RTP Media Neutrality

Harald Alvestrand
Speaking for myself
Background

- draft-alvestrand-rtp-sess-neutral
- Ca 1994: MIME types and RTP media types merge their namespaces (RFC 1889 was 1996)
 - Conversation with Steve Casner on a Prague subway
 - RTP RFC 1889: 1996
 - SDP RFC 2327: 1998
- Almost immediately (within 10 years), tensions became obvious
 - MIME: video/vp8; parameter=value
 - RTP: m=video / a=rtpmap:99 vp8/90000 / a=fmtp:99
Flows vs Transports

(not using the word "multiplexing" - it confuses)

- A media flow can be interpreted alone* by a decoder
- A transport pair can be told apart by intermediate nodes

Historical changes, 1996 to today

- Cost of transport pairs go up
- Range of flows increases
- Cost of bandwidth plummets
- RSVP and multicast do not deploy

* modulo repair flows, FEC flows and so on
Help from the network

● Prioritization of flows
 ○ Requires detecting them
 ■ 5-tuples, DSCP markings, Deep Packet Inspection
 ○ "Do this one first" or "Reserve capacity for this one"
 ■ Has no effect when capacity is plentiful
 ○ (Censorship is one version of "prioritization")

● And…?
The RFC 3550 leap of faith

- Network-based prioritization is important
 - Assumes resource shortfalls will be frequent
 - End-system prioritization doesn't need separate transports
- Media types neatly align with priorities
 - Video and audio needs to be separated
 - Even if priorities are equal, cost does not matter
- Having many transports is cheap
 - RFC 3550 even used destination addresses only. Today, a 5-tuple and a crypto key is usually assumed.
Section 5.2 bullet 1-3 are irrelevant (SSRC reuse)
Bullet 4: "An RTP mixer would not be able to combine interleaved streams of incompatible media into one stream."

- Mixing is one application. "Blind" media mixing is appropriate for telephone conferences, and just about nothing else.
- In most cases, a mixer needs much metadata to do its job correctly. Sometimes, even interrelations between audio and video tracks are important for it to do its job.
- This argument's validity is strongly application dependent.
"Carrying multiple media in one RTP session precludes: the use of different network paths or network resource allocations if appropriate; reception of a subset of the media if desired, for example just audio if video would exceed the available bandwidth; and receiver implementations that use separate processes for the different media, whereas using separate RTP sessions permits either single- or multiple-process implementations."

- Note the use of *if desired* here.
- Media types *do not align* with these desires.

Multiple RTP sessions are often desirable. Each of them may need audio, video, application data or all 3.
Corrective Action

● The user knows the tradeoffs
 ○ Let the user decide what transports to allocate
● RTP needs no change
 ○ RTP sessions and flows have no MIME type markers
● RTCP is probably OK
 ○ Feedback flows may get surprising timings for mixtures of different-sized flows
 ○ This problem occurs also within one media type
● SDP needs corrective action
 ○ draft-holmberg-mmusic-sdp-bundle-negotiation is a patch on the current syntax
 ○ This discussion is input to the design of SDP:TNNG (the one after SDP:TNG)
What next?