acknowledgement message to indicate to MAG that the Binding Acknowledgement message is a Source Address Finding message. In the normal PMIP operation, the flag must be set to 0.

When (F) flag is specified in PBA-F message, the mobility options field includes "MN-S’s care-of address" (Section 8.3).
The Care-of Address field contains the care-of address of MN-S.

This option is valid only in PBA-F message. On the reception of PBU-F, the LMA responds with a PBA-F message including the Care-of Address Option.

9. Security Considerations

TBD

10. IANA Considerations

11. Normative References

Authors’ Addresses

Juan Liu
ZTE Corporation
RD Building 1,Zijinghua Road No.68
Yuhuatai District,Nanjing 210012
P.R.China

Email: liu.juan45@zte.com.cn
Wen Luo
ZTE Corporation
RD Building 1, Zijinghua Road No.68
Yuhuatai District, Nanjing 210012
P.R. China

Wei Yan
ZTE Corporation
RD Building 1, Zijinghua Road No.68
Yuhuatai District, Nanjing 210012
P.R. China

Email: yan.wei@zte.com.cn
Multicast Listener Extensions for MIPv6 and PMIPv6 Fast Handovers
draft-schmidt-multimob-fmipv6-pfmipv6-multicast-05

Abstract

Fast handover protocols for MIPv6 and PMIPv6 define mobility management procedures that support unicast communication at reduced handover latency. Fast handover base operations do not affect multicast communication, and hence do not accelerate handover management for native multicast listeners. Many multicast applications like IPTV or conferencing, though, are comprised of delay-sensitive real-time traffic and will benefit from fast handover execution. This document specifies extension of the Mobile IPv6 Fast Handovers (FMIPv6) and the Fast Handovers for Proxy Mobile IPv6 (PFMIPv6) protocols to include multicast traffic management in fast handover operations. This multicast support is provided first at the control plane by a management of rapid context transfer between access routers, second at the data plane by an optional fast traffic forwarding that MAY include buffering.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 16, 2012.
Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 4
2. Terminology ... 5
3. Protocol Overview 5
 3.1. Multicast Context Transfer between Access Routers 6
 3.2. Protocol Operations Specific to FMIPv6 8
 3.3. Protocol Operations Specific to PFMIPv6 10
4. Protocol Details 13
 4.1. Protocol Operations Specific to FMIPv6 13
 4.1.1. Operations of the Mobile Node 13
 4.1.2. Operations of the Previous Access Router 14
 4.1.3. Operations of the New Access Router 15
 4.2. Protocol Operations Specific to PFMIPv6 15
 4.2.1. Operations of the Mobile Node 15
 4.2.2. Operations of the Previous MAG 15
 4.2.3. Operations of the New MAG 16
 4.2.4. IPv4 Support Considerations 17
5. Message Formats 18
 5.1. Multicast Indicator for Proxy Router Advertisement (PrRtAdv) 18
 5.2. Extensions to Existing Mobility Header Messages 18
 5.3. New Multicast Mobility Option 18
 5.4. New Multicast Acknowledgement Option 20
 5.5. Length Considerations: Number of Records and Addresses 22
 5.6. MLD (IGMP) Compatibility Aspects 22
6. Security Considerations 22
7. IANA Considerations 23
8. Acknowledgments 23
9. References ... 23
 9.1. Normative References 23
 9.2. Informative References 24
1. Introduction

Mobile IPv6 [RFC3775] defines a network layer mobility protocol involving mobile nodes participation, while Proxy Mobile IPv6 [RFC5213] provides a mechanism without requiring mobility protocol operations at a Mobile Node (MN). Both protocols introduce traffic disruptions on handovers that may be intolerable in many application scenarios. Mobile IPv6 Fast Handovers (FMIPv6) [RFC5568], and Fast Handovers for Proxy Mobile IPv6 (PFMIPv6) [RFC5949] improve these handover delays for unicast communication to the order of the maximum delay needed for link switching and signaling between Access Routers (ARs) or Mobile Access Gateways (MAGs) [FMIPv6-Analysis].

No dedicated treatment of seamless multicast data reception has been proposed by any of the above protocols. MIPv6 only roughly defines multicast for Mobile Nodes using a remote subscription approach or a home subscription through bi-directional tunneling via the Home Agent (HA). Multicast forwarding services have not been specified at all in [RFC5213], but are subject to current specification [RFC6224]. It is assumed throughout this document that mechanisms and protocol operations are in place to transport multicast traffic to ARs. These operations are referred to as ‘JOIN/LEAVE’ of an AR, while the explicit techniques to manage multicast transmission are beyond the scope of this document.

Mobile multicast protocols need to serve applications such as IPTV with high-volume content streams to be distributed to potentially large numbers of receivers, and therefore should preserve the multicast nature of packet distribution and approximate optimal routing [RFC5757]. It is undesirable to rely on home tunneling for optimizing multicast. Unencapsulated, native multicast transmission requires establishing forwarding state, which will not be transferred between access routers by the unicast fast handover protocols. Thus multicast traffic will not experience expedited handover performance, but an MN - or its corresponding MAG in PMIPv6 - can perform remote subscriptions in each visited network.

This document specifies extensions of FMIPv6 and PFMIPv6 for including multicast traffic management in fast handover operations. The solution common to both underlying protocols defines the per-group transfer of multicast contexts between ARs or MAGs. The protocol defines corresponding message extensions necessary for carrying group context information independent of the particular handover protocol. ARs or MAGs are then enabled to treat multicast traffic according to fast unicast handovers and with similar performance. No protocol changes are introduced that prevent a multicast unaware node from performing fast handovers with multicast aware ARs or MAGs.
This specification is applicable when a mobile node has joined and maintains one or several multicast group subscriptions prior to undergoing a fast handover. It does not introduce any requirements on the multicast routing protocols in use, nor are the ARs or MAGs assumed to be multicast routers. It assumes network conditions, though, that allow native multicast reception in both, the previous and new access network. Methods to bridge regions without native multicast connectivity are beyond the scope of this document.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. The use of the term, "silently ignore" is not defined in RFC 2119. However, the term is used in this document and can be similarly construed.

This document uses the terminology of [RFC5568], [RFC5949], [RFC3775], and [RFC5213]. In addition, the following terms are introduced:

3. Protocol Overview

The reference scenario for multicast fast handover is illustrated in Figure 1.
3.1. Multicast Context Transfer between Access Routers

In a fast handover scenario (cf. Figure 1), ARs/MAGs establish a mutual binding and provide the capability to exchange context information concerning the MN. This context transfer will be triggered by detecting MN's forthcoming move to a new AR and assist the MN to immediately resume communication on the new subnet link using its previous IP address. In contrast to unicast, multicast stream reception does not primarily depend on address and binding cache management, but requires distribution trees to adapt so that traffic follows the movement of the MN. This process may be significantly slower than fast handover management [RFC5757].

Multicast listeners at handover may take the twofold advantage of including the multicast groups under subscription in context transfer. First, the NAR can proactively join the desired groups as soon as it gains knowledge of them. Second, multicast streams MAY be included in traffic forwarding via the tunnel established from PAR to NAR.

There are two modes of operation in FMIPv6 and in PFMIPv6. The
predictive mode allows for AR-binding and context transfer prior to an MN handover, while in the reactive mode, these steps are executed after detection that the MN has re-attached to NAR. Details of the signaling schemes differ between FMIPv6 and PFMIPv6 and are outlined in Section 3.2 and Section 3.3.

In a predictive fast handover, the access router (i.e., PAR (PMAG) in Figure 1) learns about the impending movement of the MN and simultaneously about the multicast group context as specified in Section 3.2 and Section 3.3. Thereafter, PAR will initiate an AR-binding and context transfer by transmitting a HI message to NAR (NMAG). HI is extended by multicast group states carried in mobility header options as defined in Section 5.3. On reception of the HI message, NAR returns a multicast acknowledgement in its HACK answer that indicates its ability to support each requested group (see Section 5.4). NAR (NMAG) expresses its willingness to receive multicast traffic from forwarding by PAR using standard MLD signaling. There are several reasons to waive forwarding, e.g., the group could already be under native subscription or capacity constraints can hinder decapsulation of additional streams at the NAR. On the previous network side, forwarding of multicast traffic can be in conflict with capacity or policy constraints of PAR.

For the groups requested, PAR MAY add the tunnel interface to its multicast forwarding database, so that multicast streams can be forwarded in parallel to unicast traffic. NAR, taking the role of an MLD proxy [RFC4605] with upstream router PAR, will submit an MLD report on this upstream tunnel interface to request the desired groups, but will terminate multicast forwarding [RFC3810] from PAR, as soon as group traffic natively arrives. In addition, NAR immediately joins all groups that are not already under subscription using its native multicast upstream interface and loopback as downstream. It starts to downstream multicast forwarding after the MN has arrived.

In a reactive fast handover, PAR will learn about the movement of the MN, after the latter has re-associated with the new access network. Also from the new link, it will be informed about the multicast context of the MN. As group membership information are present at the new access network prior to context transfer, MLD join signaling can proceed in parallel to HI/HACK exchange. Following the context transfer, multicast data can be forwarded to the new access network using the PAR-NAR tunnel of the fast handover protocol. Depending on the specific network topology though, multicast traffic for some groups may natively arrive before it is forwarded from PAR.

In both modes of operation, it is the responsibility of the PAR (PMAG) to properly react on the departure of the MN in the context of...
local group management. Depending on the multicast state management, link type and MLD parameters deployed (cf., [RFC5757]), it is requested to take appropriate actions to adjust multicast service to requirements of the remaining nodes.

In this way, the MN will be able to participate in multicast group communication with a handover performance comparable to that for unicast, while network resource consumption is minimized.

3.2. Protocol Operations Specific to FMIPv6

ARs that provide multicast support in FMIPv6 will advertise this general service by setting an indicator bit (M-bit) in its PrRtAdv message as defined in Section 5.1. Additional details about the multicast service support, e.g., flavors and groups, will be exchanged within HI/HACK dialogs later at handovers.

An MN operating FMIPv6 will actively initiate the handover management by submitting a fast binding update (FBU). The MN, which is aware of the multicast groups it wishes to maintain, will attach mobility options containing its group states (see Section 5.3) to the FBU, and thereby inform ARs about its multicast context. ARs will use these multicast context options for inter-AR context transfer.

In predictive mode, FBU is issued on the previous link and received by PAR as displayed in Figure 2. PAR will extract the multicast context options and append them to its HI message. From the HACK message, PAR will redistribute the multicast acknowledgement by adding the corresponding mobility options to its FBACK message. From receiving FBACK, the MN will learn about a per group multicast support in the new access network. If some groups or a multicast flavour are not supported, it MAY decide on taking actions to compensate the missing service. Note that the proactive multicast context transfer may proceed successfully, even if the MN misses the FBACK message on the previous link.
The call flow for reactive mode is visualized in Figure 3. After attaching to the new access link and performing an unsolicited neighbor advertisement (UNA), the MN issues an FBU which NAR forwards to PAR without processing. At this time, the MN is able to re-join all desired multicast groups without relying on AR assistance. Nevertheless, multicast context options are exchanged in the HI/HACK dialog to facilitate intermediate forwarding of requested streams. Note that group traffic possibly already arrives from a MN’s subscription at the time NAR receives the HI message. Such streams may be transparently excluded from forwarding by setting an appropriate multicast acknowledge option. In any case, NAR MUST ensure that not more than one stream of the same group is forwarded to the MN.
3.3. Protocol Operations Specific to PFMIPv6

In a proxy mobile IPv6 environment, the MN remains agnostic of network layer changes, and fast handover procedures are operated by the access routers or MAGs. The handover initiation, or the re-association respectively are managed by the access networks. Consequently, access routers need to be aware of multicast membership state at the mobile node. There are two ways to obtain record of MN’s multicast membership. First, MAGs MAY perform an explicit tracking (cf., [RFC4605], [RFC6224]) or extract membership status from forwarding states at node-specific point-to-point links. Second, routers can perform general queries at handovers. Both methods are equally applicable. However, a router that does not operate explicit tracking MUST query its downstream links subsequent to handovers. In either case, the PAR will become knowledgeable about multicast group subscriptions of the MN.
In predictive mode, the PMAG (PAR) will learn about the upcoming movement of the mobile node. Without explicit tracking, it will immediately submit a general MLD query and learn about the multicast groups under subscription. As displayed in Figure 4, it will initiate binding and context transfer with the NMAG (NAR) by issuing a HI message that is augmented by multicast contexts in the mobility options defined in Section 5.3. NAR will extract multicast context information and act as described in Section 3.1.
In reactive mode, the NMAG (NAR) will learn about MN’s attachment to the N-AN and establish connectivity by means of PMIPv6 protocol operations. However, it will have no knowledge about multicast state at the MN. Triggered by a MN attachment, the NMAG will send a general MLD query and thereafter join the requested groups. In the case of a reactive handover, the binding is initiated by NMAG, and the HI/HACK message semantic is inverted (see [RFC5949]). For multicast context transfer, the NMAG attaches to its HI message those group identifiers it requests to be forwarded from PMAG. Using the identical syntax in its multicast mobility option headers as defined in Section 5.4, PMAG acknowledges those requested groups in its HACK answer that it is willing to forward. The corresponding call flow is displayed in Figure 5.
4. Protocol Details

4.1. Protocol Operations Specific to FMIPv6

4.1.1. Operations of the Mobile Node

A Mobile Node willing to manage multicast traffic within fast handover operations will inform about its MLD listener state records within handover signaling.

