WebSocket Multiplexing & Compression Extension

IETF 83 HyBi WG

Takeshi Yoshino
tyoshino at google dot com
Our Next Task
Make WebSocket More Efficient

• Connection multiplexing (mux)
 – Reduce # of TCP connections for scalability
 • Managing dozen of persistent TCP connections is burden especially for servers

• Data compression
 – Reduce bandwidth usage
 • Take in what’s done for HTTP
Mux Extension
Baseline Proposal (1)

• [draft-tamplin-hybi-google-mux-03](#)

• **Channel ID** tagging by extension data
 – Logical channel 0: Control channel

• **Flow control**
 – Have send quota for each logical channel

• **Latency**
 – Open 1 logical channel on handshake
 • 1 RTT for each logical channel
Mux Extension
Baseline Proposal (2)

• Optimization
 – Open more channels by sending diff of handshake
 – Keep an idle connection (only control channel) open for a while

• Using other extensions together
 – Extension token order = application order
 • compress, mux → compress mux-ed channels
 • mux, compress → compress physical channel
Mux Extension
Baseline Proposal (3)

• Mux commands
 – Sent as binary data frames with ID=0
 – WebSocket frame header
 – Channel ID of 0 (1 byte)
 – Multiplexing command(s)
 • Objective logical channel ID
 • Multiplex opcode
 • Additional data
Mux Extension
Baseline Proposal (4)

• List of **mux commands**
 – AddChannel request
 – AddChannel response
 – DropChannel request
 • To notify mux level errors and close logical channel abnormally
 – DropChannel response (TBA)
 – FlowControl
Frames of mux-ed connections
 – Sent as frames with their channel ID
 – WebSocket frame header
 – Non-zero Channel ID (1-4 byte variable size)
 – Application data
Mux Extension

Issues

• Control frames of mux-ed channels may confuse intermediaries
 – Convert control frames into mux commands
• Channel ID assignment by client or server?
• Nesting: allow/disallow?
• Have way to open multiple channels at once?
• Use of channel ID values as service identifier by non-browser app
Mux Extension
Things to Leave to Implementors

• Send algorithm
• Flow control algorithm
• Time to close idle connections
• Channel ID selection

• Just provide some notes to implementors
 – Fairness among logical channels
 – No starvation
Compression Extension
Baseline Proposal

• draft-tyoshino-hybi-websocket-perframe-deflate-06

• Defined general per-frame compression
 – More choices of algorithm in the future
 – Share precious RSV bit

• Deflate as default available algorithm
Compression Extension
Baseline Proposal (deflate)

• Less overhead by adopting RFC 1979

• Configurable sliding window size
 – For systems with limited memory
 – Ask the other peer to use small window

• Turn on/off compression context takeover
 – [Off] Load balancers can dispatch w/o decoding
 – [On] Utilize redundancy between messages
Compression Extension Issues (1)
Decoupling extension/algorithm

• Extensions for each algorithm
 – compress-alpha; foo=bar,
 compress-beta; foo=bar; bar=baz

• One extension with algorithm parameter
 – As an extension parameter
 • perframe-compress; mode=“
 alpha; foo=bar, beta; foo=bar; bar=baz”
 – As a new header
 • Sec-WebSocket-Compression: alpha; ...
Compression Extension Issues (2)

• Allocation of per-frame compressed bit
 – RSV1, first octet or dynamic allocation?

• For incompressible/compressed data
 – API to turn on/off compression dynamically
 – Heuristics