TCP Segment Caching

draft-sarolahti-irtf-catcp-00.txt

Pasi Sarolahti, Jorg Ott, Colin Perkins
ICCRG meeting
|[ETF-83, Paris, France

Content- and Cache Aware TCP

Enables TCP segment caching and replication in network
— Cachable segments are supplied with a content label

— Common data shared between different connections

— Cache can send segments on behalf of the sender

Only sender TCP modifications needed

— Works with standard TCP receiver

Application specifies content label
— Small APl extension needed

Example use cases
— TCP-based media to multiple simultaneous receivers
— Mitigating server load on sudden flash crowds

Content Label Option

“Content Label” option in
TCP data segments

— ldentifies the piece of content

included with segment

— Content object may be larger
than TCP segment, therefore

offset needed

“Content Request” in TCP
acknowledgments

— To request data from cache

— CS: number of segments that

can be sent

— TCP sequence: to be used in
TCP header of cached data

Kind Length M.Code Rsrvd
Content Label (8 bytes)

Offset

Kind Length | M.Code | CS | R
Content Label (8 bytes)

Next Offset
TCP Sequence

Protocol Operation

o 1) TCP sender adds Content label Offset
Content Label option to
cachable segments S

— Same connection can have Sender | p—— Receiver
non-labeled segments, and
different content labels ' TCP ACK

A1

* 2) Segment cache can A
store segments with
content label option

— Cache lookups happen
based on label and offset

— No per-flow state needed

Protocol Operation

* 3) Receiver acknowledges
segments normally
— No CA-TCP support needed

e 4) Controller adds

Content Request option
to ACKs A

— Per-flow state for each

connection A 1 B
— Can be co-located with Al 211

{Sender] [Receiver]

cache or with receiver
Content label

Next CS
Offset

Controller

Protocol Operation

e 5) Cache can send
segments based on
Content Request option
— Increases Next Offset
— Decreases CS

* 6) Acknowledgments
flow back to the sender Al3 0

— Sender does not send A 2
data if CS==0 :

— Updates SND.NXT based
on “Next Offset” field

Sender . Receiver

Experimentation

TCP modifications
implemented in Linux s
kernel

Two cache _
implementations gs
— Stand-alone bridge ¢
— Click router module :%: .
Tests with ©

— Amazon EC2 servers in
different continents °

— Ns-3 simulations with NSC
— HTTP and BitTorrent traffic

—=o normal
----8 CATCP .

& CATCP-Nagle R
--4& CATCP-DelAck

Number of receivers

Notes and Issues

Multiple control loops
— Faster round-trip between cache and receiver
— Synchronization: later flows catch up the first flow that feeds caches
Congestion control for cached segments
— |Is simple congestion avoidance enough?
Inconsistent segmentation may hamper cachability
— Can be controlled (to some extent) at sender side
— Not much can be done with re-segmenting middleboxes
Security: attacker could send false content labels
— Integrity checking would be needed

Acknowledgments for unsent segments may confuse some
middleboxes

Contention of the available TCP option space

Planned Next Steps

* Improve the draft
— In future: publish as Experimental RFC

* More experimentations
— More diverse environments, different applications
— Collaboration is welcome