When sensing a handover in predictive mode, an MN will build a
Multicast Mobility Option as described in Section 5.3 that contains
the MLD (IGMP) multicast listener state and append it to the Fast
Binding Update (FBU) prior to signaling with PAR. It will receive
the Multicast Acknowledgement Option(s) as part of Fast Binding
Acknowledge (FBack) (see Section 5.4) and learn about unsupported or
prohibited groups at the NAR. The MN MAY take appropriate actions
like home tunneling to bridge missing multicast services in the new
access network. No multicast-specific operation is required by the
MN when re-attaching in the new network besides standard FMIPv6
signaling.

In reactive mode, the MN appends an identical Multicast Mobility
Option to FBU sent after its reconnect. In response, it will learn
about the Multicast Acknowledgement Option(s) from FBACK and expect
corresponding multicast data. Concurrently it joins all desired
multicast groups (channels) directly on its newly established access
link.

4.1.2. Operations of the Previous Access Router

A PAR will advertise its multicast support by setting the M-bit in
PrRtAdv.

In predictive mode, a PAR will receive the multicast listener state
of a MN prior to handover from the Multicast Mobility Option appended
to the FBU. It will forward these records to NAR within HI messages
and will expect Multicast Acknowledgement Option(s) in HACK, which
itself is returned to the MN as an appendix to FBACK. In performing
multicast context exchange, the AR is instructed to include the PAR-
to-NAR tunnel obtained from unicast handover management in its
multicast downstream interfaces and await MLD listener reports from
NAR. In response to receiving multicast subscriptions, PAR will
normally forward group data acting as a normal multicast router or
proxy. However, NAR MAY refuse to forward some or all of the
multicast streams.

In reactive mode, PAR will receive the FBU augmented by the Multicast
Mobility Option from the new network, but will continue with an
identical multicast record exchange in the HI/HACK dialog. As in the
predictive case, it will configure the PAR-to-NAR tunnel for
multicast downstream and forward data according to MLD reports
obtained from NAR, if capable of forwarding.

In both modes, PAR will interpret the first of the two events, the
departure of the MN or the reception of the Multicast Acknowledgement
Option(s) as a multicast LEAVE message of the MN and react according
to the signaling scheme deployed in the access network (i.e., MLD
querying, explicit tracking).
4.1.3. Operations of the New Access Router

NAR will advertise its multicast support by setting the M-bit in PrRtAdv.

In predictive mode, a NAR will receive the multicast listener state of an expected MN from the Multicast Mobility Option appended to the HI message. It will extract the MLD/IGMP records from the message and intersect the request subscription with its multicast service offer. Further on it will adjoin the supported groups (channels) to the MLD listener state using loopback as downstream interface. This will lead to suitable regular subscriptions on its native multicast upstream interface without additional forwarding. Concurrently, NAR builds a Multicast Acknowledgement Option(s) (see Section 5.4) listing those groups (channels) unsupported on the new access link and returns them within HACK. As soon as the bidirectional tunnel from PAR to NAR is operational, NAR joins the groups desired for forwarding on the tunnel link.

In reactive mode, NAR will learn about the multicast listener state of a new MN from the Multicast Mobility Option appended to HI at a time, when the MN has already performed local subscriptions of the multicast service. Thus NAR solely determines the intersection of requested and supported groups (channels) and issues the join requests for group forwarding on the PAR-NAR tunnel interface.

In both modes, NAR MUST send a LEAVE message to the tunnel immediately after forwarding of a group (channel) becomes unneeded, e.g., after native multicast traffic arrives or group membership of the MN terminates.

4.2. Protocol Operations Specific to PFMIPv6

4.2.1. Operations of the Mobile Node

A Mobile Node willing to participate in multicast traffic will join, maintain and leave groups as if located in the fixed Internet. It will cooperate in handover indication as specified in [RFC5949] and required by its access link-layer technology. No multicast-specific mobility actions nor implementations are required at the MN in a PMIPv6 domain.

4.2.2. Operations of the Previous MAG

A MAG receiving a handover indication for one of its MNs follows the predictive fast handover mode as a PMAG. It MUST issue an MLD General Query immediately on its corresponding link unless it performs an explicit tracking on that link. After gaining knowledge
of the multicast subscriptions of the MN, the PMAG builds a Multicast Mobility Option as described in Section 5.3 that contains the MLD (IGMP) multicast listener state. If not empty, this Mobility Option is appended to the regular fast handover HI messages, or - in the case of unicast HI message being submitted prior to multicast state detection - sent in an additional HI message to the NMAG. PMAG then waits for receiving the Multicast Acknowledgement Option(s) with HACK (see Section 5.4) and the creation of the bidirectional tunnel with NMAG. Thereafter PMAG will add the tunnel to its downstream interfaces in the multicast forwarding database. For those groups (channels) reported in the Multicast Acknowledgement Option(s), i.e., not supported in the new access network, PMAG normally takes appropriate actions (e.g., forwarding, termination) in concordance with the network policy. It SHOULD start forwarding traffic down the tunnel interface for those groups it receives an MLD listener report message from NMAG. However, it MAY deny forwarding service. After the departure of the MN and on the reception of LEAVE messages for groups/channels, PMAG MUST terminate forwarding of the specific groups and update its multicast forwarding database. Correspondingly it issues a group/channel LEAVE to its upstream link, if no more listeners are present on its downstream links.

A MAG receiving a HI message with Multicast Mobility Option for a currently attached node follows the reactive fast handover mode as a PMAG. It will return Multicast Acknowledgement Option(s) (see Section 5.4) within HACK listing those groups/channels unsupported at NMAG. It will add the bidirectional tunnel with NMAG to its downstream interfaces and will start forwarding multicast traffic for those groups it receives an MLD listener report message from NMAG. At the reception of LEAVE messages for groups (channels), PMAG MUST terminate forwarding of the specific groups and update its multicast forwarding database. According to its multicast forwarding states, it MAY need to issue a group/channel LEAVE to its upstream link, if no more listeners are present on its downstream links.

In both modes, PMAG will interpret the departure of the MN as a multicast LEAVE message of the MN and react according to the signaling scheme deployed in the access network (i.e., MLD querying, explicit tracking).

4.2.3. Operations of the New MAG

A MAG receiving a HI message with Multicast Mobility Option for a currently unattached node follows the predictive fast handover mode as NMAG. It will decide on those multicast groups/channels it wants forwarded from the PMAG and builds a Multicast Acknowledgement Option (see Section 5.4) that enumerates only unwanted groups/channels. This Mobility Option is appended to the regular fast handover HACK
messages, or - in the case of unicast HACK message being submitted prior to multicast state acknowledgement - sent in an additional HACK message to the PMAG. Immediately thereafter, NMAG SHOULD update its MLD listener state by the new groups/channels obtained from the Multicast Mobility Option. Until the MN re-attaches, NMAG uses its loopback interface for downstream and does not forward traffic to the potential link of the MN. NMAG SHOULD issue JOIN messages for those newly adopted groups to its regular multicast upstream interface. As soon as the bidirectional tunnel with PMAG is established, NMAG additionally joins those groups/channels on the tunnel interface that it wants to receive by forwarding from PMAG. NMAG MUST send a LEAVE message to the tunnel immediately after forwarding of a group/channel becomes unneeded, e.g., after native multicast traffic arrives or group membership of the MN terminates.

A MAG experiencing a connection request for a MN without prior reception of a corresponding Multicast Mobility Option is operating in the reactive fast handover mode as NMAG. Following the re-attachment, it immediately issues an MLD General Query to learn about multicast subscriptions of the newly arrived MN. Using standard multicast operations, NMAG joins the missing groups (channels) on its regular multicast upstream interface. Concurrently, it selects groups (channels) for forwarding from PMAG and builds a Multicast Mobility Option as described in Section 5.3 that contains the MLD (IGMP) multicast listener state. If not empty, this Mobility Option is appended to the regular fast handover HI messages with the F flag set, or - in the case of unicast HI message being submitted prior to multicast state detection - sent in an additional HI message to the PMAG. Upon reception of the Multicast Acknowledgement Option and upcoming of the bidirectional tunnel, NMAG additionally joins those groups/channels on the tunnel interface that it wants to receive by forwarding from PMAG. When multicast streams arrive, the NMAG forwards data to the appropriate downlink(s). NMAG MUST send a LEAVE message to the tunnel immediately after forwarding of a group/channel becomes unneeded, e.g., after native multicast traffic arrives or group membership of the MN terminates.

4.2.4. IPv4 Support Considerations

An MN in a PMIPv6 domain may use an IPv4 address transparently for communication as specified in [RFC5844]. For this purpose, LMAs can register IPv4-Proxy-CoAs in its Binding Caches and MAGs can provide IPv4 support in access networks. Correspondingly, multicast membership management will be performed by the MN using IGMP. For multiprotocol multicast support on the network side, IGMPv3 router functions are required at both MAGs (see Section 5.6 for compatibility considerations with previous IGMP versions). Context transfer between MAGs can transparently proceed in HI/HACK message...
exchanges by encapsulating IGMP multicast state records within Multicast Mobility Options (see Section 5.3 and Section 5.4 for details on message formats.

It is worth mentioning the scenarios of a dual-stack IPv4/IPv6 access network, and the use of GRE tunneling as specified in [RFC5845]. Corresponding implications and operations are discussed in the PMIP Multicast Base Deployment document, cf., [RFC6224].

5. Message Formats

5.1. Multicast Indicator for Proxy Router Advertisement (PrRtAdv)

An FMIPv6 AR will indicate its multicast support by activating the M-bit in its Proxy Router Advertisements (PrRtAdv). The message extension has the following format.

```
+----------+----------+----------+----------+
| Type     | Code     | Checksum |
+----------+----------+----------+
| Subtype  | M        | Reserved |
+----------+----------+----------+
| Identifier | Options |
+----------+----------+
```

Figure 6: Multicast Indicator Bit for Proxy Router Advertisement (PrRtAdv) Message

5.2. Extensions to Existing Mobility Header Messages

The fast handover protocols use a new IPv6 header type called Mobility Header as defined in [RFC3775]. Mobility headers can carry variable Mobility Options.

Multicast listener context of an MN is transferred in fast handover operations from PAR/PMAG to NAR/NMAG within a new Multicast Mobility Option, and acknowledged by a corresponding Acknowledgement Option. Depending on the specific handover scenario and protocol in use, the corresponding option is included within the mobility option list of HI/HAck only (PFMIPv6), or of FBU/FBAck/HI/HAck (FMIPv6).

5.3. New Multicast Mobility Option

The Multicast Mobility Option contains the current listener state record of the MN obtained from the MLD Report message, and has the format displayed in Figure 7.
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+---+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type</td>
<td>Length</td>
<td>Option-Code</td>
</tr>
<tr>
<td>+---+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MLD (IGMP) Report Payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+---+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7: Mobility Header Multicast Option

Type: TBD

Length: 8-bit unsigned integer. The size of this option in 8 octets including the Type, Option-Code, and Length fields.

Option-Code:

1: IGMPv3 Payload Type

2: MLDv2 Payload Type

3: IGMPv3 Payload Type from IGMPv2 Compatibility Mode

4: MLDv2 Payload Type from MLDv1 Compatibility Mode

Reserved: MUST be set to zero by the sender and MUST be ignored by the receiver.

MLD (IGMP) Report Payload: this field is composed of the MLD (IGMP) Report message after stripping its ICMP header. Corresponding message formats are defined for MLDv2 in [RFC3810], and for IGMPv3 in [RFC3376].

Figure 8 shows the Report Payload for MLDv2, while the payload format for IGMPv3 is defined corresponding to the IGMPv3 payload format (see Section 5.2. of [RFC3810], or Section 4.2 of [RFC3376]) for the definition of Multicast Address Records.)
5.4. New Multicast Acknowledgement Option

The Multicast Acknowledgement Option reports the status of the context transfer and contains the list of state records that could not be successfully transferred to the next access network. It has the format displayed in Figure 9.
Figure 9: Mobility Header Multicast Acknowledgement Option

Type: TBD

Length: 8-bit unsigned integer. The size of this option in 8 octets. The length is 1 when the MLD (IGMP) Unsupported Report Payload field contains no Mcast Address Record.

Option-Code: 0

Status:

1: Report Payload type unsupported

2: Requested group service unsupported

3: Requested group service administratively prohibited

Reserved: MUST be set to zero by the sender and MUST be ignored by the receiver.

MLD (IGMP) Unsupported Report Payload: this field is syntactically identical to the MLD (IGMP) Report Payload field described in Section 5.3, but is only composed of those multicast address records that are not supported or prohibited in the new access network. This field MUST always contain the first header line (reserved field and No of Mcast Address Records), but MUST NOT contain any Mcast Address Records, if the status code equals 1.

