
Advancing Metrics on the Standards Track: RFC 2679 Test Plan and Results

draft-morton-ippm-testplan-rfc2679-01 Len Ciavattone, Rüdiger Geib, Al Morton, Matthias Wieser March 2012

Test Configuration

Tests in the Plan

- 6. Tests to evaluate RFC 2679 Specifications
 - 6.1. One-way Delay, ADK Sample Comparison – Same & Cross Implementations <<< Additional test results</p>
 - 6.2. One-way Delay, Loss threshold,
 - 6.3. One-way Delay, First-bit to Last bit,
 - 6.4. One-way Delay, Difference Sample Metric
 - 6.5. Implementation of Statistics for One-way Delay

Overview of Testing

- 32 different experiments conducted from March 9 through May 2, 2011.
- Varied Packet size, Active sampling distribution, test duration, and other parameters (Type-P)
- Added Network Emulator "netem" and varied fixed and variable delay distributions
 - This talk describes tests beyond 100ms+/-50
 - Also inserted loss in a limited number of experiments.

Overview of Additional Testing

- The common parameters used for tests in this section are:
- o IP header + payload = 64 octets
- o Periodic sampling at 1 packet per second
- o Test duration = 300 seconds at each delay variation setting for a total of 1200 seconds (May 2, 2011 at 1720 UTC)
- The netem emulator was set for 100ms average delay, with (emulated) uniform delay variation of:
 - o +/-7.5 ms
- o +/-5.0 ms
- o +/-2.5 ms
- o 0 ms

Results for May 2 tests

Emulated Delay Variation Oms	Sub-Sample size			
adk.combined (all)	300 values		75 values	
Adj. for ties	raw	mean adj	raw	mean adj
TC observed	226.6563	67.51559	54.01359	21.56513
P-value	0	0	0	0
Mean std dev (all),us	719		635	
Mean diff of means,us	649	0	606	0
Variation +/- 2.5ms				
adk.combined (all)	300 values		75 values	
Adj. for ties	raw	mean adj	raw	mean adj
TC observed	14.50436	-1.60196	3.15935	-1.72104
P-value	0	0.873	0.00799	0.89038
Mean std dev (all),us	1655		1702	
Mean diff of means,us	471	0	513	0

Results for May 2 tests (contd.)

Emulated Delay Sub-Sample size					
adk.combined (all)	300 va	alues	75 values		
Adj. for ties	raw	mean adj	raw	mean adj	
TC observed	8.29921	-1.28927	0.37878	-1.81881	
P-value	0	0.81601	0.29984	0.90305	
Mean std dev (all),us	3023		2991		
Mean diff of means,us	582	0	513	0	
Variation +/- 7.5ms					
adk.combined (all)	300 values		75 values		
Adj. for ties	raw	mean adj	raw	mean adj	
TC observed	2.53759	-0.72985	0.29241	-1.15840	
P-value	0.01950	0.66942	0.32585	0.78686	
Mean std dev (all),us	4449		4506		
Mean diff of means,us	426	0	856	0	

Results

I. None of the raw or mean adjusted results pass the ADK criterion with 0 ms emulated delay variation. Use of the 75 value sub-sample yielded the same conclusion. (We note the same results when comparing same implementation samples for both NetProbe and Perfas.)

2. When the smallest emulated delay variation was inserted (+/-2.5ms), the mean adjusted samples pass the ADK criterion and the high P-value supports the result. The raw results do not pass.

3. At higher values of emulated delay variation (+/-5.0ms and +/-7.5ms), again the mean adjusted values pass ADK. We also see that the 75-value sub-sample passed the ADK in both raw and mean adjusted cases. This indicates that sample size may have played a role in our results, as noted in the Appendix of [RFC2680] for Goodness-of-Fit testing.

