Generating Stable Privacy-Enhanced Addresses with IPv6 SLAAC
(draft-gont-6man-stable-privacy-addresses)

Fernando Gont
on behalf of
UK CPNI

IETF 83
Modified EUI-64 format identifiers

- Privacy implications of EUI-64 format identifiers are well-known
 - They leak out node identity
 - They greatly simplify host scanning
- There seems to be general agreement that something should be done about them
 - For instance, Windows 7 does not use EUI-64 format identifiers
Privacy/Temporary addresses

- Aim to mitigate correlation of host activities
- They result in unpredictable and temporary addresses
- They are used in addition to MAC-derived addresses:
 - MAC-derived addresses for server-like functions
 - Privacy addresses for outgoing connections
- Some deem privacy addresses as difficult to manage
Summary of SLAAC-derived addresses

<table>
<thead>
<tr>
<th>Predictable</th>
<th>Stable</th>
<th>Temporary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mod. EUI-64 I-IDs</td>
<td>None</td>
</tr>
<tr>
<td>Unpredictable</td>
<td>NONE</td>
<td>RFC 4941</td>
</tr>
</tbody>
</table>

- We lack of stable-privacy-enhanced IPv6 addresses
 - Used to replace MAC-derived addresses
 - Pretty much orthogonal to privacy addresses
 - Nodes with or without privacy addresses would benefit from them
Stable privacy-enhanced addresses

- We propose to generate IPv6 addresses as:
 \[F(\text{Prefix}, \text{Modified}_\text{EUI64}, \text{Network}_\text{ID}, \text{secret}_\text{key}) \]

- This function results in addresses that:
 - Are stable within the same subnet
 - Have different Interface-IDs when moving across networks
Moving forward

• Time to adopt it as a 6man wg document?
Feedback?

Fernando Gont
fgont@si6networks.com