Note that group subscriptions to specific sources may be rejected at the destination network, and thus the composition of multicast address records may differ from initial requests within an MLD (IGMP)
5.5. Length Considerations: Number of Records and Addresses

Mobility Header Messages exchanged in HI/HACK and FBU/FBACK dialogs impose length restrictions on multicast context records. The maximal payload length available in FBU/FBACK messages is the PATH-MTU - 40 octets (IPv6 Header) - 6 octets (Mobility Header) - 6 octets (FBU/FBACK Header). For example, on an Ethernet link with an MTU of 1500 octets, not more than 72 Multicast Address Records of minimal length (without source states) may be exchanged in one message pair. In typical handover scenarios, this number reduces further according to unicast context and Binding Authorization data. A larger number of MLD Report Payloads MAY be sent within multiple HI/HACK or FBU/FBACK message pairs. In PFMIPv6, context information can be fragmented over several HI/HACK messages. However, a single MLDv2 Report Payload MUST NOT be fragmented. Hence, for a single Multicast Address Record on an Ethernet link, the number of source addresses is limited to 89.

5.6. MLD (IGMP) Compatibility Aspects

Access routers (MAGs) MUST support MLDv2 (IGMPv3). To enable multicast service for MLDv1 (IGMPv2) listeners, the routers MUST follow the interoperability rules defined in [RFC3810] ([RFC3376]) and appropriately set the Multicast Address Compatibility Mode. When the Multicast Address Compatibility Mode is MLDv1 (IGMPv2), a router internally translates the following MLDv1 (IGMPv2) messages for that multicast address to their MLDv2 (IGMPv2) equivalents and uses these messages in the context transfer. The current state of Compatibility Mode is translated into the code of the Multicast Mobility Option as defined in Section 5.3. A NAR (nMAG) receiving a Multicast Mobility Option during handover will switch to the minimum obtained from its previous and newly learned value of MLD (IGMP) Compatibility Mode for continued operation.

6. Security Considerations

Security vulnerabilities that exceed issues discussed in the base protocols of this document ([RFC5568], [RFC5949], [RFC3810], [RFC3376]) are identified as follows.

Multicast context transfer at predictive handovers implements group states at remote access routers and may lead to group subscriptions without further validation of the multicast service requests. Thereby a NAR (nMAG) is requested to cooperate in potentially complex multicast re-routing and may receive large volumes of traffic.
Malicious or inadvertent multicast context transfers may result in a significant burden of route establishment and traffic management onto the backbone infrastructure and the access router itself. Rapid re-routing or traffic overload can be mitigated by a rate control at the AR that restricts the frequency of traffic redirects and the total number of subscriptions. In addition, the wireless access network remains protected from multicast data injection until the requesting MN attaches to the new location.

7. IANA Considerations

This document defines new flags and status codes in the HI and HAck messages as well as two new mobility options. The Type values for these mobility options are assigned from the same numbering space as allocated for the other mobility options defined in [RFC3775]. Those for the flags and status codes are assigned from the corresponding numbering space defined in [RFC5568], or [RFC5949] and requested to be created as new tables in the IANA registry (marked with asterisks). New values for these registries can be allocated by Standards Action or IESG approval [RFC5226].

8. Acknowledgments

Protocol extensions to support multicast in Fast Mobile IPv6 have been loosely discussed since several years. Repeated attempts have been taken to define corresponding protocol extensions. The first draft [fmcast-mip6] was presented by Suh, Kwon, Suh, and Park already in 2004.

This work was stimulated by many fruitful discussions in the MobOpts research group. We would like to thank all active members for constructive thoughts and contributions on the subject of multicast mobility. Comments, discussions and reviewing remarks have been contributed by (in alphabetical order) Carlos J. Bernardos, Luis M. Contreras, Dirk von Hugo, Marco Liebsch, Behcet Sarikaya, Stig Venaas and Juan Carlos Zuniga.

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Change Log

The following changes have been made from draft-schmidt-multimob-fmipv6-pfmipv6-multicast-04.

1. Following working group feedback, multicast traffic forwarding is now a two-sided option between PAR (PMAG) and NAR (NMAG): Either access router can decide on its contribution to the data plane.

2. Several editorial improvements.

The following changes have been made from draft-schmidt-multimob-fmipv6-pfmipv6-multicast-03.

1. References updated.

The following changes have been made from draft-schmidt-multimob-fmipv6-pfmipv6-multicast-02.

1. Detailed operations on PFMIPv6 entities completed.

2. Some editorial improvements & clarifications.

3. References updated.

The following changes have been made from draft-schmidt-multimob-fmipv6-pfmipv6-multicast-01.

1. First detailed operations on PFMIPv6 added.

2. IPv4 support considerations for PFMIPv6 added.

3. Section on length considerations for multicast context records corrected.
4. Many editorial improvements & clarifications.
5. References updated.

The following changes have been made from
draft-schmidt-multimob-fmipv6-pfmipv6-multicast-00.

1. Editorial improvements & clarifications.
2. Section on length considerations for multicast context records added.
3. Section on MLD/IGMP compatibility aspects added.

Authors’ Addresses

Thomas C. Schmidt
HAW Hamburg
Dept. Informatik
Berliner Tor 7
Hamburg, D-20099
Germany

Email: schmidt@informatik.haw-hamburg.de

Matthias Waehlisch
link-lab & FU Berlin
Hoenower Str. 35
Berlin, D-10318
Germany

Email: mw@link-lab.net

Rajeev Koodli
Cisco Systems
30 International Place
Xuanwu District,
Tewksbury MA 01876
USA

Email: rkoodli@cisco.com
Godred Fairhurst
University of Aberdeen
School of Engineering
Aberdeen AB24 3UE
UK

Email: gorry@erg.abdn.ac.uk
IP Multicast Use Case Analysis for PMIPv6-based Distributed Mobility Management

draft-sfigureiredo-multimob-use-case-dmm-00

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on August 4, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.
Abstract

As mobile networks are moving towards distributed mobility management, the application of IP multicast is needed to provide efficient content delivery on the network. This document describes use cases when IP multicast is applied on PMIPv6-based DMM, and analyzes problems focused on user plane issues.

Table of Contents

1. Introduction .. 3
2. Conventions and Terminology.................................. 3
3. Use Cases Description.. 4
 3.1. Multicast listener support................................ 4
 3.1.1. MLD-P in MAR....................................... 4
 3.1.1.1. Duplicated Traffic............................ 5
 3.1.1.2. Non-optimal routing............................ 6
 3.1.2. Multicast Router in MAR............................ 7
3.2. Multicast sender support................................ 7
 3.2.1. MLD-P in MAR....................................... 7
 3.2.1.1. Triangular routing............................ 8
 3.2.2. Multicast Router in MAR............................ 10
4. IANA Considerations .. 11
5. Security Considerations..................................... 11
6. References ... 11
 6.1. Normative References................................... 11
6.2. Informative References................................... 11
1. Introduction

As a consequence of forthcoming multimedia avalanche, several optimization mechanisms are being considered towards efficient and resilient mobile networks. As verified in [DDMM-MI], current IP mobility management solutions have limitations in supporting efficient management and deployment. Thus, several proposals aiming at the distribution of the mobility management functions [DDMM-FP] were presented. While the problems resulting from the application of mobility solutions in multicast traffic are known, affecting its efficiency and leading to non-negligible service disruption, among others ([IFMM][RFC5757]). It is still not clear how the change from centralized to distributed mobility solutions may affect IP multicast support.

This document briefly describes use cases of IP multicast in a PMIPv6-based DMM environment, and analyses consequent problems. Both listener and sender perspective are studied, with MLD Proxy and Multicast Router at the Mobility Access Router (MAR).

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

This document uses the terminology defined in [RFC5213], [RFC6275], and [RFC3810], and [RFC4601]. Specifically, the definition of PMIPv6 domain is reused from [RFC5213] and reproduced here for completeness.

- Mobility Access Router (MAR): A router with the capability of acting both as a mobility anchor and as an access router, in a per flow basis.

- Previous Mobility Access Router (P-MAR): The MAR where the MN was attached to previously to the network-layer mobility process, and that may be acting as an anchor for one or multiple flows.

- New Mobile Access Gateway (N-MAR): The MAR to which the MN is currently attached, providing the access functionality and thus delivers all the flows destined to the MN.

- Multicast Listener Discovery Proxy (MLD-P): An entity following [RFC4605].
3. Use Cases Description

This draft focuses on describing problems that occur when deploying IP multicast on a general PMIPv6-derived DMM architecture, as there is not yet a fully specified unicast DMM protocol. So, the unicast DMM concept used in this document is assumed as follows: MAG and an LMA functionalities defined in [RFC5213] are equipped within a same physical entity, called MAR, and a MAR provides tunnel-based forwarding to provide a home network prefix (HNP)-based flow necessary IP session continuity whenever the MN having assigned HNP moves to another MAR.

3.1. Multicast listener support

3.1.1. MLD-P in MAR

Once a MN initially attaches to the P-MAR as shown in Figure 1), it receives a home prefix address, which will be associated with communications started at that MAR. The P-MAR transmits an MLD Query message towards the MN and receives the MLD Report messages from the MN. On receiving MLD Proxy message from the MN, the P-MAR tries to join multicast network. When joining procedure ends, multicast data is transmitted using IP multicasting scheme.

![Multicasting architecture using distributed mobility management](image)
When the MN moves to the N-MAR, the N-MAR is required to establish a tunnel for IP session continuity of the packets towards the HNP assigned from the P-MAR as soon as the N-MAR detects that the MN came from the P-MAR. Following the operation of the MLD-P [RFC4605] on the N-MAR, the MLD-P instance on the N-MAR configures the upstream interface towards the P-MAR associated with the MN when Base Solution, defined in [RFC6224], is applied to the DMM. This is simple and applicable as a network-based multicast DMM approach. However, a couple of relevant issues happen.

3.1.1.1. Duplicated Traffic

One problem is duplicated traffic, which is similar to the tunnel convergence problem occurring in [RFC6224], as shown in Figure 2. MN1 and MN3, which moved from MAR1 and MAR3, respectively, are currently located at the MAR2. Through respective established tunnels for MN1 and MN3, they receive multicast packets of the same channel through different MARs. This causes duplicated traffic, converging to the MAR2. The magnitude of replicated traffic will be much bigger than that of PMIPv6 because it is expected that the number of MARs at access level that will be deployed is much larger than that of LMAs at core level within a PMIPv6 domain.

As referred, when a MN first subscribes multicast content, its current MAR's MLD-P will forward its subscription to the multicast infrastructure. As such, an extra duplication factor may occur, if the subscription being done is already being received from one or multiple tunnels due to other listeners (refer to MN2 from Figure 2 for an example).
3.1.1.2. Non-optimal routing

Another issue is non-optimal routing (Figure 3). If we consider a significantly large domain, there is the possibility that the multicast packets need to traverse a long distance, depending on the setup of the upstream interface of MLD-P instance, even through the current MAR is connected to the multicast infrastructure. If an operator wants to deploy the upstream interface of all the MARs towards multicast source or multicast routing network, this issue doesn’t happen and such an approach is extremely simple and mobility-agnostic way but there may occur media synchronization issue.
3.1.2. Multicast Router in MAR

TBD

3.2. Multicast sender support

To provide sender multicasting support, a MAR may be required to act as MLD-P or multicast router. Depending on the equipped functions, we describe issues for multicast sender support.

3.2.1. MLD-P in MAR

In order for the multicast content to reach the multicast tree, the MLD-P SHOULD configure its upstream interface towards a MR [PM-HOME]. In the case of MR or MAR, it MAY act as the Rendezvous Point (RP) but cause frequent multicast tree reconstruction and associated service disruptions whenever the MN moves.
3.2.1.1. Triangular routing

When a listener attaches to a MAR where a source is transmitting, if the multicast traffic may be anchored through not current MAR (not MAR2 but MAR1 in Figure 5, and then multicast data would be reached through the mobility tunnel between MAR2 to MAR1. An listener (L1), subscribed to the source’s channel, receives the multicast content from multicast infrastructure, therefore a non-optimal route is made.
The same problem also occurs in the opposite process, i.e. if a multicast source starts transmitting multicast content at a MAR, and a listener moves to the same MAR while receiving the source’s content (Figure 6).

Figure 5 Triangular routing after source mobility

Figure 6 Triangular routing after listener mobility

When the source and the listener are within the same MAR (MAR2) as their anchor, if both the source/listener try to start the session and receive it, respectively at MAR2, the traffic will be optimally sent to the listener. As the traffic reaches the MLD-P via the downstream interface to which the source is attached, it will be sent through the interface through which the listener sent the MLD Report. However, if the source and the listener move to different MARs, the traffic will traverse the following non-optimal path, even though they share a common MAR2:

S -> Source’s MAR1 -> MAR2 -> Multicast Tree -> MAR2 -> Listener’s MAR3

This problem is depicted in Figure 7.

```
+---------------------+       +---------------------+       +---------------------+
|    Multicast Tree    |       |    Multicast Tree    |
+---------------------+       +---------------------+
    *                *       *                *
    *                *       *                *
    *                *       *                *
    *                *       *                *
+---------------------+       +---------------------+       +---------------------+
| MAR1    | (MDL-P) | MAR2    | (MDL-P) | MAR3    | (MDL-P) |
+---------------------+ Tun.1  +---------------------+ Tun.2  +---------------------+
    *                *       *                *       *                *
    *                *       *                *       *                *
    *                *       *                *       *                *
    *                *       *                *       *                *
+----+ move +----+       +----+ move +----+       +----+ move +----+
| S  | <--- | S |       | L  | -->- | L  |       | L  | <--- | L  |
+----+       +----+       +----+       +----+
```

(<=-/-->) : direction of the multicast packet flow

Figure 7 Non-optimal routing due to mobile sender

3.2.2. Multicast Router in MAR

TBD
4. IANA Considerations

This document makes no request of IANA.

