

Dimensioning considerations for DMM

Elena Demaria Loris Marchetti

DMM WG, March 2012

Scope

- Evaluation of possible economic benefits for the operator to deploy a dmm-based architecture
- First comparison, even if in a simplified scenario, between a centralized and a distributed model

Network topology (starting point)

- The network is made by different PoPs each one directly connected (single hop) to the backbone
- Only one PoP gives access to the Internet (internet exchange point)
- It is a very simple model
- Extensions/enhancements will be considered for next versions of the draft

The centralized scenario

 In the centralized scenario the PGWs are located only in the PoP where the Internet exchange point is located.

The (selected) distributed scenario

 Different distributed scenarios may exist but we consider the one in which each PoP is equipped with a PGW

The formulas

- Centralized scenario:
- sum_{i=1}^{n-1}(2*2^10*cost_link*Internet_Traffic_PoP_i)+
- sum_{i=1}^{n-1}(4*2^10*cost_link*Local_Traffic_PoP_i)+
- cost_PGW (sum_{i=1}^{n} (traffic_PoP_i))
- Distributed scenario:
- sum_{i=1}^{n-1}(2*2^10*cost_link*Internet_Traffic_PoP_i)+
- sum_{i=1}^{n}(cost_PGW(traffic_PoP_i))

Results

- Not an always-valid model but, based on traffic distribution, one model can be more convenient than the other
- What makes the difference is the percentage of traffic local to the PoP
 - If sufficient traffic is exchanged internally to the PoP there is no need to transport it to the exchange point so that the distributed scenario becomes more convenient
 - On the opposite side, if all the traffic generated by the customers is directed to the internet the difference between the two scenarios reduces and there is no convenience to have a local PGW when the traffic must however be transported to the exchange point

Questions?