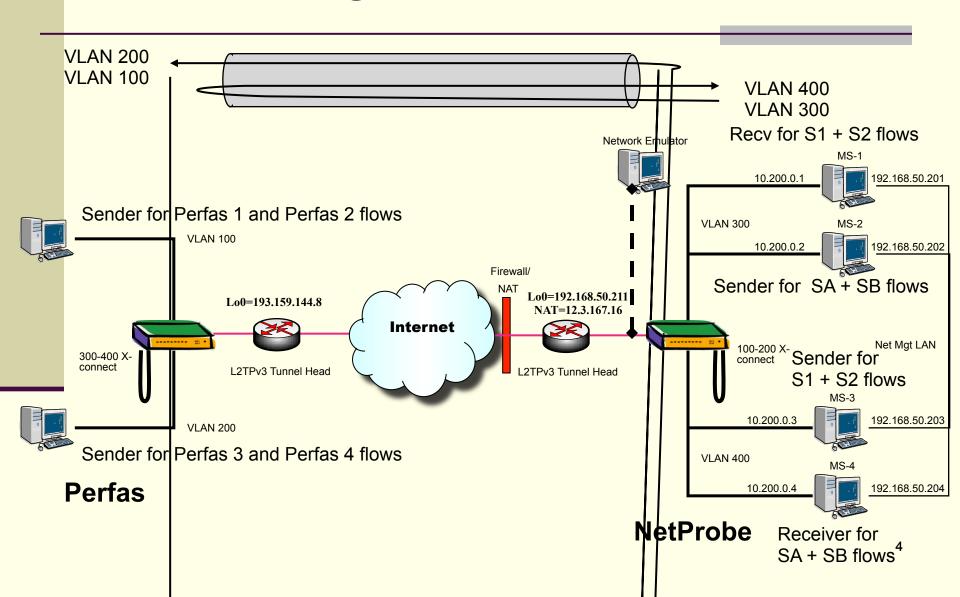
Advancing Metrics on the Standards Track:

RFC 2680 (Loss) Test Plan and Results

draft-morton-ippm-testplan-rfc2680-02
Len Ciavattone, Rüdiger Geib,
Al Morton, Matthias Wieser
March 2012


Outline

- Implement the Definition-centric metric advancement described in RFC 6576 (to be?)
- Test Plan Overview
 - Test Set-up and Specific Tests
- Test Results
- Summary and implications on the text of the revised RFC2680

Definition-Centric Process

```
(Start)
   / Implementations
         |Check for | ,' was RFC `. YES
            |Equivalence.... clause x -----+
     |/ +----+ |under |
                      `. clear? ,'
Metric \.... 2 ....relevant | `---+---' +----+
Report
                       +--+---+ |results+|
Metric | \
             |network |
          |Spec +---+RFC |
-----+ \| n |.'+----+
                        +----+ | request?|
        +----+
```

Test Configuration

Overview of Testing

- 32 different experiments conducted from March 9 through May 2, 2011.
- Varied Packet size, Active sampling distribution, test duration, and other parameters (Type-P)
- Added Network Emulator "netem" and varied fixed and variable delay distirbutions
 - Also inserted loss in a limited number of experiments.

Overview of Testing (sample)

	Date	Samp	Interval	Duration	Notes	ADK same	ADK cross
	Mar 23	Poisson	1s	300s	Netem 10% Loss		
	Mar 24	Periodic	1s	300s	Netem 100ms +/- 50ms delay		
	<u>Mar 24</u>	Periodic	1s	300s	Netem 10% Loss		Pass
	Mar 28	Periodic	1s	300s	Netem 100ms		
	<u>Mar 29</u>	Periodic (rand st.)	1s	300s	Netem 100ms +/- 50ms delay, 64 Byte	NP s12AB Per p1234	Pass combined
	Apr 6	Periodic (rand st.)	1s	300s	Netem 100ms +/- 50ms delay, 340 Byte		
	<u>Apr 7</u>	Periodic (rand st.)	1s	1200s	Netem 10% Loss		Pass
	<u>Apr 12</u>	Periodic (rand st.)	1s	300s	Netem 100ms, 500 Byte and 64 Byte comparison		

Threshold and Correction Factors

- For ADK comparison: cross-implementations
- 0F.85 ADDHICEOTORPERIESOTALCTORS-CHSTPULLIONE THATIONS
 - The smallest confidence factor & res. of *same*
 Implementation

For Anderson-Darling Goodness-of-Fit (ADGoF) comparisons:

the required level of significance for Goodness-of-Fit 11.4 of [RFC2330]