5. Security Considerations

TBD

6. References

6.1. Normative References

6.2. Informative References

Authors’ Addresses

Sergio Figueiredo
Instituto de Telecomunicacoes
Campus Universitario de Santiago
3810-193 Aveiro, Portugal
E-mail: sfigueiredo@av.it.pt

Seil Jeon
Instituto de Telecomunicacoes
Campus Universitario de Santiago
3810-193 Aveiro, Portugal
E-mail: seiljeon@av.it.pt

Rui L. Aguiar
Instituto de Telecomunicacoes
Campus Universitario de Santiago
3810-193 Aveiro, Portugal
E-mail: ruilaa@ua.pt
IP Multicast Use Case Analysis for PMIPv6-based Distributed Mobility Management

draft-sfigueiredo-multimob-use-case-dmm-01.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on August 12, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Abstract

As mobile networks are moving towards distributed mobility management, the application of IP multicast is needed to provide efficient content delivery on the network. This document describes use cases when IP multicast is applied on PMIPv6-based DMM, and analyzes problems focused on user plane issues.

Table of Contents

1. Introduction...3
2. Conventions and Terminology....................................3
3. Use Cases Description..4
 3.1. Multicast listener support..................................4
 3.1.1. MLD-P in MAR..4
 3.1.1.1. Duplicated Traffic................................5
 3.1.1.2. Non-optimal routing................................6
 3.1.2. Multicast Router in MAR...............................7
 3.2. Multicast sender support..................................7
 3.2.1. MLD-P in MAR..7
 3.2.1.1. Triangular routing................................8
 3.2.2. Multicast Router in MAR...............................10
4. IANA Considerations...11
5. Security Considerations.......................................11
6. References..11
 6.1. Normative References...................................11
 6.2. Informative References................................11
1. Introduction

As a consequence of the forthcoming multimedia avalanche, several optimization mechanisms are being considered towards efficient and resilient mobile networks. As analyzed in [DDMM-MI], current IP mobility management solutions have limitations in supporting efficient management and deployment. Thus, several proposals aiming at the distribution of the mobility management functions (e.g. [DDMM-FP]) were presented. The problems resulting from the application of mobility solutions in multicast traffic are known, affecting its efficiency and leading to non-negligible service disruption, reported among others ([IPMM] [RFC5757]). Nevertheless, it is still not clear how the change from centralized to distributed mobility solutions may affect IP multicast support.

This document briefly describes use cases of IP multicast in a PMIPv6-based DMM environment, and analyses consequent problems. Both listener and sender perspective are studied, with either MLD Proxy or Multicast Router functionality deployed at the Mobility Access Proxy (MAR).

2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

This document uses the terminology defined in [RFC5213], [RFC6275], and [RFC3810], and [RFC4601]. Specifically, the definition of PMIPv6 domain is reused from [RFC5213] and reproduced here for completeness.

- Mobility Access Router (MAR): A router with the capability of acting both as a mobility anchor and as an access router, in a per flow basis.

- Previous Mobility Access Router (P-MAR): The MAR where the MN was attached to previously to the network-layer mobility process, and that may be acting as an anchor for one or multiple flows.

- New Mobile Access Gateway (N-MAR): The MAR to which the MN is currently attached, providing the access functionality and thus delivers all the flows destined to the MN.

- Multicast Listener Discovery Proxy (MLD-P): An entity following [RFC4605].
3. Use Cases Description

This draft focuses on describing problems that may occur when deploying IP multicast on a general PMIPv6-derived DMM architecture. As there is not yet a fully specified unicast DMM protocol, the unicast DMM concept used in this document is assumed as follows: MAG and an LMA functionalities defined in [RFC5213] are equipped within a same physical entity, called MAR. A MAR provides tunnel-based forwarding to provide a home network prefix (HNP)-based flow with the necessary IP session continuity whenever the MN moves to another MAR.

We separate the use cases in multicast listener and multicast sender support.

3.1. Multicast listener support

3.1.1. MLD-P in MAR

Once a MN initially attaches to the P-MAR (as shown in Figure 1), it receives a home prefix address, which will be associated with communications started at that MAR. Detecting the new logical link, the P-MAR transmits to it a general MLD Query message, to which the MN will not yet reply. Thus, the P-MAR adds the downstream logical link to the MLD-P instance with uplink to the multicast infrastructure. When the MN intends to start receiving the multicast session, it will send an unsolicited MLD Report. On receiving the latter message, the MLD-P tries to join the multicast channel(s) by sending an aggregated MLD Report (with other MN’s interests) through the MLD-P upstream interface. When the joining procedure ends, multicast data is transmitted through the same interface.
Figure 1 Multicasting architecture using distributed mobility management

When the MN moves from P-MAR, the N-MAR is required to establish a tunnel for IP session continuity of the flows being sent towards the MN’s HNP assigned by the P-MAR. This implies that N-MAR determines the MNs previous HNPs, being the exact method through which this is achieved out of scope of this document. Following the operation of the MLD-P [RFC4605], after the bidirectional tunnel establishment, the following process takes place. First, the N-MAR sends a General MLD Query, and verifies whether the MN is admissible for multicast sessions. If so, the MLD-P at the N-MAR adds the downstream interface corresponding to the MN, and configures the upstream interface towards the MN’s P-MAR. Like in PMIPv6 base solution for multicast support [RFC6224], this is simple and applicable as a network-based multicast DMM approach. However, this approach leads to a couple of relevant issues.

3.1.1.1. Duplicated Traffic

One of those problems is duplicated traffic, a result of the tunnel convergence problem occurring in [RFC6224]. As shown in Figure 2, MN1 and MN3, which moved from MAR1 and MAR3, respectively, are currently located at the MAR2. Through respective established tunnels, they receive multicast packets of the same channel through different anchoring MARs. This causes duplicated traffic, converging to the MAR2, with the magnitude of replicated traffic being much bigger than that of PMIPv6. This consideration is done assuming that the number

of MARs in future DMM domains will be much larger than that of LMAs at core level within a PMIPv6 domain.

As referred, when a MN first subscribes multicast content, its current MAR’s MLD-P will forward its subscription to the multicast infrastructure. As such, an extra duplication factor may occur, if the subscription being done is already being received from one or multiple tunnels due to other listeners (refer to MN2 from Figure 2 for an example).

![Multicast Tree](multicast_tree.png)

