GMPLS UNI

Best Current Practices

draft-beeram-ccamp-gmpls-uni-bcp-01.txt

V. Beeram, I. Bryskin, W. Doonan
(ADVA Optical Networking)
J. Drake, G. Grammel
(Juniper Networks)
M. Paul, R. Kunze
(Deutsche Telekom)
Friedrich Armbruster
Cyril Magaria
(NSN)
Oscar González de Dios
(Telefonica)
Changes from .00

• Comments addressed:
 – References to existing RFCs
 – BCP language
 – Generalized from the network layering point of view
 (client is not necessarily IP/MPLS, network is not necessarily WDM)

• Sections added:
 – MELGs
 – Path computation aspects
 – L1VPNs
 – Use cases
Use Cases

• IP/MPLS layer recovery scheme (e.g. FRR) based on TE links supported by GMPLS UNI LSPs

• IP/MPLS Offloading with UNI automation
 – IP/MPLS TE links supported by GMPLS UNI LSPs are added/removed dynamically based on user traffic volume/demand
MELGs

- Describe mutually exclusive relationship between two or more Virtual TE Links (links cannot be used concurrently)
- This relationship is stronger than fate sharing (described via SRLGs)
- Meaningful only for Virtual TE Links
- Requires a new Sub-TLV to be advertised within TE Link TLV
- Virtual TE Link state (committed vs. non-committed) needs to be advertised
Path Computation aspects

• Client path computation function can and should make use of Virtual TE Links advertised by the network:
 - end-to-end paths could be computed, using any path computation criterions and subject to any constraints;
 - SRLGs, MELGs, switching limitations should be considered as constraints
• Centralized concurrent computation of paths for a set of source/destination pairs is recommended (better use of SRLG and MELG information)
• It is recommended to avoid path computations performed by the network on behalf of clients (better to rely on end-to-end paths computed by clients)
L1VPN aspects

Client TEDB

VPN-IDs 1, 2

VPN-ID 1

VPN-ID 2

VPN-ID 3

VPN-IDs 2, 3

= server-layer

= client-layer
L1VPN aspects

• RFC4208 states that GMPS UNI allows for L1VPNs

• Virtual TE Link model makes L1VPN application a matter of policy:
 – Any access and/or Virtual TE link could be configured with 0, 1 or more VPN IDs
 – VPN IDs are advertised within the TE Link TLV (a new sub-TLV is required)
 – Network is responsible for proper filtering of the TE Link advertisements, so that the information pertinent to VPN X is leaked only to the clients that are members of VPN X
 – Client path computation computes end-to-end paths only within VPNs the client is member of

• This approach achieves the following:
 – Provides to the clients VPN specific view of the network;
 – Partitions network resources between VPNs;
 – Provides automatic VPN member auto-discovery;
 – Scopes path computations (and thus connectivity) to members of the same VPN
Next steps

• Documents for MELG and VPNID sub-TLV definitions and processing rules
• Multi-domain GMPLS-UNI ?
• More use cases
• Working Group status ?
Thank you