draft-perez-radext-radius-fragmentation
Objective

• Define a mechanism to deal with RADIUS packets over 4 KB, that are possible when:
 – Many different attributes are present
 – Big extended fragmented attributes are present (e.g. SAML-Message)
 – A combination of both

• Avoid using an out-of-band mechanism to retrieve data
 – Use a single trust infrastructure → RADIUS

• Compatible with existing specifications for intra-packet fragmentation
 – i.e. ietf-radext-radius-extensions
Overview

- A RADIUS peer willing to send a > 4KB RADIUS packet will do the following process:

1) Divide the packet into smaller packets (called *chunks*) < 4 KB
 - If the last attribute of a chunk has flag “M” set (ietf-radext-radius-extensions) it is marked with an additional flag “T” to indicate this is not an error

2) A new attribute called *More-Data-Pending* is included in every chunk, except on the last one
 - Indicates that more data is required to rebuild the original packet
 - Equivalent to the flag M, but at a packet-level

3) Send chunks to the receiver in order
 - Using Access-Request/Access-Challenge exchanges
 - Receiver do not process chunks until the original packet is completely rebuilt
More-Data-Pending

• Format:

```
+-----------------+----------+-----------------+-------+
|   Type          |    Length| Extended-Type   | Value |
+-----------------+----------+-----------------+-------+

Value: Not defined yet
```
Example: Access-Request

- Maximum packet length = 8 attributes

Access-Request = User-Name, Calling-Station-Id, Data1[M], Data2[M], Data3[M], Data4[M], Data5[M], Data6[M], Data7[M], Data8[M], Data9[M], Data10, Other1[M], Other2[M], Other3

```
|  NAS  | | AS  |
|-------| |-----|
|       | |     |
```

<table>
<thead>
<tr>
<th>Access-Request(User-Name, Calling-Station-Id, Data1[M], Data2[M], Data3[M], Data4[M], Data5[M], More-Data-Pending)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Access-Challenge(State1)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Access-Request(State1, Data6[M], Data7[M], Data8[M], Data9[M], Data10, Other1[M], Other2[M], More-Data-Pending)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Access-Challenge(State2)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Access-Request(State2, Other2[M], Other3)</th>
</tr>
</thead>
</table>
Example: Access-Challenge

- Maximum packet length = 8 attributes

\[
\text{Access-Challenge} = \text{Data1}[M], \text{Data2}[M], \text{Data3}[M], \text{Data4}[M], \text{Data5}[M], \text{Data6}[M], \\
\text{Data7}[M], \text{Data8}[M], \text{Data9}[M], \text{Data10}, \text{Other1}[M], \text{Other2}[M], \text{Other3}
\]
Example: Access-Accept

• Some attributes are allowed to appear ONLY in Access-Accept packets
 – They cannot be present in Access-Challenge packets
 – Previous solution not directly applicable

• Solution:
 – AS sends Access-Accept including all these attributes
 • Service-Type="Authorize-Only"
 • Include State attribute
 – NAS requests rest of information before granting access
 • Access-Request/Access-Challenge exchanges
 • Last chunk is Access-Accept with the actual Service-Type
Example: Access-Accept

- Maximum packet length = 8 attributes

\[\text{Access-Accept} = \text{User-Name}, \text{Service-Type}[X], \text{Framed-IP-Address}, \text{Data1}[M], \text{Data2}[M], \text{Data3}[M], \text{Data4}[M], \text{Data5}[M], \text{Data6}[M], \text{Data7}[M], \text{Data8}[M], \text{Data9}[M], \text{Data10} \]

\[+++++++ | \text{NAS} | +++++++ \]

\[+++++++ \]

\[\text{Access-Accept(} \text{User-Name, Service-Type[AuthOnly]}, \text{Framed-IP-Address, State1)} \]

\[\text{<-------------------------->} \]

\[\text{Access-Request(State1)} \]

\[\text{Access-Challenge(Data1}[M], \text{Data2}[M], \text{Data3}[M], \text{Data4}[M], \text{Data5}[M], \text{Data6}[M], \text{More-Data-Pending, State2)} \]

\[\text{<-------------------------->} \]

\[\text{Access-Request(State2)} \]

\[\text{Access-Accept(Data7}[M], \text{Data8}[M], \text{Data9}[M], \text{Data10, Service-Type[X]}]} \]

\[\text{<-------------------------->} \]
Proxies

• Can they introduce attributes (e.g. Proxy-State)?
 – As long as they do not exceed the 4KB limit for each chunk
 – Sender may need to leave enough room for extra attributes
 • E.g. Make chunks < 3 KB instead of 4 KB
 • A new attribute similar to Framed-MTU might be used for this purpose

• Can they modify attributes?
 – Proxy interacts with sender to obtain the original packet
 • Need to hold state until all chunks are received
 – Proxy modifies attributes and generates new packet
 – Proxy delivers new chunks to the receiver
Proxies

- Can proxies modify attributes?

<table>
<thead>
<tr>
<th>NAS</th>
<th>Proxy</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access-Request(User-Name, Calling-Station-Id, Data1[M], Data2[M], Data3[M], Data4[M], Data5[MT], More-Data-Pending)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access-Request(State1, Data6[M], Data7[M], Data8[M], Data9[M], Data10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access-Request(State2, Data6[M], Data7)</td>
<td></td>
<td>Access-Challenge(State2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><-----------------------------</td>
</tr>
</tbody>
</table>
Proxies

proxies modify SAML assertions issued by the IdP?