BACKUP

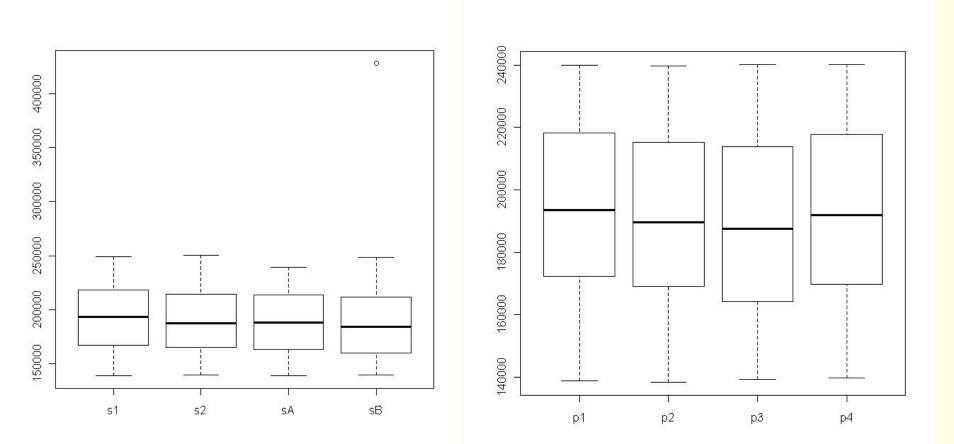
Backup Backup Backup

Section 6.1 One-way Delay, ADK Sample Comparisons (Same/Cross)

- 1. Configure tests on an L2TPv3 tunnel over a live network path.
- 2. Measure a sample of one-way delay singletons with 2 or more implementations, using identical options.
- Measure a sample of one-way delay singletons with <u>*four*</u> instances of the *same* implementations,
 - connectivity differences SHOULD be the same as for the *cross* implementation tests.
- 4. Apply ADK comparison: same (see App C of metrictest)
- 5. Take coarsest confidence/resolution, or Section 5 Limits
- 6. Apply constant correction factors (Section 5)
- 7. Compare Cross-Implementation ADK for equivalence (samples come from same distribution)

Criteria for the Equivalence Threshold and Correction Factors

- Purpose: Evaluate Specification Clarity (using results implementations)
- For ADK comparison: cross-implementations
 - 0.95 confidence factor at 1ms resolution, or
 - The smallest confidence factor & res. of *same* Imp.
- A constant time accuracy error < +/-0.5ms MAY be removed from one Implementation before ADK or comparison of means
- A constant propagation delay error < +2ms MAY be removed from one Implementation ...
 - (due to use of different sub-nets between the switch and measurement devices at each location)


Overview of Testing (sample)

Date	Samp	Interval	Duration	Notes	ADK same	ADK cross
Mar 23	Poisson	1s	300s	Netem 10% Loss		
Mar 24	Periodic	1s	300s	Netem 100ms +/- 50ms delay		
Mar 24	Periodic	1s	300s	Netem 10% Loss		
Mar 28	Periodic	1s	300s	Netem 100ms		
<u>Mar 29</u>	Periodic (rand st.)	1s	300s	Netem 100ms +/- 50ms delay, 64 Byte	NP s12AB Per p1234	Pass combined
Apr 6	Periodic (rand st.)	1s	300s	Netem 100ms +/- 50ms delay, 340 Byte		
Apr 7	Periodic (rand st.)	1s	1200s	Netem 10% Loss		
<u>Apr 12</u>	Periodic (rand st.)	1s	300s	Netem 100ms, 500 Byte and 64 Byte comparison		

Summary of March 29 Tests No correction factors used, lusec res.

NetProbe

Perfas+

ADK tests – Glossary & Background

The ADK R-package returns some values and these require interpretation:

ti.obs is calculated, an observed value based on an ADK metric. The absolute ti.obs value must be less than or equal to the Critical Point.

The P-value or (P) in the following tables is a statistical test to bolster confidence in the result. It should be greater than or equal to $\alpha = 0,05$.

Critical Points for a confidence interval of 95% (or $\alpha = 0.05$) For k = 2 samples, the Critical Point is 1.960 For k = 4 samples, the Critical Point is 1.915 For k = 9 samples, the Critical Point is 1.839 (Note, the ADK publication doesn't list a Critical Point for 8 samples, but it can be interpolated)

Green = ADK test passed, Red = ADK test failed

ADK for Mar 29 tests – Perfas+

ti.obs (P) perfas 1 		perfas 3 			
 perfas 2 					
<pre> perfas 3 perfas.3. .1.09.(0.12)</pre>	0.37 (0.24)	• •			
[berras.s.[.t.03.(0.14)					
+Berfas=APKsR¢dults-for-sa /	m¢-implemêntāt:	i¢n1-36- (0-09}-+			
Red = failed Perfas ADK Results for same-implementation Green = passed, Red = failed					