Figure 2 Data replication

3.1.1.2. Non-optimal routing

Another issue is non-optimal routing (Figure 3). If we consider a significantly large domain, there is the possibility that the multicast packets need to traverse a long distance, depending on the setup of the upstream interface of MLD-P instance, even if the current MAR is connected to the multicast infrastructure. If an operator wants to deploy a MLD-P instance with the upstream interface towards multicast source or multicast routing network, for each MAR, this issue doesn’t happen. Such an approach is extremely simple and
mobility-agnostic, but there may occur media synchronization issues and service disruption during handoff.

```
+----------------+
| Multicast     |
| Infrastructure|
+----------------+

* (S,G)

+----------+-
|  P-MAR    |------
|          |     |
| (MLD-P)   |------|
|          |     |
|----------+-

+----------+-
|  MN       |------
|          |     |
|----------+-

Figure 3 Non-optimal routing problem

3.1.2. Multicast Router in MAR

TBD

3.2. Multicast sender support

In order to provide sender multicasting support, a MAR may be required to act as MLD-P or multicast router. Depending on the equipped functions, we describe issues relative to multicast sender support.

3.2.1. MLD-P in MAR

In order for the multicast content to reach the multicast tree, the MLD-P SHOULD configure its upstream interface towards a MR [PM-HOME]. In the case of MR or MAR, it MAY act as the Rendezvous Point (RP) but
cause frequent multicast tree reconstruction and associated service disruptions whenever the MN moves.

![Diagram](attachment:image.png)

Figure 4   Multicast sender mobility

3.2.1.1. Triangular routing

When a source is transmitting a multicast session and a mobility process takes place, i.e the session is anchored through another MAR (MAR1 in Figure 5), then multicast data will be sent through the mobility tunnel between N-MAR (MAR2) and P-MAR (MAR1). A listener (L1) that subscribed to the source’s channel as is attached at the same MAR (MAR2) will receive the multicast content from multicast infrastructure. Therefore the traffic will traverse a non-optimal route between the source and the listener.
The same problem also occurs in the opposite process, i.e. if a multicast source starts transmitting multicast content at a MAR, and a listener moves to the same MAR while receiving the source’s content (Figure 6).

Figure 5   Triangular routing after source mobility

Figure 6   Triangular routing after listener mobility
When the source and the listener are within a same MAR (MAR2) if both the source and listener try to start the session and receive it, respectively at MAR2, the traffic will be optimally sent to the listener. As the traffic reaches the MLD-P via the downstream interface to which the source is attached, it will be sent through the interface to which the listener sent the MLD Report. However, if the source and the listener move to different MARs, the traffic will traverse the following non-optimal path, even though they share a common MAR2:

Source -> MAR1 -> MAR2 -> Multicast Tree -> MAR2 -> MAR3

This problem is depicted in Figure 7.

3.2.2. Multicast Router in MAR

TBD
4. IANA Considerations

This document makes no request of IANA.

5. Security Considerations

TBD

6. References

6.1. Normative References


6.2. Informative References


Authors’ Addresses

Sergio Figueiredo
Universidade de Aveiro
3810-193 Aveiro, Portugal
E-mail: sfigueiredo@av.it.pt

Seil Jeon
Instituto de Telecomunicacoes
Campus Universitario de Santiago
3810-193 Aveiro, Portugal
E-mail: seiljeon@av.it.pt

Rui L. Aguiar
Universidade de Aveiro
3810-193 Aveiro, Portugal
E-mail: ruilaa@ua.pt
Abstract

The WG MultiMob aims at defining a basic mobile multicast solution leveraging on network localized mobility management, i.e. Proxy Mobile IPv6 protocol. The solution would be basically based on multicast group management, i.e. IGMP/MLD, proxying at the access gateway. If such a basic solution is essential from an operational point of view, challenges with efficient resource utilization and user perceived service quality still persist. These issues may prevent large scale deployments of mobile multicast applications.

This document attempts to identify topics for near future extension of work such as modifying multimob base solution, PMIPv6 and MLD/IGMP for optimal multicast support, and adaptation of Handover optimization. Far future items such as extending to and modifying of MIPv4/v6 and DSMIP, sender (source) mobility, consideration of multiple flows and multihoming will be dealt with in a future version.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
# Table of Contents

1. Introduction ............................................. 4  
2. Terminology .............................................. 7  
3. IGMP/MLD Proxy Architecture .............................. 7  
4. Problem Description ...................................... 8  
   4.1. Modification of base PMIPv6 for optimal multicast support ............................................. 8  
   4.2. Modification of MLD/IGMP for optimal multicast support ............................................. 8  
   4.3. Consideration of Handover Optimization ..................... 9  
   4.4. Specific PMIP deployment issues ........................... 9  
5. Requirements on Solutions ................................ 10  
6. Security Considerations .................................. 11  
7. IANA Considerations ...................................... 11  
8. Acknowledgements ........................................ 11  
9. References ................................................. 11  
   9.1. Normative References .................................. 11  
   9.2. Informative References ................................ 12  
Authors’ Addresses ........................................ 14
1. Introduction

Chartered work of WG MultiMob focuses on documentation of proper configuration and usage of existing (specified standard) protocols within both mobility and multicast related areas to enable and support mobility for multicast services and vice versa. The current WG document [I-D.ietf-multimob-pmipv6-base-solution] does not address specific optimizations and efficiency improvements of multicast routing for network-based mobility and thus the operation may be not resource efficient nor grant the service quality expected by the end user.

The described solution resolves the problem to ensure multicast reception in PMIPv6-enabled [RFC5213] networks without appropriate multicast support. However it neither automatically minimizes multicast forwarding delay to provide seamless and fast handovers for real-time services nor minimizes packet loss and reordering that result from multicast handover management as stated in [RFC5757]. Also Route Optimization is out of scope of the basic solution - an issue for reducing amount of transport resource usage and transmission delay. Thus possible enhancements and issues for solutions beyond a basic solution need to be described to enable current PMIPv6 protocols to fully support efficient mobile multicast services. Such extensions may include protocol modifications for both mobility and multicast related protocols to achieve optimizations for resource efficient and performance increasing multimob approaches. The document includes the case of mobile multicast senders using Any Source Multicast (ASM) and Source Specific Multicast (SSM) [RFC4607].

This document focuses on discussion work on multicast protocols such as IGMP/MLD operational tuning (e.g. as proposed in [I-D.asaeda-igmp-mld-optimization]) and enhancements of IGMP/MLD protocol behaviors and messages for optimal multicast support (proposed in [I-D.asaeda-igmp-mld-mobility-extension]).

An alternative approach proposes the addition of acknowledgement messages on group management ([I-D.liu-multimob-reliable-igmp-mld]) and changes the unreliable protocol concept.

Furthermore a modification of PMIPv6 by introducing a dedicated multicast tunnel and support of local routing is discussed in [I-D.asaeda-multimob-pmip6-extension]. Other performance improvements have been outlined in [I-D.schmidt-multimob-fmipv6-pfmipv6-multicast] where extensions to Mobile IPv6 Fast Handovers (FMIPv6) [RFC5568], and the corresponding extension for Proxy MIPv6 operation [I-D.ietf-mipshop-pfmipv6].
Another type of multimob work aims directly at enhancements of the current multimob base solution [I-D.ietf-multimob-pmipv6-base-solution] towards introduction of multicast traffic replication mechanisms and a reduction of the protocol complexity in terms of time consuming tunnel set-up by definition of pre- or post-configured tunnels (as provided by e.g. [I-D.zuniga-multimob-smspmip]). Further work within this topic deals with direct routing (e.g. [I-D.sijeon-multimob-mms-pmip6]) and with dynamic or automatic tunnel configuration (see e.g. [I-D.ietf-mboned-auto-multicast]).

A large field of additional investigations which are partly described in detail in [RFC5757] will be mentioned for completeness and may be subject of a later WG re-chartering.

![Diagram of MultiMob Scenario for chartered PMIP6 issue](image-url)
Figure 2 illustrates the key components of the foreseen basic Multimob solution. The extended multicast mobility scenario, leading to above issues, is sketched in Figure 2.

In summary additional to a ‘Single hop, link, flow’ Proxy MIP mobility for listening MNs (scenario shown in Figure 1), future work towards a complete performance-optimized scenario of a ‘Multi-hop, -homed, -flow’ client mobility (i.e. including MIPv6 [RFC3775] and DSMIPv6 [RFC5555]) would cover a plurality of issues. For the near
future we see the following issues as most important:

- Extension of multimob base solution
- Modification of base PMIPv6 and MLD/IGMP for optimal multicast support.
- Consideration of Handover optimization.

All further issues which would include extensions to and modifications of MIPv4/v6 and DSMIPv6 using IGMP/MLD Proxy and the Foreign Agent/Access Router, consideration of sender (source) mobility, support of multiple flows on multihomed mobile nodes, multi-hop transmission, Routing optimization, and so forth will be topics for a potential next stage of future work extension.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119].

This document uses the terminology defined in [RFC3775], [RFC3376], [RFC3810], [RFC5213], [RFC5757].

3. IGMP/MLD Proxy Architecture

Multimob basic solution is based on IGMPv3/MLDv2 Proxy support at the mobile access gateway (MAG) of Proxy Mobile IPv6 as shown in Figure 1. IGMPv3/MLDv2 proxy keeps multicast state on the subscriptions of the mobile nodes and only an aggregate state is kept at the local mobility anchor (LMA). When LMA receives multicast data it can forward it to the MAG without duplication because MAG takes of the packet duplication. This leads to solving the avalanche problem.

By keeping multicast state locally, IGMPv3/MLDv2 Proxy introduces mobility related problems such as possible packet loss when a mobile node does a handover to another MAG and its multicast state is not modified fast enough at the LMA.

IGMPv3/MLDv2 introduces tunnel convergence problem which occurs when a given MAG serves MNs that belong to different LMAs and MNs subscribe to the same multicast group. In that case MNs receive duplicate multicast data forwarded from more than one LMA.

It can be foreseen that mobile access gateways will serve both mobile and fixed terminals concurrently. The tuning of multicast-related
protocol parameters based on the terminal characteristics is needed. Parameters only applicable to mobile users need to be distinguished from the parameters applicable to fixed users. It should be also possible to distinguish between slow and fast movement and handover frequency to form corresponding tunnels for mobile users.

Based on the above observations we will state the problems next and then list the requirements on possible solutions.

4. Problem Description

The general issues of multicast mobility are extensively discussed and described in [RFC5757]. To reduce the complexity of the plethora of requirements listed in [RFC5757] and also in [I-D.deng-multimob-pmip6-requirement] this document summarises some lightweight solutions for multicast mobility which allow for easy deployment within realistic scenarios and architectures. Moreover we focus on approaches building directly on basic MultiMob solution [I-D.ietf-multimob-pmipv6-base-solution] which is based on IGMP/MLD Proxy functionality at the mobile access gateway, and for which already solution proposals have been described.

4.1. Modification of base PMIPv6 for optimal multicast support

Currently discussed aspects of multicast optimization for PMIPv6 include introduction of multicast tunnels and support of local routing such as described in [I-D.asaeda-multimob-pmipv6-extension]. For a PMIPv6 domain the establishment of a dedicated multicast tunnel is proposed which may either be dynamically set up and released or be pre-configured in a static manner. Both mobility entities MAG and LMA may be operate as MLD proxy or multicast router. Since further functional enhancements of PMIPv6 are currently under way in NETEXT WG, both the impact of new features on Mobile Multicast as well as such a Multicast-initiated proposal for PMIPv6 modification have to be considered in a continuous exchange process between MultiMob and NETEXT WGs.

4.2. Modification of MLD/IGMP for optimal multicast support

Potential approaches for enhancement of group management as specified e.g. by MLDv2 [RFC3810] include operational improvements such as proper tuning in terms of default timer value modification, specific query message introduction, and standard (query) reaction suppression, beside introducing multicast router attendance control in terms of e.g. specification of a Listener Hold message as proposed in [I-D.asaeda-multimob-igmp-mld-mobility-extensions].
4.3. Consideration of Handover Optimization

Ideally the customer experience while using multicast services should not be affected by transmission issues whether the terminal is operated in a fixed or a mobile environment. This implies not only that the terminal should be unaware of changes at network layer connectivity (seamless communication) as is typically the case in a PMIPv6 domain, but also that any impact of connectivity changes (handover) should be minimized. In the framework of Multimob this relates to reduction of delay, packet loss, and packet reordering effort for mobile multicast by applying fast handover mechanisms, which have originally been developed for unicast traffic to multicast group management. [I-D.schmidt-multimob-fmipv6-pfmipv6-multicast] works on specification of extension of the Mobile IPv6 Fast Handovers (FMIPv6) [RFC5568] and the Fast Handovers for Proxy Mobile IPv6 (PFMIPv6) [I-D.ietf-mipshop-pfmipv6] protocols to include multicast traffic management in fast handover operations. Issues for further work are details of including multicast group messaging in context transfer, for both predictive and reactive handover mode, as well as details of corresponding message exchange protocols and message design.

4.4. Specific PMIP deployment issues

Currently several proposals are under work which describe extensions of the base protocol WG draft [I-D.ietf-multimob-pmipv6-base-solution]. While MAG operation will remain that of an MLD proxy additional LMA functionalities are described in [I-D.zuniga-multimob-smspmip] which allow for replication of multicast traffic and solution of the tunnel convergence problem. The dedicated multicast LMA may either set up dedicated multicast tunnels dynamically or a-priory via pre-configuration or a delayed release.

Another solution on dynamic and/or automatic tunnel configuration is proposed within multicast WG MBONED [I-D.ietf-mboned-auto-multicast].

A direct or local routing approach is described in [I-D.sijeon-multimob-mms-pmip6]. This scenario may hold for short term deployment focusing on an architecture where multicast traffic is provided via the home network. However, depending on the network topology, namely the location of the content delivery network, the LMA may not be on the optimal multicast service delivery path. This enables mobile nodes to access locally available multicast services such as local channels.

Figure 3 illustrates the use-case for local routing.
In such a case, the MAG should act as a multicast router to construct the optimal multicast delivery path. If the MAG also supports MLD proxy function issue raises up on the dual mode behaviour. In such a case, a pragmatic approach could be to leverage only on multicast routing at the MAG in the PMIP domain.

Whatever is the MAG operation mode, the multicast state is locally kept at the access gateway, so unknown from the mobility anchor. In other words, the multicast service is independent from the mobility service that the mobile node is receiving from the network in the form of PMIPv6 or DSMIPv6. However, handover support is still desirable but cannot be provided by the mobility anchor (i.e. HA or LMA). In such a case mobility support for locally available multicast should be provided by extending multicast protocols of IGMP or MLD.

5. Requirements on Solutions

This section tries to identify requirements from the issues discussed in previous section.
- Seamless handover (low latency and during the handover).
- Similar packet loss to unicast service.
- Multiple LMA architecture.
