# A Delay Based Congestion Control Candidate

**Stefan Holmer** 

Details in: draft-alvestrand-rtcweb-congestion

#### Problem

At what bitrate can a sender transmit data while still keeping the end-to-end delay low and avoiding packet loss?

## Model - Queuing

- Packets transmitted at a too high rate will be queued.
- The one-way delay increases with queue length.
- If a queue is full, packets are dropped.
  - Other schemes exist



## Modeling

Over-using:

The one-way delay  $d_i$  increases as queues are being filled.  $\Delta_i = d_i - d_{i-1} > 0$ 



#### **Estimation/Detection**

- Estimate the slope and offset.
- Most filters will do the job. We chose the Kalman filter.
  - Adaptive, handles random jitter as noise.
- Measure incoming rate when offset > threshold.
- Adjust target rate to some factor of the incoming rate.

# Signaling

- Both estimation and control at the receiver.
- Transmit bandwidth estimates to the sender.
- The sender chooses to transmit at any rate < BW estimate. Employs own simpler algorithm to avoid problems of lost feedback messages.

#### Results

- Been run through a set of emulated network scenarios with success.
- Used in the wild with Chrome's WebRTC implementation.
- Working on getting some performance numbers.

## TODO

- AQM/ECN.
- Packet-loss based detection at the receiver.
- Multiple streams.