ADK for Mar 29 – Cross-Implementations

Null Hypothesis: Nnii Hybornesis: All samples within a data	set come from a	common distribution.
All samples within a data	set come from a	common distribution.
Adl MdyProbe tombined adj. for ties	0i64099	9- val tē
-	0.64833	0.21392
Adl Beljfaforombesed adj. for ties	0:33968	0.23442

Adt Mehprobe andsPerfas combified37 0.17967 adj. for ties

Other Results (details in the memo)

Casis rations not an aletand for poto sublementations PGGILLI "HAPPEPHEAHEEHEEHEE

Suggesthmedd – available in post-processing for

First bit – Last bit – issues with test design

Sovg gasted links not available

Emulatorrienties found in Half-Duplex

Replace with desterxiptions of ithis emails and it is a second se Pillerbiltal DelBA = Roulesewith accrueision

Low apetationkschropavailable Permitter in this defound in Half-Duplex

Summary

Test Plan for Key clauses of RFC 2679the basis of Advance RFC Request

Criteria for Equivalence Threshold & correction factors

Adopt as a WG document?

Experiments complete, key clauses of RFC2679 evaluated

Two revisions to the RFC suggested from this
Two revisions to the RFC suggested from this study

References

R Development Core Team (2011), R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

http://www.R-project.org/

Scholz F.W. and Stephens M.A. (1987), Ksample Anderson-Darling Tests, *Journal of the American Statistical Association*, **Vol 82**, **No. 399**, 918–924.

[Table 1 of Scholz and Stevens]

Γ	m	0.75	0.90	0.95	0.975	0.99
	(k-1)	α=0.25	α=0.1	α=0.05	α=0.025	α=0.01
	1	.326	1.225	1.960	2.719	3.752
	2	.449	1.309	1.945	2.576	3.414
	3	.498	1.324	1.915	2.493	3.246
	4	.525	1.329	1.894	2.438	3.139

Criteria met when |t.obs| < ADK Criteria(%-tile of interest) Also: P-value should be > α (rule of thumb)

Test Set-up Experiences

Test bed set up may have to be described in more detail.

We've worked with a single vendor.

Selecting the proper Operation System took us one week (make cure support of L2TPv3 is a main purpose of that software).

Connect the IPPM implementation to a switch and install a cable or internal U-turn on that switch. Maintain separate IEEE 802.1q logical VLAN connections when connecting the switch to the PE which terminates the L2TPv3 tunnel.

The CPE requires at least a route-able IP address as LB0 interface, if the L2TPv3 tunnel spans the Internet.

The Ethernet Interface MUST be cross connected to the L2TPv3

DemntrfetgetteoL20Trffigurterfine/wantlstrændB00hieterfizitete boxes Don't forget to configure firewalls and other middle boxes

NetProbe 5.8.5

Runs on Solaris (and Linux, occasionally)
Pre-dates *WAMP, functionally similar
Software-based packet generator including Loss, Delay, PDV, Reordering, Duplication, burst loss, etc. in post-processing Druplicatiopablestriess, dest. in post-processing on stored packet records See Section 3.5 of [RFC2679], 3rd bullet point and also Section 2.8.2 of [RFC2679].

2. coefigure (average) th 1 sec one-way constant delay

one-way delay with 2 or more implementations, using identical waiting time thresholds for loss et عد كم المحالية المحال

• 4. repeat measurements

5. observe that the increase measured in step 4 caused all packets to be declared lost, and that all packets that arrive

Section 6.3: First-bit to Last-bit

See Section 3.7.2 of [RFC2679], and Section 10.2 of [RFC2330]. See Section 3.7.2 of [RFC2679], and Section 10.2 of [RFC2330].

- 1. configure a path with 1000 low-speed link (10-baseT, FD) ms one-way constant delay, and ideally including a identication of the characteristic of the ch identical options and equal size small pack with (2.9r, more implementations, using 44 octet IP payload)
- 3. maintain the same path with
- 1000 ms one-way delay 4. measure identical options and eage size way deask with 2.9, more implementations, using 480 octet IP payload)
 - 5. observe that the increase measured in steps 2 and 4 is equivalent to the

Other Examples

6.4 One-way Delay, RFC 2679

 This test is intended to evaluate measurements in sections 3 and 4 of [RFC2679].

Average delays before/after 2 second increase

- 4. Error Calibration, RFC 2679
 - This is a simple check to determine if an implementation reports the error calibration as required in Section 4.8 of [RFC2679].