- Agnostic mobile host re-subscription. So, MAGs must be able to retrieve multicast contexts of the mobile nodes.
- Solution address IPv6, IPv4 only and dual stack nodes.
- Supports sender (source) mobility.
- Optimal local routing.
- To be completed...

6. Security Considerations

This draft introduces no additional messages. Compared to [RFC3376], [RFC3810], [RFC3775], and [RFC5213] there have no additional threats been introduced.

7. IANA Considerations

Whereas this document does not explicitly introduce requests to IANA some of the proposals referenced above (such as [I-D.asaeda-multimob-pmip6-extension] and [I-D.schmidt-multimob-fmipv6-pfmpipv6-multicast]) specify flags for mobility messages or options. For details please see those documents.

8. Acknowledgements

The authors would thank all active members of MultiMob WG, especially (in no specific order) Gorry Fairhurst, Jouni Korhonen, Thomas Schmidt, Suresh Krishnan and Matthias Waehlisch for providing continuous support and helpful comments.

9. References

9.1. Normative References


9.2. Informative References


[I-D.liu-multimob-reliable-igmp-mld]
Liu, H. and Q. Wu, "Reliable IGMP and MLD Protocols in Wireless Environment",
draft-liu-multimob-reliable-igmp-mld-00 (work in progress), March 2010.

[I-D.schmidt-multimob-fmipv6-pfmipv6-multicast]
Schmidt, T., Waehlisch, M., Koodli, R., and G. Fairhurst,
"Multicast Listener Extensions for MIPv6 and PMIPv6 Fast Handovers",
draft-schmidt-multimob-fmipv6-pfmipv6-multicast-01 (work in progress), March 2010.

[I-D.sijeon-multimob-mms-pmip6]
draft-sijeon-multimob-mms-pmip6-02 (work in progress), March 2010.

[I-D.zuniga-multimob-smspmip]
draft-zuniga-multimob-smspmip-02 (work in progress), June 2010.

[I-D.ietf-mboned-auto-multicast]
Thaler, D., Talwar, M., Aggarwal, A., Vicisano, L., and T. Pusateri,
"Automatic IP Multicast Without Explicit Tunnels (AMT)",
draft-ietf-mboned-auto-multicast-10 (work in progress), March 2010.

[I-D.ietf-16ng-ipv4-over-802-dot-16-ipcs]
Madanapalli, S., Park, S., Chakrabarti, S., and G. Montenegro,
"Transmission of IPv4 packets over IEEE 802.16’s IP Convergence Sublayer",
draft-ietf-16ng-ipv4-over-802-dot-16-ipcs-07 (work in progress), June 2010.

[I-D.ietf-manet-smf]
Macker, J. (editor), "Simplified Multicast Forwarding",
draft-ietf-manet-smf-10 (work in progress), March 2010.

[I-D.ietf-mipshop-pfmipv6]
Yokota, H., Chowdhury, K., Koodli, R., Patil, B., and F. Xia,
"Fast Handovers for Proxy Mobile IPv6",
draft-ietf-mipshop-pfmipv6-14 (work in progress), May 2010.
[I-D.ietf-multimob-pmipv6-base-solution]
Schmidt, T., Waehlisch, M., and S. Krishnan, "Base Deployment for Multicast Listener Support in PMIPv6 Domains",
draft-ietf-multimob-pmipv6-base-solution-02 (work in progress), May 2010.

RFC 5757, June 2010.


Authors' Addresses

Dirk von Hugo
Deutsche Telekom Laboratories
Deutsche-Telekom-Allee 7
64295 Darmstadt, Germany

Email: dirk.von-hugo@telekom.de

Hitoshi Asaeda
Keio University
Graduate School of Media and Governance
5322 Endo
Fujisawa, Kanagawa 252-8520
Japan

Email: asaeda@wide.ad.jp
URI: http://www.sfc.wide.ad.jp/~asaeda/

Behcet Sarikaya
Huawei USA
1700 Alma Dr. Suite 500
Plano, TX 75075

Email: sarikaya@ieee.org
Pierrick Seite
France Telecom - Orange
4, rue du Clos Courtel
BP 91226
Cesson-Sevigne, BZH 35512
France

Email: pierrick.seite@orange-ftgroup.com
Context Transfer for Multicast support in Distributed Mobility Management (DMM)
draft-vonhugo-multimob-dmm-context-00

Abstract

This document describes a context transfer based concept to support overarching IP multicast services applicable to various existing approaches for Distributed Mobility Management.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 6, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Table of Contents

1. Introduction ............................................. 3
2. Conventions and Terminology ............................. 5
3. Handover Process ........................................ 6
   3.1. Multicast Context Transfer Data Format ............. 7
   3.2. Multicast Context Transfer with MLD Proxy .......... 7
   3.3. Multicast Context Transfer with PIM-SM ............. 10
4. IANA Considerations ..................................... 11
5. Security Considerations .................................. 12
6. Acknowledgements ........................................ 13
7. References ................................................. 14
   7.1. Normative References ................................. 14
   7.2. Informative References ............................... 14
Authors’ Addresses ........................................... 16
1. Introduction

This document describes an application of various existing approaches for Distributed Mobility Management (DMM) [15] to support overarching IP multicast services with Proxy Mobile IPv6 (PMIPv6) [3] and Client Mobile IPv6 (MIPv6) [2], respectively. Key concept of Distributed Mobility Management (DMM) in a flat network architecture where core entities and functionalities are deployed in a distributed manner assumes a mobile node to use the first access router (AR) it attaches to as principal mobility anchor, i.e. Home Agent (HA) in MIPv6 or Local Mobility Anchor (LMA) in PMIPv6. Current proposals for DMM based Mobility such as MIP-based Distributed Mobility Anchoring (DMA) [16] and [21] as well as PMIP-based solutions for Distributed Mobility Management [17], [20] ... and so forth define new AR capabilities applicable to a flat architecture. Common idea of the various approaches is to distribute functionalities for local attachment of a MN to the network and for dynamically keeping track of a MN and its current sessions, also in case of MN attachment to a different AR, to all Access Routers. These ARs are denoted here by DMM ARs (DARs) which are responsible for hosting (anchoring) newly attached MNs and their started sessions (flows), and for relaying old sessions to the MNs’ previous DAR(s), respectively. Some solutions refer to a common data base containing all relevant MN information for retrieval which may be co-located with existing logical entities such as DMM-defined Local Mobility Anchor (LMA) or a new common central Mobility Database (MDB).

The MultiMob Base Protocol [12] specifies a mechanism for supporting multicast reception within a PMIPv6 domain using Multicast Listener Discovery (MLD)-Based Multicast Forwarding ("IGMP/MLD Proxying") [7]. Several extensions have been proposed to optimize Routing or session continuity during Handover of a MN. While some approaches rely on the LMA anchoring of a MN to speed up the subscription process during handover as proposed in [19] others apply on an extension of Context Transfer Protocol (CTXP) [10] specification directly [11] or via the established fast HO approach using FPMIP/FMIP [14] to support forwarding of multicast group subscription and traffic data between MAGs. Within a DMM-like approach where location (i.e. anchoring) and access functionality can be handled by the same entity a data exchange between the current AR and a prior one to ensure low delay and loss could be achieved without enhancing complexity too much by applying the CTXP modification directly. In case of node mobility during an ongoing multicast reception session the node should be able to continuously receive the multicast data through the new AR just after handover completion without any MLD signaling on the new wireless link. This procedure is multicast context transfer that provides multicast session continuity and avoids extra packet loss and session disruption. Multicast context transfer will be the
required function to support seamless handover, while for its effective procedure, interaction with multicast communication protocols should be taken into account. To synchronize multicast with unicast traffic measures to prevent delay extension due to waiting for multicast information should be established as proposed in [19].

The Context Transfer Protocol (CXTP) specification [10] describes the mechanism that allows better support for minimizing service disruption during handover. This document proposes to extend CXTP for forwarding of multicast context transfer in a DMM domain. "Multicast-Context Transfer Data (M-CTD)" message as defined in [11] is applied here for transferring multicast membership states between the previously attached DAR (p-DAR) to a newly attached DAR (n-DAR) within a DMM domain. The context transfer is either started from the n-DAR on its own after attachment of the mobile node or initiated by the p-DAR after being informed by the access network of the planned handover. Existing DMM proposals assume that for data exchange between p-DAR and n-DAR a dedicated tunnel already is in place. Details of the set-up procedure for this tunnel are therefore out of scope of this document.

Depending on the scenario of multicast application the real-time delivery of content may be more important than lossless and error-free transmission. Thus to allow for temporary storage or buffering at a previous access router during handover and subsequent forwarding may be advantageous to some file transmission use cases whereas for real-time video services such as live IPTV the focus is on low delay. Here only transfer of the MN’s subscription context shall be considered for simplicity reasons.

To decide on a multicast flow quality requirements dedicated flags may be defined to be stored in and retrieved from the common data base or policy storage. Detailed considerations on these parameters are out of scope of this document.
2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1].

The following terms used in this document are to be interpreted as defined in existing proxy and client mobility protocols and in future upcoming Distributed Mobility Management (DMM) protocol specifications, see e.g. [15]: Distributed Access Router (DAR), Mobility Data Base (MDB), Mobile Node (MN), Proxy Care-of Address (Proxy-CoA), Mobile Node Identifier (MN-Identifier), Distributed Binding Update (DBU), and Distributed Binding Acknowledgement (DBA).
3. Handover Process

DAR is responsible for detecting the mobile node’s movements to and from the access link and for initiating a per-flow binding registration either as mobility anchor (primary point of attachment). In case a MN attaches to the DAR which was already previously assigned to another (previous or primary) DAR (p-DAR) the new DAR (n-DAR) tracks the mobile node’s movements to and from the access link and performs signaling of the status to that p-DAR and to a common MDB. In DMM Multicast, it SHOULD NOT be required for mobile nodes to initiate re-subscription to multicast channels, and DAR SHOULD keep multicast membership state for mobile nodes even if they attach a different DAR during the ongoing session.

For multicast context transfer, an IGMP/MLD-based explicit membership tracking function [18] MAY be enabled on DAR (whether the DAR behaves as a router or proxy). The explicit tracking function enables a router to keep track of downstream multicast membership state created by downstream hosts attached on the router’s link. When a mobile node attaches to a new network, thanks to the explicit tracking function, the p-DAR extracts the mobile node’s multicast membership state from complete multicast membership state the p-DAR has maintained and transmits it to the n-DAR.

The assumed architecture for a DMM-based multicast mobility is shown in Figure 1.

---

Figure 1: Distributed mobility for flat architecture
3.1. Multicast Context Transfer Data Format

Multicast Context Transfer Data (M-CTD) is a message used with CXTP to transfer multicast membership state from p-DAR to n-DAR. The following information is included in M-CTD to recognize mobile node’s membership state.

1. Receiver address - indicates the address of the MN sending the Current-State Report.
2. Filter mode - indicates either INCLUDE or EXCLUDE as defined in [5].
3. Source addresses and multicast addresses - indicates the address pairs the MN has joined.

The M-CTD message MUST contain the ‘A’ bit set as defined for the CTD message format in [10] for to initiate the transmission of a reply message by the new DAR.

The following information included in a reply to M-CTD (similar to the CTDR message defined in [10]) is used to request the old DAR to store still incoming multicast data, to forward them to the new DAR, and finally to leave the multicast group after successful handover from n-DAR to p-DAR.

1. Receiver address - indicates the address of the MN sending the Current-State Report.
2. Flag indicating the p-DAR to start (B) buffering the received multicast data (in case the new connection is not yet fully set up), to forward (F) the buffered data after successful handover, or to leave (L) the multicast groups unless there are still other active subscriptions for the corresponding groups on the p-DAR.
3. Source addresses and multicast addresses - indicates the address pairs the MN has joined.

The M-CTDR message MUST contain the ‘S’ bit set as defined for the CTD message format in [10] for to indicate the successful reception of context data at the new DAR.

3.2. Multicast Context Transfer with MLD Proxy

This section describes the case that DAR operates as an MLD proxy, as defined in [7] and specified in the base MultiMob solution [12].
The MLD listener handover with CXTP and MLD proxy shown in Figure 2 is defined as follows.

1. A MN is assumed to be attached to the p-DAR wishing to receive multicast content and sending the corresponding MLD Report. The serving p-DAR subscribes to the group as MLD proxy and forwards the multicast traffic to the MN via the access link. In case the MN’s multicast session is completed while being attached to p-DAR no corresponding entry into the Mobility Data Base needs to be created (regular IPv6 routing). However in case the MN wants to maintain the multicast session (together with ongoing unicast connections) during movement it either registers the address configured at the p-DAR as home address, as described in [21] or the p-DAR has to create a binding entry in the central MDB as proposed e.g. in [20] or [16].

2. When the MN moves to another DAR with the multicast session ongoing the p-DAR detects the detachment and subsequently sends a request to create a Binding Cache Entry for the MN in the MBD, denoted by BCE Create Request (BC-Req).

3. After attaching a new DAR, the mobile node sends a Router Solicitation (RS) as specified in [8]. In case the MN shall remain unaware of any change in connectivity the n-DAR has to identify the p-DAR address during retrieving the MN’s BCE from the mobile node’s MDB e.g. via newly specified Distributed Binding Update (DBU) and corresponding Acknowledgement (DBA). n-DAR then sends a request for context transfer (CT-Req) to the p-DAR as defined in [10]. Since the MN cannot initiate the related Context Transfer Activate Request (CTAR) message that may be sent by the MDB. In case the mobile node has the capability and the chance to signal to the p-DAR the link status and the potential new DAR address (e.g. as is specified in terms of Event Services by [9]) the p-DAR will send a CTAR message to n-DAR on behalf of the mobile node. Alternatively the p-DAR or the n-DAR may have information on potential DARs in their vicinity to which such a CTAR or CT-Req message may be multicasted.

4. p-DAR provides together with the other feature data the multicast states corresponding to the moving MN-Identifier to n-DAR. p-DAR utilizes a context transfer protocol to deliver MN’s Policy Profile to n-DAR, and sends Multicast Context Transfer Data (M-CTD) (defined in Section 3.1) to n-DAR.
5. If there are multicast channels the MN has subscribed but the n-DAR has not yet subscribed, n-DAR subscribes via sending (potentially aggregated) MLD [5][6] Membership Report messages (i.e. Join) to the corresponding MDB.

6. After successful completion of MN attachment the n-DAR replies to M-CTD with a Multicast Context Transfer Response message signalling the handover completion upon which p-DAR may leave the multicast group in case no other MN attached to p-DAR has subscribed to that group.

Figure 2: MLD listener handover with CXTP and MLD proxy
After MN attaches to n-DAR, the forwarded multicast data from p-DAR will be delivered to the MN immediately. Afterwards the current multicast data are delivered as received from MDB and the MN’s multicast membership state at the p-DAR is cancelled.

3.3. Multicast Context Transfer with PIM-SM

This section describes the case that DAR operates as a PIM-SM [4] router, as described in a proposed solution [13].

The MLD listener handover with CXTP and PIM-SM is identical as described in Section 3.2 except that instead of "MLD report (aggregated Join)" the DARs will send "PIM Join" messages and that the "MLD Report (leave)", to be sent if there are no attached mobile nodes listening the multicast channels at p-DAR, is replaced by "PIM Prune" message.
4. IANA Considerations

TBD.
5. Security Considerations

TBD.
6. Acknowledgements

Many of the specifications described in this document are discussed and provided by the multimob mailing-list. Detailed comments by Luis Miguel Contreras Murillo are gratefully acknowledged.
7. References

7.1. Normative References


7.2. Informative References


Authors’ Addresses

Dirk von Hugo  
Telekom Innovation Laboratories  
Deutsche-Telekom-Allee 7  
Darmstadt 64295  
Germany

Phone:  
Email: Dirk.von-Hugo@telekom.de  
URI:

Hitoshi Asaeda  
Keio University  
Graduate School of Media and Governance  
5322 Endo  
Fujisawa, Kanagawa 252-0882  
Japan

Email: asaeda@wide.ad.jp  
URI: http://www.sfc.wide.ad.jp/~asaeda/

