

RTP Congestion Control: Circuit Breakers for Unicast Sessions

draft-perkins-avtcore-rtp-circuit-breakers-00

Colin Perkins – University of Glasgow Varun Singh – Aalto University

Background and Goals

- RTP requires applications to be congestion aware, but lacks a standard congestion control algorithm
- Interest in developing and standardising congestion control algorithms for WebRTC
 - These algorithms are new, and will take time to develop and be validated
 - WebRTC, and other, applications need an immediate safety-net, to allow initial deployment before sophisticated congestion control is developed
- This draft defines an envelope within which these algorithms must work
 - Attempt to determine "circuit breaker" conditions for RTP sessions limits that are not met in normal operation, but can be used to stop errant flows

RTP Background

- RTP data transfer protocol sends audio/visual data
 - Group communication protocol, supporting a variety of network topologies
 - Consider unicast flows only (end-to-end or end-to-RTP-layer-middlebox)
- RTP control protocol (RTCP) used for reporting and some limited session control
 - UDP-based backchannel unreliable
 - Reception quality feedback reports sent every few seconds
 - Rapid feedback extensions exist, but basic mechanism must work without
- Associated signalling channel for high-level control
 - RTSP, SIP, XMPP, WebRTC, etc.
 - Not suitable for congestion control feedback

Congestion Signals for RTP/AVP Flows

- Potential congestion signals available from RTCP:
 - RTT estimate once per reporting interval
 - Jitter estimate once per reporting interval (limited use for video flows)
 - Fraction of packets lost during the reporting interval, plus cumulative number of packets lost over the entire RTP session
- Applicability as RTP circuit breakers:
 - RTT/jitter estimates too infrequent to be useful
 - Packet loss statistics too infrequent for rate adaptation, but useful for detecting overload situations – use as the basis for a limiting condition

	0 1 2 3
	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
	+-
header	V=2 P RC PT=SR=200 length
	+-
	SSRC of sender
	+=
sender	NTP timestamp, most significant word
info	+_
	NTP timestamp, least significant word
	+-
	RTP timestamp
	+-
	sender's packet count
	+-
	sender's octet count
	+=
report	SSRC_1 (SSRC of first source)
block	+-
1	fraction lost cumulative number of packets lost
	+-
	extended highest sequence number received
	+-
	interarrival jitter
	+-
	last SR (LSR)
	delay since last SR (DLSR)
roport	SSRC_2 (SSRC of second source)
report block	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
2 2	·
2	· · · · · · · · · · · · · · · · · · ·
	profile-specific extensions
	+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_+_

RTP Circuit Breaker Conditions

- Circuit breaker #1: Timeout
 - RTP data packets being sent, but corresponding RTCP RR packets report non-increasing extended highest sequence number received
 - Indication of significant connectivity problem if persistent for ≥ 2 reporting intervals → cease transmission

RTP Circuit Breaker Conditions

- Circuit Breaker #2: Congestion
 - RTP data sent, corresponding RR packets have increasing extended highest sequence number received, but non-zero packet loss fraction
 - Indication of network congestion estimate equivalent TCP throughput:

$$T = \frac{s}{R\sqrt{\frac{2p}{3}} + (t_{RTO}(3\sqrt{\frac{3p}{8}})p(1+32p^2))}}$$

$$R = \text{round trip time, } s = \text{packet size}$$

$$p = \text{packet loss fraction}$$

where $t_{RTO} \approx 4R$, and cease transmission if RTP sending rate $\geq 10T$ for 2 reporting intervals (based on Padhye *et al*, SIGCOMM 1998)

- Issue #1: RTCP reports packet loss fraction, not loss event rate
 - Floyd *et al*, SIGCOMM 2000, show the difference is small for steady-state conditions and random loss; using loss fraction more conservative for bursty loss
- Issue #2: RTT estimate is poor quality
- Issue #3: measurement timescale is overly long; limits accuracy

Discussion

- Insufficient information for good congestion control using basic RTP/RTCP
 - Extensions, e.g., RTP/AVPF and RTCP XR, required for effective control
 - RTCWeb work will need to assume the presence of these

- Believe reasonable "circuit breaker" conditions can be derived using basic RTP/RTCP
 - Stretches applicability of TCP throughput equation is this too far beyond breaking point?
 - Should we be using order-of-magnitude comparison to TCP throughput as a limiting condition?