Multihoming with IPv6-to-IPv6 Network Prefix Translation (NPTv6)

draft-bonica-v6-multihome-02
IETF 83
March 29, 2012
Motivation

• Demonstrate a multihoming architecture for sites that deploy NPTv6

• Architectural Goals
 – Redundancy
 – Transport-layer survivability
 – Load balancing
 – Address independence
 – Prevent excessive growth of global routing tables
Motivation (continued)

• Updates Section 2.4 of RFC 6296
 – Demonstrates an alternative multihoming architecture
 – Does not provide transport-layer survivability
NPTv6

• One-to-one translation between inside and outside addresses
 – No attempt to conserve outside address space
• Algorithmic translation
 – Overwrite high order bits
• Stateless translation
• Checksum neutral
• No requirement for routing symmetry
• By default, supports inbound connection requests
Architectural Aspects

• Topology
• Addressing
• Translation
• Routing
• DNS
• Recovery
• Load Balancing
Topology

Upstream Provider #1

/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ +-------+ \
| PE | | PE | | PE | | PE | | PE |
| #1 | | #1 | | #2 | | #2 | | #2 |
+-------+ +-------+ +-------+ +-------+
| | | |
| | | |
+-------+ +-------+ +-------+ +-------+
|NPTv6 | |NPTv6 | |NPTv6 | |NPTv6 |
| #1 | | #1 | | #2 | | #2 |
+-------+ +-------+ +-------+ +-------+

Upstream Provider #2

/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ +-------+ \
| PE | | PE | | PE | | PE |
| #1 | | #1 | | #2 | | #2 |
+-------+ +-------+ +-------+ +-------+
| | | |
| | | |
+-------+ +-------+ +-------+ +-------+
|NPTv6 | |NPTv6 | |NPTv6 | |NPTv6 |
| #1 | | #1 | | #2 | | #2 |
+-------+ +-------+ +-------+ +-------+

Internal Network
Provider Addressing

• A Regional Internet Registry (RIR) assigns Provider Address Block (PAB) #1 to Upstream Provider #1

• Likewise, an RIR assigns PAB #2 to Upstream Provider #2

• Both upstream providers assign address space to their customers from their PABs
 – Assignments are called Customer Network Blocks (CNB)
Provider Addressing (continued)

• Upstream Provider #1 assigns CNB #1 to the site
 – CNB #1 is a /59
• Upstream Provider #2 assigns CNB #2 to the site
 – CNB #2 is a /60
• The site does not number any of its resources from CNB #1 or CNB #2
• Site resources are accessed using CNB #1 and CNB #2 addresses
Site Addressing

• Site obtains a Site Address Block (SAB)
 – From ULA or other source
 – SAB is a /58

• SAB Partitioning
 – Lower half: Same size as CNB #1 (/59)
 – Third quarter: Same size as CNB #2 (/60)
 – Fourth quarter
Site Numbering

• Hosts numbered from the lower half of the SAB normally receive inbound traffic from Upstream Provider #1
• Hosts numbered from the third quarter of the SAB normally receive inbound traffic from Upstream Provider #2
• Hosts numbered from the fourth quarter of the SAB are not accessible from outside of the site
Site Numbering (continued)

- Selected hosts can receive inbound traffic from both Upstream Provider #1 and Upstream Provider #2
 - These hosts have multiple SAB addresses
 - At least one address is drawn from the lower half of the SAB
 - At lease one address is drawn from the third quarter of the SAB
Translation: Inbound Traffic

• If the 59 high-order bits of the destination address match the 59 high-order bits of CNB #1, overwrite those bits with 59 bits that identify the lower half of the SAB
• If 60 high-order bits of the destination address match the 60 high-order bits of CNB #2, overwrite those bits with 60 bits that identify the third quarter of the SAB
• Else silently discard
Translation: Outbound Traffic

• If the 59 high-order bits of the source address match the 59 bits that identify the lower half of the SAB, overwrite those bits with the 59 high order bits of CNB #1

• If the 60 high-order bits of the source address match the 60 bits that identify the third quarter of the SAB, overwrite those bits with the 60 high order bits of CNB #2

• Else silently discard
Routing

• PE #1 learns a route to CNB # 1 with next-hop equal to outside interface of NPTv6 #1
 – Overwrites next-hop with its own loopback address
 – Set LOCAL PREF high
 – Distributes throughout Upstream Provider #1 using iBGP

• Backup PE #1 learns a route to CNB # 1 with next-hop equal to outside interface of NPTv6 #2
 – Overwrites next-hop with its own loopback address
 – Set LOCAL PREF high
 – Distributes throughout Upstream Provider #1 using iBGP
Routing Continued

• Upstream Provider #1 advertises PAB #1 into global Internet
 – Nothing else (not the SAB, CNB #1 or CNB #2)
• Upstream Provider #2 deploys similar routing arrangement
• Two default routes circulate within the site
 – Next-hop is inside interface of NPTv6 #1
 – Next-hop is inside interface of NPTv6 #2
DNS

• Site publishes AAAA records associating each resource with all of its CNB addresses

• Sufficient but suboptimal
 – Hairpinning

• Workarounds available
 – Currently deployed in RFC 1918 networks
Recovery

• When PE #1 loses its direct link to NPTv6 #1, it withdraws its advertisement for CNB #1
• Backup PE #1 attracts traffic destined for CNB #1 to itself
• Backup PE #1 forwards traffic to NPTv6 #2 through tunnel
• NPTv6 #2 translates and forwards into site
• Return traffic traverse NPTv6 #2 and Upstream Provider #2
• Convergence is achieved as soon as PE #1’s withdrawal propagates throughout Upstream Provider #1 network
Load Balancing

• Outbound
 – Controlled by site
 – Traffic can exit through either NPTv6 gateway

• Inbound: connections originating within site
 – Originating host selects one of its source addresses
 – Selected address determines path or return traffic

• Inbound: connections originating outside of the site
 – Originating host selects one of the addresses advertised in DNS
 – Selected address determines traffic path
 – Site influences selection by controlling the number of addresses that it advertises from each part of the SAB
Conclusion

• Please provide review
• Please adopt draft
• Intended publication status is EXPERIMENTAL