Pierrick Seite  
France Telecom - Orange  
4, rue du Clos Courtel  
BP 91226  
Cesson-Sevigne 35512  
France

Email: pierrick.seite@orange.com  
URI:
Abstract

This document proposes a variety of optimization approaches for tuning IGMPv3 and MLDv2 protocols. It aims to provide useful guideline to allow efficient multicast communication in wireless and mobile networks using the current IGMP/MLD protocols.

Conventions used in this document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html

This Internet-Draft will expire on August 15, 2009.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Table of Contents

1. Introduction..................................................3
2. Impact of wireless and mobility on IGMP/MLD...................3
   2.1. Comparison analysis between wired and wireless multicast.4
   2.2. Link models analysis for wireless multicast..............5
   2.3. Requirements of wireless and mobile multicast on IGMP/MLD8
3. Evaluation of IGMP/MLD on wireless and mobile multicast.......9
4. IGMP/MLD tuning optimization for Wireless or Mobile Network..11
   4.1. Explicit Tracking and Query Suppression.................11
   4.2. Report Suppression for the hosts.........................13
   4.3. Query Suppression for the routers.......................13
   4.4. Minimizing Query Frequency by increasing interval each time
        .............................................................................14
   4.5. Switching Between Unicast Query and Multicast Query.....15
   4.6. Using General Query with Unicast Query..................16
   4.7. Retransmission of General Queries........................16
   4.8. General Query Suppression with no receiver..............17
   4.9. Tuning Response Delay according to link type and status.17
   4.10. Triggering reports and queries quickly during handover.18
5. Security Considerations......................................19
6. Acknowledgement..............................................19
7. References...................................................19
1. Introduction

Multicasting is more efficient a method of supporting group communication than unicasting. With the wide deployment of different wireless networks, multicast communication over wireless network comes to attract more and more interests from content and service providers, but still faces great challenges when considering dynamic group membership and constant update of delivery path due to node movement, which is highly required in the wireless or mobile network. On the other hand, unlike wired network, some of wireless networks often offer limited reliability, consume more power and cost more transmission overhead, thus in worse case are more prone to loss and congestion.

Multicast network is generally constructed by IGMP/MLD group management protocol to track valid receivers and by multicast routing protocol to build multicast delivery paths. This document focuses only on IGMP/MLD protocols, which are used by a mobile user to subscribe a multicast group and are most possibly to be exposed to wireless link to support terminal mobility. As IGMP and MLD are designed for fixed users using wired link, they does not work perfectly for wireless link types. They should be enhanced or tuned to adapt to wireless and mobile environment to meet the reliability and efficiency requirements in the scenarios described in [REQUIRE][RFC 5757].

This memo proposes a variety of optimization approaches for tuning IGMP/MLD protocols in wireless or mobile communication environment. It aims to make the minimum tuning on the protocol behavior without introducing interoperability issues, and to improve the performance of wireless and mobile multicast networks. These solutions can also be used in wired network when efficiency and reliability are required. They are discussed in detail in Section 4.

2. Impact of wireless and mobility on IGMP/MLD

This section analyzes the impact of wireless or mobility on IGMP/MLD by comparing wireless multicast with wired multicast and comparing different wireless link models. It then gives the requirements of
wireless and mobile multicast on IGMP/MLD protocols according to the analysis.

2.1. Comparison analysis between wired and wireless multicast

Existing multicast support for fixed user can be extended to mobile users in wireless environments. However applying such support to wireless multicast is difficult for the following five reasons.

- **Limited Bandwidth**: In contrast with wired link, wireless link usually has limited bandwidth. This situation will be made even worse if wireless link has to carry high volume video multicast data. Also the bandwidth available in upstream direction and downstream direction may not be equal.

- **Large packets Loss**: In contrast with wired multicast, wireless multicast has packet loss that range between 1% and 30%, based on the links types and conditions. And when packets have to travel between home and access networks e.g. through tunnel, the packets are prone to be lost if the distance between the two networks is long.

- **Frequent Membership change**: In fixed multicast, membership change only happens when a user leave or joins a group while in the mobile multicast, membership changes may also occur when a user changes its location.

- **Prone to performance degradation**: Due to possible unwanted interaction of protocols across layers and user movement, the wireless network may be overwhelmed with more excessive traffic than wired network. In worse case, this may lead to network performance degrading and network connection complete loss.

- **Increased Leave Latency**: Unlike fixed multicast, the leave latency in the mobile multicast will be increased due to user movement. And if the traffic has to be transmitted between access network and the home network, or if the handshake is required between these two networks, the Leave Latency will be increased further more.

Figure 1 shows the details for the difference between wired/fixed multicast and wireless/mobile multicast.
<table>
<thead>
<tr>
<th>Issues</th>
<th>Wired or fixed Multicast</th>
<th>Wireless/mobile multicast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>Plentiful</td>
<td>Limited and variable possibly asymmetric</td>
</tr>
<tr>
<td>Loss of Packets</td>
<td>Infrequent(&lt;1%)</td>
<td>Frequent and variable (1%-30% based on links)</td>
</tr>
<tr>
<td>Membership Changes</td>
<td>Only when a user leaves and joins a group</td>
<td>Also when a user moves to another location</td>
</tr>
<tr>
<td>Reliability</td>
<td>Possible use of a transport-layer protocol(such as the Multicast File Transfer Protocol)</td>
<td>More complex due to wireless links and user mobility; possible unwanted interaction of protocols at transport and link layers</td>
</tr>
<tr>
<td>Leave Latency</td>
<td>not changed by user movement</td>
<td>Increased due to user movement and lost packet</td>
</tr>
</tbody>
</table>

Figure 1. Comparison between wired/fixed multicast and wireless/mobile multicast

2.2. Link models analysis for wireless multicast

There are various types of wireless links, each with different feature and performance. In this document, we according to the transmission mode categorize the wireless link type into three typical link models:

- Point To Point (PTP) link model
- Point To Multipoint (PTMP) link model
- Broadcast link model

PTP link model is the model with one dedicated link that connects exactly two communication facilities. For multicast transmission, each PTP link has only one receiver and the bandwidth is dedicated...
for each receiver. Also one unique prefix or set of unique prefixes will be assigned to each receiver. Such link model can be accomplished by running PPP on the link or having separate VLAN for each receiver.

PTMP link model is the model with multipoint link which consists of a series of receivers and one centralized transmitter. Unlike P2P link model, PTMP provide downlink common channels and dedicated uplink channel for each user. Bandwidth and prefix in this model are shared by all the receivers on the same link. Therefore Duplicate Address Detection (DAD) should be performed to check whether the assigned address is used by other receivers.

Broadcast link model is the model with the link connecting two or more nodes and supporting broadcast transmission. Such link model is quite similar to fixed Ethernet link model and its link resource is shared in both uplink and downlink directions. The bandwidth and prefix are shared by all the receivers and DAD is required to avoid address collision.

Figure 2 shows the details for the difference between different wireless link models.
<table>
<thead>
<tr>
<th>Features</th>
<th>PTP link model</th>
<th>PTMP link model</th>
<th>Broadcast link model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared link/Dedicated link</td>
<td>Dedicated uplink and downlink channels for each user</td>
<td>Common downlink channels and dedicated uplink channels for each user</td>
<td>common downlink Channel for each user</td>
</tr>
<tr>
<td>Shared Prefix /Dedicated Prefix</td>
<td>Per Prefix for each receiver</td>
<td>Prefix shared by all receivers DAD is required</td>
<td>Prefix shared by all receivers DAD is required</td>
</tr>
<tr>
<td>Shared Service Support</td>
<td>Not Support</td>
<td>Support</td>
<td>Support</td>
</tr>
<tr>
<td>link layer Broadcast Multicast Support</td>
<td>Only one node On the link Forward multicast packets to the only receiver on the link</td>
<td>Link Layer Multicast Support using Backend (e.g., AR) IGMP/MLD Snooping at AR</td>
<td>Broadcast Support at L2 using switch IGMP/MLD Snooping at switch</td>
</tr>
<tr>
<td>Ethernet link Support</td>
<td>Not support</td>
<td>Not support</td>
<td>Ethernet Support By Implementing Bridge</td>
</tr>
</tbody>
</table>

Figure 2. Wireless Link Models Analysis
2.3. Requirements of wireless and mobile multicast on IGMP/MLD

Due to the characteristics of wireless and mobile multicast described in the section 2.1 and 2.2, it is desirable for IGMP and MLD to have the following characteristics when used in wireless and mobile networks [REQUIRE]:

- Adaptive to different link characteristics: IGMP and MLD are originally designed for wired multicast and some of their processing is not applicable to wireless multicast for its asymmetrical link, limited bandwidth, larger packet loss rate, increased leave latency, and etc. Also, wireless network has various link types, each of them has different bandwidth and performance. These require IGMP/MLD protocol behavior should be tuned to adapt to different link model and link conditions.

- Minimal Join and Leave Latency: Fast join and leave of a subscriber helps to improve the user's experience during channel join and channel zapping. Fast leave also facilitates releasing of unused network resources quickly. Besides, mobility and handover may cause a user to join and leave a multicast group frequently, which also require fast join and leave to accelerate service activation and to optimize resource usages.

- Robustness to packet loss: Wireless link has the characteristic that packet transmission is unreliable due to unstable link conditions and limited bandwidth. For mobile IP network, packets sometimes have to travel between home network and foreign network and have the possibility of being lost due to long distance transmission. These network scenarios have more strict robustness requirement on delivery of IGMP and MLD protocol messages.

- Minimum packet transmission: Wireless link resources are usually more precious and limited compared to their wired counterpart, and are prone to be congested when carrying high volume multicast stream. Minimizing packet exchange without degrading general protocol performance should also be emphasized to improve efficiency and make good use of network capacity and processing capability.

- Avoiding packet burst: Large number of packets generated within a short time interval may have the tendency to deteriorate wireless network conditions. IGMP and MLD when using in wireless and mobile networks should be optimized if their protocol message generation has the potential of introducing packet burst.
According to these requirements, in the following parts of the document, current versions of IGMP/MLD protocols are evaluated whether their various protocol aspects are applicable to wireless and mobile multicast communications. They will be optimized to meet these requirements without new features introduced on the wire or link, without new message type defined, and without interoperability issues introduced, which is referred to as "tuning" of IGMP/MLD protocols.

3. Evaluation of IGMP/MLD on wireless and mobile multicast

This section analyzes the applicability of IGMP and MLD to wireless communication in the following aspects:

- General evaluation of different versions: IGMPv2 [RFC2236] and MLDv1 [RFC2710] only support ASM communication mode. They do not support SSM subscription and explicit tracking. IGMPv3 [RFC3376] and MLDv2 [RFC3810] and their lightweight version LW-IGMPv3/LW-MLDv2 [RFC5760] support all the features of ASM/SSM communication modes and explicit tracking. Because SSM is more efficient and secure than ASM for IPTV application, and explicit tracking enables faster channel zapping and better manageability capability, IGMPv3/MLDv2 and LW-IGMPv3/MLDv2 are more promising to be deployed widely than IGMPv2 and MLDv1.

- Robustness: IGMP/MLD actively sends unsolicited Report or Leave message to join or leave a group, and solicited Report to respond to Queries. Unsolicited Report and Leave messages are more important for ensuring satisfactory user experience and should be guaranteed to improve service performance. Current IGMP and MLD provide the reliability for these messages by non responsive retransmission, which is not adequate from both the robustness and efficiency aspects when they are used on unreliable wireless link or have to be exchanged over the tunnel between home network and access network separated by long distance [ROBUST][ACK]. For IGMPv3/MLDv2, because unsolicited report and leave messages will not be suppressed by report from other host, it is possible to adopt acknowledgement-retransmission to improve reliability and reduce superfluous packet transmission [IGMP-ACK].

Besides, for IGMPv3/MLDv2, because the router could by explicit tracking establishes membership database recording each valid receiver, it is possible to deduce the possible loss of some protocol messages according to the feedback after their transmission, and to take some remedies (e.g. by retransmission)
to enable more reliable transmission of these messages in bad conditions.

Efficiency: IGMPv2 and MLDv1 use host suppression to suppress duplicated membership reports on the link. In IGMPv3 and MLDv2, because host suppression is not adopted, the report count will be numerous if the number of valid receivers on the network is large. IGMPv3 and MLDv2 should be optimized to try to minimize unnecessary packet transmission to compensate this drawback. As an example, because an IGMPv3/MLDv2 router has record of each user in its state database by explicit tracking, it is possible to eliminate the need for query timeouts when receiving leave messages and to improve the efficiency by reducing both the unnecessary Queries and reports generated on a network.

And as described in [REQUIRE] and [RFC5757], the default timer values and counter values specified in IGMP and MLD were not designed for the mobility context. This may result in a slow reaction following a client join or leave, in possible packet loss under worse conditions, or in overburdening the wireless link by excessive packets exchange than necessary. These issues can be addressed by tuning these parameters for the expected packet loss on a link to optimize service performance and resource usage.

The comparison between IGMPv2/MLDv1 and IGMPv3/MLDv2 is illustrated in figure 3. In summary, it is desirable to choose IGMPv3/MLDv2 or LW-IGMPv3/MLDv2 as the group management protocol for wireless or mobile multicast. They should be optimized to adapt to wireless and mobile networks to meet the efficiency and reliability requirement for these networks. These optimizations range from the tuning of the parameters (e.g. the Query Interval and other variables), to the tuning of protocol behavior without introducing interoperability issues. Considering an enhancement in one direction might introduce side effects in another one, balances should be taken carefully to avoid defects and improve protocol performance as a whole.
4. IGMP/MLD tuning optimization for Wireless or Mobile Network

As mentioned in section 2, IGMPv3/MLDv2 or LW-IGMPv3/MLDv2 is recommended to be used as the basis for optimization of IGMP/MLD to adapt to wireless and mobile networks. In this section, taking these characteristics requirement into account, we will discuss several optimization approaches for tuning of IGMPv3 and MLDv2 in wireless environment. The optimizations try to minimize the packet transmission for both the Reports and Queries, and at the meanwhile take the factor of improving reliability into account, with minimum cost. Different link types are also considered for the tuning behavior.

4.1. Explicit Tracking and Query Suppression

In IGMPv2/MLDv1, the member reports are suppressed if the same report has already been sent by another host in the network which is also referred to as host suppression. As described in the A.2 of [RFC3810], the suppression of multicast listener reports has been removed in MLDv2 due to the following reasons:
