Laminar TCP
and Related Problems

draft-mathis-tcpm-laminar-tcp-00

Matt Mathis
mattmathis@google.com

ICCRG, IETF-83

Mar 27, 2011
(Main presentation will be in TCPM)



cwnd and ssthresh are overloaded

e cwnd carries both long term and short term state

o Long term state sometimes gets saved in ssthresh
e ssthresh carries queue size estimate and (temp) cwnd
e Poorly defined interactions between:

o Application stalls and congestion control

o Application stalls and loss recovery

o Reordering and congestion avoidance

o Other unanticipated concurrent events
O ...



Proposal: Refactor TCP

e New functional partition.
o New state variables
o Separate:
m Congestion Control from
m Transmission Scheduling
e Recast (most) existing standards into new variables
o Rewrite to replace cwnd and ssthresh
o Preserve well specified primary behaviors
o Best for TCPM, with it's standards oriented perspective
e Opportunities to do a few things much better
o Probably best for ICCRG



Laminar: Two separate subsystems

e Pure congestion control
o New state variable: CCwin
o Target quantity of data to be sent during each RTT
o Carries state between successive RTTs
o Not concerned with detailed timing, bursts etc
e Transmission scheduling
o Primary state is implicit, recomputed on every ACK
o Controls exactly when to (re)transmit data
o Tries to follow CCwin
o Little or no explicit long term state
o Includes slowstart, burst suppression, (future) pacing
o Variables: pipe (3517), total _pipe and DeliveredData



Variables

e CCwin: (Target) Congestion Control window
o Replaces both ssthresh and cwnd

e pipe: From 3517, data which has been sent but not ACKed
or SACKed

e DeliveredData: Quantity of newly delivered data reported by
this ACK (see PRR ID)

e total pipe = pipe+DeliveredData+SndBank; This is all
circulating data

e SndCnt: permission to send computed from the current ACK

Note that the above 4 are recomputed on every ACK

e SndBank: accumulated SndCnt to permit TSO etc



Default (Reno) Congestion Control

On startup:
CCwin = MAX_WIN

On ACK if not application limited:
CCwin += MSS*MSS/CCwin // in Bytes

On congestion:
if CCwin == MAX_WIN
CCwin = total_pipe/2 // Fraction depends on delayed ACK and ABC

CCwin = CCwin/2

Except on first loss, CCwin does not depend on pipe!



Default transmission scheduling

sndcnt = DeliveredData /| Default is constant window

if total_pipe > CCwin:
// Proportional Rate Reduction
sndcnt = (PRR calculation)

if total_pipe < CCwin:
// Implicit slowstart
sndcnt = DeliveredData+MIN(DeliveredData, ABClimit)

SndBank += sndcnt
while (SndBank && TSO_o0k())
SndBank -= transmitData()



TCPM Perspective

e Need Laminar versions of standard algorithms:
o Congestion Avoidance (Reno)
o Congestion Window Validation
o RTO and F-RTO
o Undo (generic)
o Control Block Interdependence
o Non-SACK TCP
O ...
e The intent is to (mostly) preserve existing behavior
o ldeally, packet by packet identical
o Except in some known problem cases



Overview of Research Issues

e Both subsystems can be improved
o Untangling the current spaghetti will foster evolution
o Better CC algorithms
m E.g. Even basic Reno can be improved
o Better transmission scheduling
m E.g. Hybrid pace and ACK clock
m Pace after idle
m ... many more ...
e Current complexity inhibits rogue CC
o Simple hacks generally cause negative gain
o How to prevent a "tragedy of the commons"



Fluid model Congestion Control

(Reno done better, CCwin in fractional bytes)

On every ACK: // Including during recovery
CCwin += MAX(DeliveredData, ABCIlimit)*MSS/CCwin

On retransmission:

oCCwin = CCwin
if (CCwin == MAX_WIN):
CCwin = initialCCestimate(total_pipe)

CCwin = CCwin/2
undoDelta = oCCwin - CCwin

Undo:
CCwin = MIN(CCwin+undoDelta, MAX_ WIN)

undoDelta =0



Fluid model properties

e Insensitive to reordering and packet boundaries

o Total increment based on total forward progress in bytes
e Insensitive to spurious retransmissions

o Undo and Al are both linear and order insensitive
e Closer agreement between the code and formal models

o No "boundary condition" for data during recovery

o CCwin rises during recovery while PRR reduces pipe

My bet: many things we think we know about congestion
control not totally right.



Transmission scheduling opportunities

e In existing implementations, TS is degenerate
o Override long term CC state by futzing with cwnd
o Sometimes put long term state in ssthresh
o No "space" for new features
e Under Laminar hybrid self clock and paced is natural
o Can pace following application stalls, etc
o Compute rate from CCwin, total pipe and RTT
e Huge "green field" of unexplored research opportunities
o Many new problems seeking new solutions



Congestion control risks

e Laminar will withstand aggressive CC algorithms
e \What forces (might) regulate global congestion levels?

The congestion exposure (ConkEx) WG is a huge step forward
(Thurs 3rd PM meeting slot)



Conclusion

e Laminar has the potential to change many things
e Entirely separate long and short time scales

e Entirely distinct algorithms for each

e Free both from code complexity and interactions
e Much opportunity for new research

e Much opportunity to re-evaluate old experiment



