KARP KMP-Using IKEv2 with TCP-AO

draft-chunduri-karp-using-ikev2-with-tcp-ao-01

Uma Chunduri, Albert Tian
Ericsson Inc.
Joe Touch
USC/ISI

IETF 83, Paris, France
March 26-30, 2011
Using IKEv2 with TCP-AO

Goals:

Minimize impact on TCP-based Routing Protocols seeking KMP by integrating:

- IKEv2
- Proposed Gatekeeper module and
- TCP-AO’s infrastructure (MKTs)

Minimize changes to IKEv2

- SA payload changes to negotiate RP (TCP-AO) SAs
 - Without impacting the current SA proposal/negotiation rules
 - And continuously leverage new IKEv2 features, e.g., pre-shared key only and yet secure authentication
- By adding an external Gatekeeper module
 - To support the mechanisms IKEv2 expects in IPsec, but are not part of TCP-AO

Minimize changes to TCP-AO

- No changes needed.
What is needed from TCP-AO’s viewpoint:

- A way to utilize IKEv2-compatible keying
 - IKEv2 assumes IPsec manages SA timers, triggers new SA requests
 - TCP-AO assumes external key management, incl. timers and rekey initiation
 - Need separate key timers, rekey initiation → Gatekeeper (GK) (see: *Ghostbusters*)

- Transport-level differentiation of multisession BGP sessions
 - Socket pair must be unique (Unique MKT in AO)
 - Currently use different IP addresses
 - Use different source ports => need code somewhere (BGP source, link library, OS)

- Result
 - IKEv2 generates keys and parameters
 - GK triggers IKEv2 initial and rekeying, inserts info into TCP-AO, revokes keys
 - TCP-AO implements transport authentication based on given info.
What is needed from IKEv2’s viewpoint:

- Additional transforms to Security Association (SA) Payload for TCP-based routing protocol SA (TCP-AO SA)
 - Extensions required listed in the draft (non IPsec DOI)
 - No new port required
 - Peer auth mechanisms/messages are not changing
 - Leaves the existing tunneling mechanisms intact

- Simplified Traffic Selectors
- More details in the draft
Proposal:

TCP-Based RP Session

| Configuration |
| RPs |
| (BGP/LDP/PCEP) |
| MSDP |

| Trigger |
| IKEv2 |
| Negotiated KMP |
| Parameters |

<table>
<thead>
<tr>
<th>TCP-AO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKT Provisioning</td>
</tr>
</tbody>
</table>

KARP KMP: Using IKEv2 with TCP-AO

draft-chunduri-karp-using-ikev2-with-tcp-ao-01 captures:

- TCP-based RP interface to GK
- KMP interface to GK
- TCP-AO interface to GK

(more details in the draft)
This proposal avoids:

- All routing protocols need to trigger KMP to get the SA
- All routing protocols need to maintain the SA with the lifetime
- and rekey when lifetime expires

(Essentially complete SA management at each RP level)
Using IKEv2 with TCP-AO (cont.)

Solution

1. BGP/LDP sets configured Auth/KDF/lifetime info and initiate TCP connection
2. GK triggers KMP (IKEv2)
3. IKEv2 negotiate Master key
4. Master keys added to GK
5. GK converts IKEv2 keys into MKTs; revokes and/or retriggers IKE as needed
6. Use KDF to derive TCP-AO traffic-keys
7. TCP session protected
Advantages:

- No TCP based routing protocol changes to do SA management
 - Transparent to keys, key management and KMP
 - Configuration can be *similar* to manual keys with TCP-AO

- No changes to TCP-AO (5925)

- Utilizes integrated extensibility in IKEv2 (5996) to negotiate non-IPsec SA for RPs
 - Simplified configuration for RPs

- Gatekeeper isolates how TCP-AO mimics IPsec to IKEv2
 - Manages the state/timers that IKEv2 expects IPsec to manage
Other Discussions (detailed in Appendix)

BGP Multi-session requirements (optional)

• Transport level differentiation: stems from the possible need for different security services
• possible ways to address

Peer AUTH methods available

• Brief discussion on all methods suitable for RPs
Questions & Comments?

Thank You!