Dragonfly: A PAKE Scheme

Dan Harkins
IETF 83

Paris, France

The Rise of Password Protocols in the IETF

EAP-GPSK,
TLS-PSK ' TLS-SRP,
EAP-pwd

aff

* Plaintext passwords (1986 to 1995 or so)
— PAP-like exchange— completely broken
— Outlawed by Jeff Schiller

* Password derived data (90s to present)

— Transmit a hash of the password with nonces— susceptible to dictionary
attack

— Still used today (EAP-GPSK, TLS-PSK, IKE PSK, etc)
* PAKE scheme (2007 - ???)
— Use a zero-knowledge password protocol- secure!

* Protocols that are susceptible to dictionary attack are on the Standards
Track while those that are resistant to dictionary attack are Informational!

Uses for PAKEs

Certificate-less HTTPS
— Mitigates the popular and insecure self-signed cert + PAP
— No more captive portal
— No need to rely on 3rd party to ensure secure connection

Robust, misuse-resistant, security

— Eliminates the need for requiring long, random binary shared
secrets <wink, wink> with PSK-based schemes

— Realistic security in most probable deployment

Parlay a simple token into a user/device cert
Any commodity device with a user-interface for
configuration that must communicate over a network

— Most people don’t understand certificates; expecting people to
provision their devices with a certificate is naive

— Ma and Pa Kettle do not have security clue

What does this have to do with CFRG?

* There is resistance to PAKEs in the IETF

— Questions about security always come up

— Resistance results in promulgation of protocols
that are insecure in their most likely usage

* CFRG can help vet PAKEs to allow WGs to have
more confidence in adopting them

— For example,

A Key Exchange Called “dragonfly”

Yet another PAKE? Yes

Motivation

— Symmetric, true peer-to-peer protocol (either side can
initiate and both can initiate simultaneously)

— Use both ECC and FFC and not require special domain
parameter sets

— Don’t bind a user to one particular domain parameter set
— No IPR issues

None of the existing schemes were appropriate
It’s a fun problem to work on too

 Commit then confirm protocol
— A party may commit at any time
— A party confirms after both it commits and its peer commits
— A party accepts authentication after a peer confirms
— The protocol successfully terminates after both parties confirm

Assuming.

— H() is a secure PRF
— f(v) is a deterministic mapping of string v to an element in G

— group G = {generator g, prime p, order q [, a, b]}
— a password chosen at random from a pool

Alice and Bob first generate a password-derived element in G:

PE =f(password)

e Commit phase
— Exchange scalars and elements
— Generate shared secret

Alice Bob
rnd-a, msk-a <--- random() rnd-b, msk-b <--- random()
scalar-a = (rnd-a + msk-a) mod q scalar-b = (rnd-b + msk-b) mod q

element-a = PE ~mska \ / element-b = PE —mskb

(PE scalarb * alement-b) M4a mod p =ss = (PE s@lara * glement-a) ™4* mod p

* Confirm phase
— Generate master key, key confirmation key
— Exchange confirm messages

Alice Bob

KCK | MK = KDF(ss, “some cruft”, (scalar-a + scalar-b) mod q)

confirm-a = H(KCK, scalar-a | scalar-b | confirm-b = H(KCK, scalar-b | scalar-a |
element-a | element-b) element-b | element-a)

~N

If confirms are verified, exchange succeeds (use MK), else it fails

Specified in many protocols

— |[EEE 802.11-2012 for authentication between
wireless devices (client and AP, or nodes in mesh
and ad hoc networks), SAE

— EAP, RFC 5931
— IKE, draft-harkins-ipsecme-spsk-auth
— TLS, draft-harkins-tls-pwd

e |s this scheme secure?

— Is the probability that an adversary can break the
protocol less than the probability of the adversary
guessing the password outright?

— Does the adversarial advantage grow through
interaction and not through computation?

— Does any information (except the knowledge that
a single guess is correct or incorrect) leak as a
result of running the protocol?

Secure Against Passive Attack

CDH problem:

— given (g% g° g)

— produce g

dragonfly algorithm:

— given (ra+ma, PWE™2, rb+mb, PWE™P, PWE)
— produce PWER"rb

Reduction:

— generate randomrl, r2

— Give attacker (r1, g2, r2, g°, g) to produce g(r1+a)*(r2+b]
— But g(r1+a)*(r2+b)/ ((ga)rz % (gb)rl % grl*rz) — gab |
Conclusion:

— Successful attack against dragonfly would solve CDH
problem, which is computationally infeasible

Secure Against Active Attack?

“doesn't seem likely that the protocol can be proven
secure”—Jonathan Katz
Random oracle model

— assume no key confirmation step in dragonfly, just scalar
and element exchange

— adversary performs MitM, adding 1 to one side’s scalar

— adversary issues “reveal” query to obtain secrets of both
sides

— off-line dictionary attack is now possible

This is too contrived to worry about as a real attack
against dragonfly but it is a problem with a formal
proof of security (at least in Random Oracle model)

Can this protocol be proven secure? Help.