- 11.4 of [RFC2330]
- This is equivalent to a 95% confidence factor

Tests in the Plan

- 6. Tests to evaluate RFC 2680 Specifications
 - 6.1. One-way Loss, ADK Sample Comparison
 - 64 and 340 Byte sizes
 - Periodic and Poisson Sampling
 - 6.2. One-way Loss, Delay threshold
 - 6.3. One-way Loss with Out-of-Order Arrival
 - 6.4. Poisson Sending Process Evaluation
 - 6.5. Implementation of Statistics for One-way
 Delay Should be Loss

ADK for Loss Counts with 10% netem loss – Cross-Implementations

```
340B 1s Periodic
                          ti.obs
                                        P-value*
                          0.52043
not adj. for ties
                                       0.20604
                          0.62679
                                        0.18607
adj. for ties
64B 1s Periodic
                          0.76921
                                         0.16200
not adj. for ties
adj. for ties
                          0.90935
                                         0.14113
64B 1s Poisson**
not adj. for ties
                          2.15099
                                         0.04145
adj. for ties
                          1.93129
                                         0.05125
```

, Red = failed

^{**}S&neeamaphedeitws-pa5se&-througham neteheemermtercurate
** Streams made two-passes through a netem emulator

- Calibration completed for both implementations
- Calibration completed for both implementations

hoshujgggementationstwaredvressulfsreeRFC2679 plan) text to allow this in RFC

- Loss with Reordering
- Næsten Conunt permeen A Delay 2 sec +/- 1 sec
- as before.
 - Poisson Distribution AD GoF, multiple sample sizes
- Both NetProbe and Perfas pass in both sample sizes
 - Delay Stats There's only one:
 - Bypthe-IPHODenen-evaluationsssrepoverta(cos fos <u>servaisie</u>) to -Ratio

Summary

Two Implementations: NetProbe and Perfas+

the basis of Advance RFC Request Criteria for Equivalence Threshold & correction

Experiments complete, key clauses of

Two revisions to the RFC suggested from this

Two revisions to the RFC suggested from this study

References

language and environment for statistical computing. R Foundation for Statistical

Otopon/puting,R\fieojeat. Augstria. ISBN

•

BACKUP

Backup Backup Backup

ADK tests – Glossary & Background

ti.obs is calculated, an observed value based on an ADK metric. The absolute ti.obs value must be less than or equal to the

Critical Point.

The P-value or (P) in the following tables is a statistical test to bolster confidence in the result. It should be greater than or equal to $\alpha = 0.05$.

Evitkcal2PsampseSorthecGnftdeadePointervallo9695% (or α = 0.05) For k = 2 samples, the Critical Point is 1.968

For k = 9 samples, the Critical Point is 1.839

(Note, the ADK publication doesn't list a Critical Point for 8 samples, but it can be interpolated)

, Red = ADK test failed

Percentiles of the ADK Criteria for various sample Percentiles of the ADK Criteria for various sample combinations (k= number of samples)

	m ([[m]])	0.75 $\alpha \underline{0}0.55$	0.90 Q 801	0.95 0.95	0.975 0.975	0.99 0.99
ŀ	(K-1)	u-0.23	u-0.1			
-			1.225	1.960	2.719	3.752
	2		1.309	1.945	2.576	3.414
	3	.498	1.324	1.915	2.493	3.246
	4	.525	1.329	1.894	2.438	3.139

Criteria met when |t.obs| < ADK Criteria(%-tile of interest) Criteria met when |t.obs| < ADK Criteria(%-tile of interest)

Test Set-up Experiences

- Test bed set up may have to be described in more detail.
- We've worked with a single vendor.
- surselengt and Brode is betalished the subsection of the setting of the subsection o
- Connect the IPPM implementation to a switch and install a cable or internal U-turn on that switch. Maintain separate IEEE 802.1q @Eal/McAlkeronimætetsoths \u2012\alpha\rangle \u2012\alpha\rangle \u2013\u2
- interface pitcheduates vat lease as as LBO
- tuningleine the reference MUST be cross connected to the L2TPv3
- Terminate the L2TPv3 turinel on the LB0 interfaces boxes

NetProbe 5.8.5

- Pre-dates *WAMP, functionally similar
- Software-based packet generator

 in the direct packet packet generator

 Duplication, burst loss, etc. in post-processing buptication packet records

 on stored packet records

Section 6.2 – Loss Threshold

- See Section 2.8.2 of [RFC2680].
- 1. configure a path with 1 sec one-way constant delay
- ቅድፍ ଚଳ୍ପାନ୍ତ 3 ବିୟାବ୍ୟାମ୍ୟ ଦେଉ See See Une-way constant delay
 - 2. measure

(average)

- one-way delay with 2 or morehange the
- 3. configure the path with 3 sec one-way delay (or change the delay while test is in progress, measurements in step 2)
- 4. repeat measurements
 - 5. observe that the increase measured in step 4 caused all