0 Routers may want to track per-host multicast listener status on an interface. This enables the router to track each individual host that is joined to a particular group or channel and allow minimal leave latencies when a host leaves a multicast group or channel.

0 Multicast Listener Report suppression does not work well on bridged LANs. Many bridges and Layer2/Layer3 switches that implement MLD snooping do not forward MLD messages across LAN segments in order to prevent multicast listener report suppression.

0 By eliminating multicast listener report suppression, hosts have fewer messages to process; this leads to a simpler state machine implementation.

0 In MLDv2, a single multicast listener report now bundles multiple multicast address records to decrease the number of packets sent. In comparison, the previous version of MLD required that each multicast address be reported in a separate message.

Without host suppression, it is possible to enable explicit tracking on a router by which the local replication can be used by the router to inspect incoming join and leave requests, record or refresh the membership state for each host on the interface, and take appropriate action to each received report. In the meanwhile, the router builds a table to track which channel being forwarded to each port. If the channel being requested to view is already being received at the router, it can replicate the stream and forward to this new requester which ensure good response time.

By using the tracking table mentioned above, the router has the capability to learn if a particular multicast address has any members on an attached link or if any of the sources from the specified list for the particular multicast address has any members on an attached link or not. Such capability makes Group specific Query or Source-and-Group Specific Queries, which are sent to query other members when a member leaves, unnecessary because the router has already known who are active on the interface using explicit tracking. Therefore it is desirable that these two Queries are eliminated when explicit tracking is used. But General periodical Query by a router to solicit current state reports to refresh existing membership state database should still be used to prevent incorrectness of the database due to the possible loss of explicit join and leave message in some cases.

The main benefits of using explicit tracking without Group specific Query or Source-and-Group Specific Queries are that it provides:
0 minimizing packet number and packet burst: Elimination of Group and Source-Group specific Queries when a member leaves a group will reduce the number of transmitted Group Specific Queries. And finally the total number of Reports in response to Group Specific Queries can be drastically reduced.

0 Minimal leave latencies: an IGMPv3/MLDv2 router configured with explicit tracking can immediately stop forwarding traffic if the last host to request to receive traffic from the router indicates its leave from the group.

0 Faster channel changing: The channel change time of the receiver application depends on the leave latency, that is to say, single host can not receive the new multicast stream before forwarding of the old stream has stopped.

0 Reducing Power consumption: Due to elimination of the suppression of membership reports, the host does not need to spend processing power to hear and determine if the same report has already been sent by another host in the network, which is beneficial to mobile hosts that do not have enough battery power.

4.2. Report Suppression for the hosts

The large number of Reports and bad link condition may result in packets burst. This packet burst can be mitigated by having the router aggregate the responses (membership reports) from multiple clients. The router can intercept IGMP/MLD reports coming from hosts, and forwards a summarized version to the upstream router only when necessary. Typically this means that the router will forward IGMP/MLD membership reports as follows:

- Unsolicited membership reports (channel change requests) are forwarded only when the first subscriber joins a multicast group, or the last subscriber leaves a multicast group. This tells the upstream router to begin or stop sending this channel to this router.

- Solicited membership reports (sent in response to a query) are forwarded once per multicast group. The router may also aggregate multiple responses together into a single membership report.

4.3. Query Suppression for the routers

The large number of Queries and bad link condition may result in packets burst. This packet burst can be mitigated by having the downstream router stop forwarding IGMP/MLD Queries packets sent to
the hosts and respond with report as proxy to the upstream router. Typically this means that the router will:

- Never send a specific query to any client, and
- Send general queries only to those clients receiving at least one multicast group

4.4. Minimizing Query Frequency by increasing interval each time

In IGMPv3/MLDv2, Group Specific Queries and Source and Group specific Queries are sent for [Last Member Query Count] times with short fixed [Last Member Query Interval], to learn whether there are valid members from an attached link. If the network is undergoing congestion, the multiple transmissions of the queries may further deteriorate the bad conditions. To eliminate the bad effects for this, these Queries can be slowed down when a router cannot collect successfully expected members' report responses in the mean while it detects the network congestion is going to happen. The slowing down process of the Queries could be arranged in a prolonged time interval as described in [ADAPTIVE].

The slow down behavior is: a router after sending a Query, if acquires the expected responses from the receivers, refreshes its state database and stop the querying retransmission process, or if after a time interval fails to get the expected report responses, resends a Query with an increased (e.g. double) interval. This process can be repeated, for each time the retransmission is arranged in a prolonged time interval, till the router receives the expected responses, or determines the receiver is unreachable and then stops the sending of the Query ultimately. The router can make judgment on not getting expected response from the Queries in the following cases:

- When Group Specific Query and Source and Group Specific Queries are used to track other numbers, the router cannot collect any response from the link.
- When all group members leave the group or move out of scope, the General Query sent by the router cannot solicit any responses from the link, as mentioned in section 4.9.
- When General Query is retransmitted due to possible loss deducing from no responses from valid members in the database.
0 When General Query is retransmitted by a router on startup [RFC3376][RFC3810], it gets no membership response from the interface.

0 When unicast Query is sent to solicit a particular receiver, if the router can not get responses from the receiver, as described in section 4.5 and 4.6.

In the above cases, if the router fails to get expected response from the network, and if the link condition is bad or in congestion, the router could retransmit the Queries in increased interval. This query retransmission with incremental interval enables the router to reduce the total packet retransmission times in the same time period comparing with retransmission for multiple times with fixed interval, and at the mean time gain some degree of reliability. The variable time interval and the termination condition should be configurable and could be set according to actual network condition, which is out the scope of this document.

4.5. Switching Between Unicast Query and Multicast Query

IGMP/MLD protocols define the use of multicast Queries whose destination addresses are multicast addresses and also allow use of unicast Queries with unicast destination. The unicast Query is sent only for one destination and has the advantages of not affecting other host on the same link. This is especially desirable for wireless communication because the mobile terminal often has limited battery power. But if the number of valid receivers is large, using unicast Query instead of multicast Query will introduce large number of Queries because each Query will be generated for each member, which will not be an efficient use of link resources. In this case the normal multicast Query will be a good choice because only one Query needs to be sent. On the other hand of the number of receivers to be queried is small, the unicast Query is advantageous over multicast one.

The router can choose to switch between unicast and multicast Query according to the practical network conditions. For example, if the receiver number is small, the router could send unicast Queries respectively to each receiver to solicit their membership states, without arousing other host which is in the dormant state. When the receiver number reaches a predefined level, the router could change to use multicast Queries. The router could make the switching flexibly according to practical conditions to improve the efficiency.
4.6. Using General Query with Unicast Query

Unicast Query also can be used in addition to General Query to improve the robustness of solicited reports when General Query fails to collect its valid members. It requires the explicit tracking to be enabled on the router. Its basic behavior is: a router after sending a periodical Query collects successfully all the members’ report responses except for one or two which are currently still valid in its database. This may be because the non-respondent ones silently leave the network without any notification, or because their reports are lost due to some unknown reason. The router in this case could choose to unicast a Query respectively to each non-respondent receiver to check whether they are still alive for the multicast reception, without affecting the majority of receivers that have already responded. Unicast Queries under this condition could be sent for \[\text{Last Member Query Count}\] times, following the same rule of \[\text{[3376]}\] or \[\text{[3810]}\], or could be resent in incremental interval, as described in section 4.4.

4.7. Retransmission of General Queries

In IGMPv3 and MLDv2, apart from the continuously periodical transmission, General Query is also transmitted during a router’s startup. It will be transmitted for \[\text{[Startup Query Count]}\] times with \[\text{[Startup Query Interval]}\], to improve reliability of General Query during startup. There are some other cases where retransmission of General Query is beneficial which are not covered by current IGMPv3/MLDv2 protocols as shown in the following.

For example, a router which keeps track of all its active receivers, if after sending a General Query, may fail to get any response from the receivers which are still valid in its membership database. This may be because all the valid receivers leaves the groups or moves out of the range of the link at the moment, or because all the responses of the receivers are lost, or because the sent Query does not arrive at the other side of the link. If current database indicates the number of the valid receiver is not small, the router could choose to compensate this situation by retransmitting the General Query to solicit its active members.

This compensating General Query could be sent several times, if the router can not get any feedback from the receivers which are previous in the database. The repetition of the transmission could in fixed
interval such as [Last Member Query Interval], or could in prolonged
interval if the link condition is not good.

4.8. General Query Suppression with no receiver

In IGMPv3 and MLDv2, General Query is multicast sent periodically
and continuously without any limitations. It helps solicit the
state of current valid member but has influence on all terminals,
whether they are valid multicast receivers or not. When there is no
receiver on the link, the transmission of the General Query is a
waste of resources for both terminals and the router.

The IGMPv3/MLDv2 router could suppress its transmission of General
Query if there is no valid multicast receiver on the link, e.g. in
the following cases:

○ If the last member reports its leave for a group. This could be
judged by an explicit tracking router checking its membership
database, or by a non explicit tracking router sending Group and
Source Group Specific Queries;

○ If the only member on a PTP link reports its leaving;

○ If the router after retransmission of General Queries on startup
fails to get any response from any member;

○ If the router previously has valid members but fails to get any
response from any member after several rounds of General Queries
or Unicast Queries;

In these cases the router could make a decision that no member is on
this link and totally stop its transmission of periodical General
Queries. If afterwards there is valid multicast receiver joins a
group, the router could resume the original cycle of transmission of
General Queries. Because General Query has influences on all the
terminals on the link, suppressing it when it is not needed is
beneficial for both the link efficiency and terminal power saving.

4.9. Tuning Response Delay according to link type and status

IGMPv3 and MLDv2 use delayed response mechanism to spread Report
messages from different hosts over a longer interval which can
greatly reduce possibility of packet burstiness. This is implemented
by the host responding to a Query in a specific time randomly chosen
between 0 and [Maximum Response Delay]. The value of [Maximum
Response Delay] parameter is determined by the router and is carried
in Query messages to inform the valid hosts to make the selection. A long delay will lessen the burstiness but will increase leave latency (the time between when the last listener stops listening to a source or multicast address and when the traffic stops flowing).

In order to avoid burstiness of MLD messages and reduce leave latency, explicit tracking with Group Specific Query eliminated is recommended to be used first to reduce leave latency. Then the Response Delay may be dynamically calculated based on the expected number of Reporters for each Query and link type and link status.

- If the expected number of Reporters is large and link condition is bad, the system administrator MUST choose the longer Maximum Response Delay; if the expected number of Reporters is small and the link condition is good, the administrator may choose the smaller Maximum response Delay. In this case, the IGMP/MLD packet burstiness can be reduced.

- Another case is if the link type is PTP which means the resource is dedicated for one receiver on each link, then the Maximum Response Delay can be chosen smaller, if the link type is shared medium link or P2MP, then the Maximum Response Delay can be configured larger.

The Maximum Response Delay can be configured by the administrator as mentioned above, or be calculated automatically by software tool implemented according to experiential model on different link modes. As the router arrives at a value appropriate for current link type and conditions, it will encode the value in Query messages to inform the host to make the response. The determination of the instant Maximum Response Delay value is out of this document’s scope.

4.10. Triggering reports and queries quickly during handover

As a mobile terminal is moving from one network to another, if it is a multicast receiver from a group, its new access network should try to deliver the content to the receiver without disruption or performance deterioration. For the smooth switching between networks, the terminal’s membership should be acquired as quickly as possible by the new access network.

For the access router, it could trigger a Query to the terminal as soon as it detects a new terminal on its link. This could be a General Query if the router does not know whether or not the terminal is a valid receiver or if the number of the entering terminals is not small. Or this Query could also be a unicast Query.
for only a small quantity of terminals to prevent unnecessary action of other terminals in the switching area.

For the terminal, it could trigger a report if it is currently in the multicast reception state. This helps establish more quickly the membership states and enable faster multicast stream injection because active report from the host does not requires the router to wait for the query-response round in the passive reporting cases.

5. Security Considerations

They will be described in the later version of this draft.

6. Acknowledgement

The authors would like to thank Stig,Venaas, Gorry Fairhurst, Thomas C. Schmidt, Marshall Eubanks, Suresh Krishnan, J.William Atwood, WeeSan Lee, Imed Romdhani, Hitoshi Asaeda, Liu Yisong and Wei Yong for their valuable comments and suggestions on this document.

7. References

7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to indicate requirement levels", RFC 2119, March 1997.


7.2. Informative Referencess


Authors’ Addresses

Qin Wu
Huawei Technologies Co., Ltd.
Site B, Floor 12, Huihong Mansion, No.91 Baixia Rd.
Nanjing, Jiangsu 21001
China
Phone: +86-25-84565892
EMail: sunseawq@huawei.com

Hui Liu
Huawei Technologies Co., Ltd.
Huawei Bld., No.3 Xinxi Rd.
Shang-Di Information Industry Base
Hai-Dian Distinct, Beijing 100085
China
EMail: Liuhui47967@huawei.com